eager_method.cc 112.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18
#include <Python.h>
19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
23 24

#include <string>
25
#include <unordered_map>
26 27
#include <vector>

28
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
29
#include "paddle/fluid/eager/api/all.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"
31
#include "paddle/fluid/eager/autograd_meta.h"
32 33
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/hooks.h"
34
#include "paddle/fluid/eager/utils.h"
35
#include "paddle/fluid/framework/convert_utils.h"
36
#include "paddle/fluid/framework/string_array.h"
37 38 39 40 41 42
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
J
Jiabin Yang 已提交
43
#include "paddle/fluid/pybind/slice_utils.h"
44
#include "paddle/fluid/pybind/uva_utils.h"
45 46 47 48
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
49 50
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
W
wanghuancoder 已提交
51
#include "pybind11/detail/internals.h"
52 53
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
W
wanghuancoder 已提交
54
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
J
Jiabin Yang 已提交
55
#include "paddle/fluid/eager/amp_utils.h"
56
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
J
Jiabin Yang 已提交
57
#include "paddle/fluid/eager/eager_amp_auto_cast.h"
W
wanghuancoder 已提交
58
#include "paddle/fluid/framework/python_headers.h"
W
wanghuancoder 已提交
59
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
W
wanghuancoder 已提交
60
#include "paddle/fluid/pybind/tensor_py.h"
W
wanghuancoder 已提交
61
#include "paddle/phi/api/lib/data_transform.h"
W
wanghuancoder 已提交
62
#include "paddle/phi/core/ddim.h"
63
#include "paddle/phi/core/distributed/auto_parallel/dist_tensor.h"
64
#include "paddle/phi/core/flags.h"
65
#include "paddle/phi/core/tensor_utils.h"
66
#include "paddle/phi/kernels/funcs/math_function.h"
67
#include "paddle/utils/pybind.h"
J
Jiabin Yang 已提交
68

69
PHI_DECLARE_bool(set_to_1d);
70
PD_DECLARE_bool(use_stride_kernel);
71

72 73 74
namespace paddle {
namespace pybind {

75 76
extern void InitTensorWithNumpyValue(TensorObject* self,
                                     const pybind11::object& array,
77
                                     const paddle::platform::Place& place,
78
                                     bool zero_copy);
79

80
extern PyTypeObject* p_tensor_type;
81

J
Jiabin Yang 已提交
82
Py_ssize_t GetSliceIndexFromPyObject(PyObject* obj) {
83
  if (PyObject_TypeCheck(obj, p_tensor_type)) {
J
Jiabin Yang 已提交
84
    VLOG(6) << "Call GetSliceIndexFromTensor in Eager";
85
    paddle::Tensor tensor = CastPyArg2Tensor(obj, 0);
J
Jiabin Yang 已提交
86
    PADDLE_ENFORCE_EQ(
87 88
        tensor.initialized(),
        true,
J
Jiabin Yang 已提交
89 90 91 92 93 94 95 96
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in slice, however we got "
            "uninitialized tensor %s, please check your code.",
            tensor.name()));
    return GetSliceIndexFromTensor((*static_cast<phi::DenseTensor*>(
        CastPyArg2Tensor(obj, 0).impl().get())));
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
97
        "We should only get paddle::Tensor or VarBase in this "
J
Jiabin Yang 已提交
98 99 100 101
        "method, when you reach this means we got another type index."));
  }
}

102 103
PyDoc_STRVAR(tensor_method_numpy__doc__,  // NOLINT
             R"DOC(numpy($self, /)
W
wanghuancoder 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
--

Returns a numpy array shows the value of current Tensor.

Returns:
    ndarray, The numpy value of current Tensor, dtype is
    same as current Tensor.

Examples:
    .. code-block:: python

        import paddle

        data = paddle.uniform([30, 10, 32], dtype="float32", min=-1, max=1)
        linear = paddle.nn.Linear(32, 64)
        data = paddle.to_tensor(data)
        x = linear(data)
        print(x.numpy())
)DOC");

