eager_method.cc 13.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
#include <Python.h>

#include <string>
#include <vector>

#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"

20
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
21 22
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
23
#include "paddle/fluid/eager/utils.h"
24 25 26 27 28 29
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
30
#include "paddle/pten/api/include/api.h"
31 32 33 34 35 36
#include "paddle/pten/common/data_type.h"
#include "paddle/pten/core/convert_utils.h"
#include "paddle/pten/core/dense_tensor.h"
namespace paddle {
namespace pybind {

37
extern PyTypeObject* p_eager_tensor_type;
38 39 40

static PyObject* eager_tensor_method_numpy(EagerTensorObject* self,
                                           PyObject* args, PyObject* kwargs) {
J
Jiabin Yang 已提交
41
  EAGER_SYNC_TRY
42 43 44 45 46 47
  PADDLE_ENFORCE_EQ(
      self->eager_tensor.initialized(), true,
      platform::errors::InvalidArgument(
          "Tensor data of %s is Empty that indicates we have null tensor for "
          "now, please check if it has no data and initialize it first.",
          self->eager_tensor.name()));
J
Jiabin Yang 已提交
48 49 50
  auto tensor_dims = self->eager_tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->eager_tensor.type());
  auto sizeof_dtype = pten::DataTypeSize(self->eager_tensor.type());
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];
  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    py_dims[i] = static_cast<size_t>(tensor_dims[i]);
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }
  auto& api = pybind11::detail::npy_api::get();
  PyObject* array = api.PyArray_NewFromDescr_(
      api.PyArray_Type_, api.PyArray_DescrFromType_(numpy_dtype),
      tensor_dims.size(), py_dims, py_strides, nullptr,
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

J
Jiabin Yang 已提交
67
  if (self->eager_tensor.is_cpu()) {
68
    auto dense_tensor =
J
Jiabin Yang 已提交
69
        std::dynamic_pointer_cast<pten::DenseTensor>(self->eager_tensor.impl());
70 71 72 73 74 75
    platform::CPUPlace place;
    // deep copy
    paddle::memory::Copy(place, reinterpret_cast<void*>(
                                    pybind11::detail::array_proxy(array)->data),
                         place, dense_tensor->data(), sizeof_dtype * numel);
#if defined(PADDLE_WITH_CUDA)
J
Jiabin Yang 已提交
76
  } else if (self->eager_tensor.is_cuda()) {
77
    auto dense_tensor =
J
Jiabin Yang 已提交
78
        std::dynamic_pointer_cast<pten::DenseTensor>(self->eager_tensor.impl());
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

    paddle::platform::GpuMemcpySync(
        pybind11::detail::array_proxy(array)->data, dense_tensor->data(),
        pten::DataTypeSize(dense_tensor->dtype()) * dense_tensor->numel(),
        cudaMemcpyDeviceToHost);
#endif
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
    Py_INCREF(Py_None);
    return Py_None;
  }

  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

96 97 98
static PyObject* eager_tensor_method__is_initialized(EagerTensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
J
Jiabin Yang 已提交
99 100
  EAGER_SYNC_TRY
  return ToPyObject(self->eager_tensor.initialized());
101 102 103
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
static PyObject* eager_tensor_method__copy_to(EagerTensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_SYNC_TRY
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 1), 1);
  auto cp_tensor =
      self->eager_tensor.copy_to(pten::TransToPtenBackend(place), blocking);
  egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
  egr::EagerUtils::autograd_meta(&cp_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->eager_tensor))->Persistable());
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_tensor_method_copy_(EagerTensorObject* self,
                                           PyObject* args, PyObject* kwargs) {
  EAGER_SYNC_TRY
  egr::EagerTensor src_tensor =
      CastPyArg2EagerTensor(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
126 127
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
          << self->eager_tensor.name();
128 129 130 131 132 133 134 135 136
  if (!self->eager_tensor.defined()) {
    egr::EagerUtils::autograd_meta(&(self->eager_tensor))
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
    egr::EagerUtils::autograd_meta(&(self->eager_tensor))
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
  }

137
  self->eager_tensor.copy_(src_tensor, blocking);
138

139 140 141 142 143 144 145 146 147 148
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
          << self->eager_tensor.name();
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_tensor_retain_grads(EagerTensorObject* self,
                                           PyObject* args, PyObject* kwargs) {
  EAGER_TRY
149 150 151 152 153 154 155 156
  if (egr::Controller::Instance().HasGrad()) {
    auto meta = egr::EagerUtils::autograd_meta(&(self->eager_tensor));
    if (!meta->GetMutableGradNode()) {
      VLOG(6) << "Make grad node of tensor: " << self->eager_tensor.name()
              << "become accumulation node";
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>());
    }
    egr::egr_utils_api::RetainGradForTensor(self->eager_tensor);
157
  }
158 159 160 161 162
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

163 164 165 166 167 168
static PyObject* eager_tensor__clear_gradient(EagerTensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_SYNC_TRY
  VLOG(4) << "ClearGradient " << self->eager_tensor.name();

169
  egr::EagerTensor* grad;
170 171 172 173 174 175 176 177 178 179 180 181 182 183
  if (egr::egr_utils_api::IsLeafTensor(self->eager_tensor)) {
    // Add RetainGrad as PostHook to AccumulationNode
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->eager_tensor);
    PADDLE_ENFORCE(
        grad_node.get() != nullptr,
        paddle::platform::errors::Fatal("Detected NULL grad_node"
                                        "Leaf tensor should have had grad_node "
                                        "with type: GradNodeAccumulation"));
    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    grad = accumulation_grad_node->Grad();
  } else {
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->eager_tensor);
184
    grad = meta->MutableGrad();
185 186
  }

