eager_method.cc 17.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
#include <Python.h>

#include <string>
#include <vector>

#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"

20
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
21 22
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
23
#include "paddle/fluid/eager/utils.h"
24 25 26 27 28 29
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
30
#include "paddle/pten/api/include/api.h"
31 32 33 34 35 36
#include "paddle/pten/common/data_type.h"
#include "paddle/pten/core/convert_utils.h"
#include "paddle/pten/core/dense_tensor.h"
namespace paddle {
namespace pybind {

37 38 39 40
extern void InitEagerTensorWithNumpyValue(EagerTensorObject* self,
                                          const pybind11::object& array,
                                          bool zero_copy);

41
extern PyTypeObject* p_eager_tensor_type;
42 43 44

static PyObject* eager_tensor_method_numpy(EagerTensorObject* self,
                                           PyObject* args, PyObject* kwargs) {
J
Jiabin Yang 已提交
45
  EAGER_SYNC_TRY
46 47 48 49 50 51
  PADDLE_ENFORCE_EQ(
      self->eager_tensor.initialized(), true,
      platform::errors::InvalidArgument(
          "Tensor data of %s is Empty that indicates we have null tensor for "
          "now, please check if it has no data and initialize it first.",
          self->eager_tensor.name()));
J
Jiabin Yang 已提交
52 53 54
  auto tensor_dims = self->eager_tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->eager_tensor.type());
  auto sizeof_dtype = pten::DataTypeSize(self->eager_tensor.type());
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    py_dims[i] = static_cast<size_t>(tensor_dims[i]);
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }
  auto& api = pybind11::detail::npy_api::get();
  PyObject* array = api.PyArray_NewFromDescr_(
      api.PyArray_Type_, api.PyArray_DescrFromType_(numpy_dtype),
      tensor_dims.size(), py_dims, py_strides, nullptr,
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

J
Jiabin Yang 已提交
71
  if (self->eager_tensor.is_cpu()) {
72
    auto dense_tensor =
J
Jiabin Yang 已提交
73
        std::dynamic_pointer_cast<pten::DenseTensor>(self->eager_tensor.impl());
74 75 76 77 78 79
    platform::CPUPlace place;
    // deep copy
    paddle::memory::Copy(place, reinterpret_cast<void*>(
                                    pybind11::detail::array_proxy(array)->data),
                         place, dense_tensor->data(), sizeof_dtype * numel);
#if defined(PADDLE_WITH_CUDA)
J
Jiabin Yang 已提交
80
  } else if (self->eager_tensor.is_cuda()) {
81
    auto dense_tensor =
J
Jiabin Yang 已提交
82
        std::dynamic_pointer_cast<pten::DenseTensor>(self->eager_tensor.impl());
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

    paddle::platform::GpuMemcpySync(
        pybind11::detail::array_proxy(array)->data, dense_tensor->data(),
        pten::DataTypeSize(dense_tensor->dtype()) * dense_tensor->numel(),
        cudaMemcpyDeviceToHost);
#endif
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
    Py_INCREF(Py_None);
    return Py_None;
  }

  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

100 101 102
static PyObject* eager_tensor_method__is_initialized(EagerTensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
J
Jiabin Yang 已提交
103 104
  EAGER_SYNC_TRY
  return ToPyObject(self->eager_tensor.initialized());
105 106 107
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
static PyObject* eager_tensor_method__copy_to(EagerTensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_SYNC_TRY
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 1), 1);
  auto cp_tensor =
      self->eager_tensor.copy_to(pten::TransToPtenBackend(place), blocking);
  egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
  egr::EagerUtils::autograd_meta(&cp_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->eager_tensor))->Persistable());
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_tensor_method_copy_(EagerTensorObject* self,
                                           PyObject* args, PyObject* kwargs) {
  EAGER_SYNC_TRY
  egr::EagerTensor src_tensor =
      CastPyArg2EagerTensor(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
130 131
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
          << self->eager_tensor.name();
132 133 134 135 136 137 138 139 140
  if (!self->eager_tensor.defined()) {
    egr::EagerUtils::autograd_meta(&(self->eager_tensor))
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
    egr::EagerUtils::autograd_meta(&(self->eager_tensor))
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
  }

141
  self->eager_tensor.copy_(src_tensor, blocking);
142

143 144 145 146 147 148 149 150 151 152
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
          << self->eager_tensor.name();
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_tensor_retain_grads(EagerTensorObject* self,
                                           PyObject* args, PyObject* kwargs) {
  EAGER_TRY
153 154 155 156 157 158 159 160
  if (egr::Controller::Instance().HasGrad()) {
    auto meta = egr::EagerUtils::autograd_meta(&(self->eager_tensor));
    if (!meta->GetMutableGradNode()) {
      VLOG(6) << "Make grad node of tensor: " << self->eager_tensor.name()
              << "become accumulation node";
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>());
    }
    egr::egr_utils_api::RetainGradForTensor(self->eager_tensor);
161
  }
162 163 164 165 166
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