124 125
static PyObject* tensor_method_numpy(TensorObject* self,
                                     PyObject* args,
126 127
                                     PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
128 129
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl()) {
130 131
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];     // NOLINT
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];  // NOLINT
W
wanghuancoder 已提交
132 133 134 135 136
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
137 138 139 140 141
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_FLOAT_),
        1,
        py_dims,
        py_strides,
        nullptr,
W
wanghuancoder 已提交
142 143 144 145 146
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }
147
  auto tensor_dims = self->tensor.shape();
148 149 150 151 152 153 154 155 156
#ifdef PADDLE_WITH_DISTRIBUTE
  // Now the DistTensor's numpy() return the local tensor value
  if (self->tensor.is_dist_tensor()) {
    tensor_dims = phi::vectorize(
        static_cast<phi::distributed::DistTensor*>(self->tensor.impl().get())
            ->value()
            .dims());
  }
#endif
157
  auto numpy_dtype = TensorDtype2NumpyDtype(self->tensor.type());
158
  auto sizeof_dtype = phi::SizeOf(self->tensor.type());
159 160
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];     // NOLINT
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];  // NOLINT
161
  size_t py_rank = tensor_dims.size();
162
  size_t numel = 1;
163
  if (py_rank == 0) {
164
    Py_ssize_t args_num = PyTuple_Size(args);
165 166
    // true by default
    bool set_to_1d = FLAGS_set_to_1d;
167 168 169 170 171 172 173
    if (args_num == (Py_ssize_t)1) {
      PyObject* obj = PyTuple_GET_ITEM(args, 0);
      if (obj == Py_False) {
        set_to_1d = false;
      }
    }
    if (set_to_1d) {
174
      // 0D Tensor hack process to 1D numpy, will remove in release 2.6
175 176 177 178 179
      VLOG(0)
          << "Warning:: 0D Tensor cannot be used as 'Tensor.numpy()[0]' . In "
             "order to avoid this problem, "
             "0D Tensor will be changed to 1D numpy currently, but it's not "
             "correct and will be "
180 181
             "removed in release 2.6. For Tensor contain only one element, "
             "Please "
182
             "modify "
183
             " 'Tensor.numpy()[0]' to 'float(Tensor)' as soon as "
184
             "possible, "
185
             "otherwise 'Tensor.numpy()[0]' will raise error in release 2.6.";
186 187 188 189
      py_rank = 1;
      py_dims[0] = 1;
      py_strides[0] = sizeof_dtype * numel;
    }
W
wanghuancoder 已提交
190 191 192 193 194 195 196 197
  } else if (self->tensor.is_dense_tensor()) {
    auto tensor_stride = self->tensor.strides();

    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * tensor_stride[i];
      numel *= py_dims[i];
    }
198 199 200 201 202 203
  } else {
    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * numel;
      numel *= py_dims[i];
    }
204
  }
W
wanghuancoder 已提交
205 206

  if (!self->tensor.impl()->initialized()) {
W
wanghuancoder 已提交
207 208 209 210 211 212 213 214 215 216 217
    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
        api.PyArray_DescrFromType_(numpy_dtype),
        py_rank,
        py_dims,
        py_strides,
        nullptr,
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);

218
    if (tensor_dims.empty()) {
219 220 221
      py_dims[0] = 0;
      py_strides[0] = 0;
      PyObject* array = api.PyArray_NewFromDescr_(
222 223 224 225 226 227
          api.PyArray_Type_,
          api.PyArray_DescrFromType_(numpy_dtype),
          1,
          py_dims,
          py_strides,
          nullptr,
228 229 230 231 232
          pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
              pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
          nullptr);
      return array;
    }
W
wanghuancoder 已提交
233 234 235
    return array;
  }

W
wanghuancoder 已提交
236 237 238
  phi::DenseTensor cpu_tensor;
  platform::CPUPlace cpu_place;

239
  if (self->tensor.is_cpu() || self->tensor.is_gpu_pinned()) {
W
wanghuancoder 已提交
240
    eager_gil_scoped_release guard;
241
    platform::CPUPlace place;
242 243 244 245
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
246 247
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
248 249 250 251 252
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
253
      // deep copy
W
wanghuancoder 已提交
254 255 256 257 258
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
259
    } else if (self->tensor.is_dist_tensor()) {
260
#ifdef PADDLE_WITH_DISTRIBUTE
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
      // TODO(chenweihang): deal with DistTensor as local DenseTensor now,
      // if the local DenseTensor is shard or partial, do gather or reduce?
      VLOG(6) << "Getting DistTensor's numpy value";
      auto* dist_tensor =
          static_cast<phi::distributed::DistTensor*>(self->tensor.impl().get());
      auto& dense_tensor = dist_tensor->value();
      cpu_tensor.set_meta(dense_tensor.meta());
      // deep copy
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor.Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      // deep copy
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor.Holder()->ptr(),
                           dense_tensor.Holder()->size());
279 280 281 282 283 284 285
#else
      PADDLE_THROW(
          platform::errors::Unavailable("The `numpy()` method of (Dist)Tensor "
                                        "is not supported in the current "
                                        "PaddlePaddle, please recompile and "
                                        "installPaddlePaddle with the option "
                                        "of `WITH_DISTRIBUTE=ON`."));
286
#endif
287 288 289 290
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
291 292 293 294 295
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
296
      // deep copy
W
wanghuancoder 已提交
297 298 299 300 301
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
302 303
    }