187
  if (grad->initialized()) {
188 189 190
    VLOG(4) << "Gradient of " << self->eager_tensor.name()
            << " is initialized, will be released.";
    auto dense_tensor =
191
        std::dynamic_pointer_cast<pten::DenseTensor>(grad->impl());
192
    dense_tensor->MoveMemoryHolder();
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
  }
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_tensor__zero_grads(EagerTensorObject* self,
                                          PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "ZeroGrads " << self->eager_tensor.name();

  if (egr::egr_utils_api::IsLeafTensor(self->eager_tensor)) {
    // Add RetainGrad as PostHook to AccumulationNode
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->eager_tensor);
    PADDLE_ENFORCE(
        grad_node.get() != nullptr,
        paddle::platform::errors::Fatal("Detected NULL grad_node"
                                        "Leaf tensor should have had grad_node "
                                        "with type: GradNodeAccumulation"));
    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
215 216 217 218 219 220
    if (accumulation_grad_node->Grad()->initialized()) {
      accumulation_grad_node->Grad()->set_tensor(
          std::make_shared<paddle::experimental::Tensor>(
              paddle::experimental::zeros_like(
                  *(accumulation_grad_node->Grad()->Tensor().get()))));
    }
221 222
  } else {
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->eager_tensor);
223 224 225 226 227 228
    if (meta->MutableGrad()->initialized()) {
      meta->MutableGrad()->set_tensor(
          std::make_shared<paddle::experimental::Tensor>(
              paddle::experimental::zeros_like(
                  *(meta->MutableGrad()->Tensor().get()))));
    }
229 230 231 232 233 234 235
  }

  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
static PyObject* eager_tensor__share_buffer_to(EagerTensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_SYNC_TRY
  egr::EagerTensor* src_ptr =
      &(reinterpret_cast<EagerTensorObject*>(PyTuple_GET_ITEM(args, 0))
            ->eager_tensor);
  PADDLE_ENFORCE_EQ(self->eager_tensor.initialized(), true,
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        self->eager_tensor.name()));
  src_ptr->set_impl(self->eager_tensor.impl());
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_tensor__is_shared_buffer_with(EagerTensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_SYNC_TRY
  egr::EagerTensor src_tensor =
      CastPyArg2EagerTensor(PyTuple_GET_ITEM(args, 0), 0);
  PADDLE_ENFORCE_EQ(src_tensor.initialized(), true,
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
  if (!self->eager_tensor.defined() || !src_tensor.defined()) {
    return ToPyObject(res);
  }
  res = (self->eager_tensor.impl().get() == src_tensor.impl().get());
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static PyObject* eager_tensor_method_detach(EagerTensorObject* self,
                                            PyObject* args, PyObject* kwargs) {
  EAGER_SYNC_TRY
  PADDLE_ENFORCE_EQ(
      self->eager_tensor.initialized(), true,
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->eager_tensor.name()));

  PyObject* obj = p_eager_tensor_type->tp_alloc(p_eager_tensor_type, 0);
  if (obj) {
    auto v = reinterpret_cast<EagerTensorObject*>(obj);
    new (&(v->eager_tensor)) egr::EagerTensor();
    v->eager_tensor.set_impl(self->eager_tensor.impl());
    v->eager_tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src =
        egr::EagerUtils::autograd_meta(&(self->eager_tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->eager_tensor));
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
static PyObject* eager_tensor_method_get_underline_tensor(
    EagerTensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_SYNC_TRY
  if (self->eager_tensor.is_dense_tensor()) {
    auto* tensor = static_cast<paddle::framework::LoDTensor*>(
        self->eager_tensor.impl().get());
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
  } else {
    Py_IncRef(Py_None);
    return Py_None;
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

316 317 318 319
PyMethodDef variable_methods[] = {
    {"numpy", (PyCFunction)(void (*)(void))eager_tensor_method_numpy,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_is_initialized",
320 321 322 323 324
     (PyCFunction)(void (*)(void))eager_tensor_method__is_initialized,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_copy_to", (PyCFunction)(void (*)(void))eager_tensor_method__copy_to,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"copy_", (PyCFunction)(void (*)(void))eager_tensor_method_copy_,
325
     METH_VARARGS | METH_KEYWORDS, NULL},
326 327
    {"retain_grads", (PyCFunction)(void (*)(void))eager_tensor_retain_grads,
     METH_VARARGS | METH_KEYWORDS, NULL},
328 329 330 331 332
    {"_clear_gradient",
     (PyCFunction)(void (*)(void))eager_tensor__clear_gradient,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_zero_grads", (PyCFunction)(void (*)(void))eager_tensor__zero_grads,
     METH_VARARGS | METH_KEYWORDS, NULL},
333
    {"_share_buffer_to",
334 335
     (PyCFunction)(void (*)(void))eager_tensor__share_buffer_to,
     METH_VARARGS | METH_KEYWORDS, NULL},
336
    {"_is_shared_buffer_with",
337 338
     (PyCFunction)(void (*)(void))eager_tensor__is_shared_buffer_with,
     METH_VARARGS | METH_KEYWORDS, NULL},
339 340
    {"detach", (PyCFunction)(void (*)(void))eager_tensor_method_detach,
     METH_VARARGS | METH_KEYWORDS, NULL},
341 342 343
    {"get_tensor",
     (PyCFunction)(void (*)(void))eager_tensor_method_get_underline_tensor,
     METH_VARARGS | METH_KEYWORDS, NULL},
344 345 346 347
    {NULL, NULL, 0, NULL}};

}  // namespace pybind
}  // namespace paddle