167 168 169 170 171 172
static PyObject* eager_tensor__clear_gradient(EagerTensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_SYNC_TRY
  VLOG(4) << "ClearGradient " << self->eager_tensor.name();

173
  egr::EagerTensor* grad;
174 175 176 177 178 179 180 181 182 183 184 185 186 187
  if (egr::egr_utils_api::IsLeafTensor(self->eager_tensor)) {
    // Add RetainGrad as PostHook to AccumulationNode
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->eager_tensor);
    PADDLE_ENFORCE(
        grad_node.get() != nullptr,
        paddle::platform::errors::Fatal("Detected NULL grad_node"
                                        "Leaf tensor should have had grad_node "
                                        "with type: GradNodeAccumulation"));
    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    grad = accumulation_grad_node->Grad();
  } else {
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->eager_tensor);
188
    grad = meta->MutableGrad();
189 190
  }

191
  if (grad->initialized()) {
192 193 194
    VLOG(4) << "Gradient of " << self->eager_tensor.name()
            << " is initialized, will be released.";
    auto dense_tensor =
195
        std::dynamic_pointer_cast<pten::DenseTensor>(grad->impl());
196
    dense_tensor->MoveMemoryHolder();
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
  }
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_tensor__zero_grads(EagerTensorObject* self,
                                          PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "ZeroGrads " << self->eager_tensor.name();

  if (egr::egr_utils_api::IsLeafTensor(self->eager_tensor)) {
    // Add RetainGrad as PostHook to AccumulationNode
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->eager_tensor);
    PADDLE_ENFORCE(
        grad_node.get() != nullptr,
        paddle::platform::errors::Fatal("Detected NULL grad_node"
                                        "Leaf tensor should have had grad_node "
                                        "with type: GradNodeAccumulation"));
    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
219 220 221 222 223 224
    if (accumulation_grad_node->Grad()->initialized()) {
      accumulation_grad_node->Grad()->set_tensor(
          std::make_shared<paddle::experimental::Tensor>(
              paddle::experimental::zeros_like(
                  *(accumulation_grad_node->Grad()->Tensor().get()))));
    }
225 226
  } else {
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->eager_tensor);
227 228 229 230 231 232
    if (meta->MutableGrad()->initialized()) {
      meta->MutableGrad()->set_tensor(
          std::make_shared<paddle::experimental::Tensor>(
              paddle::experimental::zeros_like(
                  *(meta->MutableGrad()->Tensor().get()))));
    }
233 234 235 236 237 238 239
  }

  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

240 241 242 243
static PyObject* eager_tensor__share_buffer_to(EagerTensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_SYNC_TRY
244
  egr::EagerTensor* dst_ptr =
245 246 247 248 249 250 251
      &(reinterpret_cast<EagerTensorObject*>(PyTuple_GET_ITEM(args, 0))
            ->eager_tensor);
  PADDLE_ENFORCE_EQ(self->eager_tensor.initialized(), true,
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        self->eager_tensor.name()));
252 253 254 255 256 257
  auto* src_tensor =
      static_cast<paddle::framework::Tensor*>(self->eager_tensor.impl().get());
  auto dst_tensor =
      static_cast<paddle::framework::Tensor*>(dst_ptr->impl().get());
  dst_tensor->ShareDataWith(*src_tensor);
  dst_tensor->ShareDataTypeWith(*src_tensor);
258 259 260 261 262 263 264 265 266
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_tensor__is_shared_buffer_with(EagerTensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_SYNC_TRY
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
  egr::EagerTensor* dst_ptr =
      &(reinterpret_cast<EagerTensorObject*>(PyTuple_GET_ITEM(args, 0))
            ->eager_tensor);
  PADDLE_ENFORCE_EQ(self->eager_tensor.initialized(), true,
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        self->eager_tensor.name()));
  bool res = false;
  if (!self->eager_tensor.defined() || !dst_ptr->defined()) {
    return ToPyObject(res);
  }
  auto* self_ptr =
      static_cast<paddle::framework::Tensor*>(self->eager_tensor.impl().get());
  auto dst_tensor =
      static_cast<paddle::framework::Tensor*>(dst_ptr->impl().get());
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_tensor__share_underline_tensor_to(
    EagerTensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_SYNC_TRY
  egr::EagerTensor* src_ptr =
      &(reinterpret_cast<EagerTensorObject*>(PyTuple_GET_ITEM(args, 0))
            ->eager_tensor);
  PADDLE_ENFORCE_EQ(self->eager_tensor.initialized(), true,
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        self->eager_tensor.name()));
  src_ptr->set_impl(self->eager_tensor.impl());
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_tensor__is_shared_underline_tensor_with(
    EagerTensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_SYNC_TRY
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
  egr::EagerTensor src_tensor =
      CastPyArg2EagerTensor(PyTuple_GET_ITEM(args, 0), 0);
  PADDLE_ENFORCE_EQ(src_tensor.initialized(), true,
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
  if (!self->eager_tensor.defined() || !src_tensor.defined()) {
    return ToPyObject(res);
  }
  res = (self->eager_tensor.impl().get() == src_tensor.impl().get());
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
static PyObject* eager_tensor_method_detach(EagerTensorObject* self,
                                            PyObject* args, PyObject* kwargs) {
  EAGER_SYNC_TRY
  PADDLE_ENFORCE_EQ(
      self->eager_tensor.initialized(), true,
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->eager_tensor.name()));