304
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
305
  } else if (self->tensor.is_gpu()) {
W
wanghuancoder 已提交
306
    eager_gil_scoped_release guard;
307 308 309 310
#if defined(PADDLE_WITH_CUDA)
    gpuMemcpyKind kind = cudaMemcpyDeviceToHost;
#elif defined(PADDLE_WITH_HIP)
    gpuMemcpyKind kind = hipMemcpyDeviceToHost;
311
    phi::DeviceContextPool::Instance().Get(self->tensor.place())->Wait();
312
#endif
313 314 315 316
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
317 318
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
319 320 321 322 323 324 325 326 327
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor->Holder()->ptr(),
                                      dense_tensor->Holder()->size(),
                                      kind);
328
    } else if (self->tensor.is_dist_tensor()) {
329
#ifdef PADDLE_WITH_DISTRIBUTE
330 331 332 333 334 335 336 337 338 339 340 341 342
      VLOG(6) << "Getting DistTensor's numpy value";
      auto* dist_tensor =
          static_cast<phi::distributed::DistTensor*>(self->tensor.impl().get());
      auto& dense_tensor = dist_tensor->value();
      cpu_tensor.set_meta(dense_tensor.meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor.Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor.Holder()->ptr(),
                                      dense_tensor.Holder()->size(),
                                      kind);
343 344 345 346 347 348 349
#else
      PADDLE_THROW(
          platform::errors::Unavailable("The `numpy()` method of (Dist)Tensor "
                                        "is not supported in the current "
                                        "PaddlePaddle, please recompile and "
                                        "installPaddlePaddle with the option "
                                        "of `WITH_DISTRIBUTE=ON`."));
350
#endif
351 352 353 354
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
355 356 357 358 359 360 361 362 363
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor->Holder()->ptr(),
                                      dense_tensor->Holder()->size(),
                                      kind);
364
    }
365
#endif
C
Chen Weihang 已提交
366 367 368 369 370 371 372
#if defined(PADDLE_WITH_XPU)
  } else if (self->tensor.is_xpu()) {
    platform::CPUPlace place;
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
373 374
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
375 376 377 378 379 380 381 382 383 384
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           dense_tensor->place(),
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
C
Chen Weihang 已提交
385 386 387 388
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
389 390 391 392 393 394 395 396 397 398
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           dense_tensor->place(),
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
C
Chen Weihang 已提交
399 400
    }
#endif
401 402
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  } else if (self->tensor.is_custom_device()) {
W
wanghuancoder 已提交
403
    eager_gil_scoped_release guard;
404
    phi::DeviceContextPool::Instance().Get(self->tensor.place())->Wait();
405 406 407 408
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
409 410
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
411 412 413 414 415
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
416
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
W
wanghuancoder 已提交
417 418 419
          ->MemoryCopyD2H(cpu_tensor.Holder()->ptr(),
                          dense_tensor->Holder()->ptr(),
                          dense_tensor->Holder()->size());
420 421 422 423
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
C
co63oc 已提交
424
      // TODO(qili93): temporary for ascend npu performance to be removed along
425
      // with npu_identity op
426
      paddle::Tensor temp_tensor(std::make_shared<phi::DenseTensor>());
427 428 429 430 431
      if (dense_tensor->storage_properties_initialized()) {
        temp_tensor = npu_identity_ad_func(self->tensor, -1);
        dense_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(temp_tensor.impl());
      }
W
wanghuancoder 已提交
432 433 434 435 436
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
437
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
W
wanghuancoder 已提交
438 439 440
          ->MemoryCopyD2H(cpu_tensor.Holder()->ptr(),
                          dense_tensor->Holder()->ptr(),
                          dense_tensor->Holder()->size());
441 442
    }
#endif
443 444 445
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
446
    RETURN_PY_NONE
447 448
  }

W
wanghuancoder 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
  void* array_buffer = cpu_tensor.Holder()->ptr();
  size_t array_offset = cpu_tensor.offset();

  PyObject* base = ToPyObject(paddle::Tensor(
      std::make_shared<phi::DenseTensor>(std::move(cpu_tensor))));

  PyObject* array = api.PyArray_NewFromDescr_(
      api.PyArray_Type_,
      api.PyArray_DescrFromType_(numpy_dtype),
      py_rank,
      py_dims,
      py_strides,
      reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(array_buffer) +
                              array_offset),
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

  api.PyArray_SetBaseObject_(array, base);