  PyObject* obj = p_eager_tensor_type->tp_alloc(p_eager_tensor_type, 0);
  if (obj) {
    auto v = reinterpret_cast<EagerTensorObject*>(obj);
    new (&(v->eager_tensor)) egr::EagerTensor();
    v->eager_tensor.set_impl(self->eager_tensor.impl());
    v->eager_tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src =
        egr::EagerUtils::autograd_meta(&(self->eager_tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->eager_tensor));
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
static PyObject* eager_tensor_method_get_underline_tensor(
    EagerTensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_SYNC_TRY
  if (self->eager_tensor.is_dense_tensor()) {
    auto* tensor = static_cast<paddle::framework::LoDTensor*>(
        self->eager_tensor.impl().get());
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
  } else {
    Py_IncRef(Py_None);
    return Py_None;
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379
// NOTE(wuweilong): Set value and not change self's original place
static PyObject* eager_tensor_method_set_value(EagerTensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Value " << self->eager_tensor.name();
  pybind11::object numpy_value =
      pybind11::object(pybind11::handle(PyTuple_GET_ITEM(args, 0)), true);
  InitEagerTensorWithNumpyValue(self, numpy_value, false);
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

380 381 382 383
PyMethodDef variable_methods[] = {
    {"numpy", (PyCFunction)(void (*)(void))eager_tensor_method_numpy,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_is_initialized",
384 385 386 387 388
     (PyCFunction)(void (*)(void))eager_tensor_method__is_initialized,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_copy_to", (PyCFunction)(void (*)(void))eager_tensor_method__copy_to,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"copy_", (PyCFunction)(void (*)(void))eager_tensor_method_copy_,
389
     METH_VARARGS | METH_KEYWORDS, NULL},
390 391
    {"retain_grads", (PyCFunction)(void (*)(void))eager_tensor_retain_grads,
     METH_VARARGS | METH_KEYWORDS, NULL},
392 393 394 395 396
    {"_clear_gradient",
     (PyCFunction)(void (*)(void))eager_tensor__clear_gradient,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_zero_grads", (PyCFunction)(void (*)(void))eager_tensor__zero_grads,
     METH_VARARGS | METH_KEYWORDS, NULL},
397
    {"_share_buffer_to",
398 399
     (PyCFunction)(void (*)(void))eager_tensor__share_buffer_to,
     METH_VARARGS | METH_KEYWORDS, NULL},
400
    {"_is_shared_buffer_with",
401 402
     (PyCFunction)(void (*)(void))eager_tensor__is_shared_buffer_with,
     METH_VARARGS | METH_KEYWORDS, NULL},
403 404 405 406 407 408
    {"_share_underline_tensor_to",
     (PyCFunction)(void (*)(void))eager_tensor__share_underline_tensor_to,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_is_shared_underline_tensor_with",
     (PyCFunction)(void (*)(void))eager_tensor__is_shared_underline_tensor_with,
     METH_VARARGS | METH_KEYWORDS, NULL},
409 410
    {"detach", (PyCFunction)(void (*)(void))eager_tensor_method_detach,
     METH_VARARGS | METH_KEYWORDS, NULL},
411 412 413
    {"get_tensor",
     (PyCFunction)(void (*)(void))eager_tensor_method_get_underline_tensor,
     METH_VARARGS | METH_KEYWORDS, NULL},
414 415
    {"_set_value", (PyCFunction)(void (*)(void))eager_tensor_method_set_value,
     METH_VARARGS | METH_KEYWORDS, NULL},
416 417 418 419
    {NULL, NULL, 0, NULL}};

}  // namespace pybind
}  // namespace paddle