469 470 471 472
  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jack Zhou 已提交
473 474 475 476 477 478 479 480
static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
                                                       PyObject* args,
                                                       PyObject* kwargs) {
  EAGER_TRY
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl() || !self->tensor.impl()->initialized()) {
    VLOG(6) << "The StringTensor is uninitialized. Return the empty string "
               "numpy array.";
481 482
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];     // NOLINT
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];  // NOLINT
J
Jack Zhou 已提交
483 484 485 486 487
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
488 489 490 491 492
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_UNICODE_),
        1,
        py_dims,
        py_strides,
        nullptr,
J
Jack Zhou 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }

  if (self->tensor.is_cpu()) {
    VLOG(6) << "Getting StringTensor's numpy value";
    auto string_tensor =
        std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
    const auto* st_ptr = string_tensor->data();
    auto numel = self->tensor.numel();
    auto tensor_dims = self->tensor.shape();
W
wanghuancoder 已提交
506 507
    // Get the max unicode length of StringTensor to create numpy unicode
    // string array.
J
Jack Zhou 已提交
508 509 510 511 512 513 514 515 516 517 518 519
    auto* longest_pstring = std::max_element(
        st_ptr, st_ptr + numel, [](const auto& a, const auto& b) {
          auto a_unicode_len =
              phi::strings::GetUnicodeStrLen(a.data(), a.size());
          auto b_unicode_len =
              phi::strings::GetUnicodeStrLen(b.data(), b.size());
          return a_unicode_len < b_unicode_len;
        });
    size_t max_unicode_length = phi::strings::GetUnicodeStrLen(
        longest_pstring->data(), longest_pstring->size());
    max_unicode_length = (max_unicode_length == 0) ? 1 : max_unicode_length;
    VLOG(6) << "The max unicode length is " << max_unicode_length;
520 521
    auto sp =
        std::make_unique<uint32_t[]>(max_unicode_length * numel);  // NOLINT
J
Jack Zhou 已提交
522 523 524 525 526 527 528 529 530 531
    auto py_array_data = sp.get();
    memset(py_array_data, 0, max_unicode_length * numel * sizeof(uint32_t));
    for (int64_t i = 0; i < numel; ++i) {
      auto curr_unicode_len =
          phi::strings::GetUnicodeStrLen(st_ptr[i].data(), st_ptr[i].size());
      phi::strings::GetUnicodeStr(st_ptr[i].data(),
                                  py_array_data + i * max_unicode_length,
                                  curr_unicode_len);
    }
    py::array array(py::dtype("U" + std::to_string(max_unicode_length)),
532 533 534
                    tensor_dims,
                    {},
                    py_array_data);
J
Jack Zhou 已提交
535 536 537 538
    return array.release().ptr();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor.numpy() only support cpu tensor."));
539
    RETURN_PY_NONE
J
Jack Zhou 已提交
540 541 542 543
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

544 545 546 547
static PyObject* tensor_method__is_initialized(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
548
  return ToPyObject(self->tensor.initialized());
549 550 551
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565
static PyObject* tensor_method__is_dense_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  if (dense_tensor) {
    return ToPyObject(dense_tensor->IsInitialized());
  } else {
    return ToPyObject(false);
  }

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

566
static void IncreaseTensorReferenceCountUntilCopyComplete(
567
    const paddle::Tensor& tensor, const platform::Place& place) {
568 569 570 571 572 573 574 575
  auto place_ = platform::is_gpu_place(place) ? place : tensor.place();

  auto tracer = egr::Controller::Instance().GetCurrentTracer();
  auto gc = tracer->MutableGarbageCollectorIfNotExists(place_);

  // Note(dev): This is an empty callback, the only way is to "reference"
  // inner memory Holder, so it will not be destructed until the kernels
  // launched at current stream of given place is finished, such as
C
co63oc 已提交
576
  // CUDAPinned Mem -> CUDA by cudaMemcpyAsync.
577 578 579 580 581 582 583
  auto callback = [tensor, place_]() {
    VLOG(3) << "Run callback of Tensor:" << tensor.name() << " at place "
            << place_;
  };
  gc->DirectClearCallback(callback);
}

584 585
static PyObject* tensor_method__copy_to(TensorObject* self,
                                        PyObject* args,
586 587
                                        PyObject* kwargs) {
  EAGER_TRY
588 589
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
590
  paddle::Tensor cp_tensor;
W
wanghuancoder 已提交
591 592 593 594 595 596 597 598 599 600
  {
    eager_gil_scoped_release guard;
    cp_tensor = self->tensor.copy_to(place, blocking);
    if (!blocking) {
      IncreaseTensorReferenceCountUntilCopyComplete(self->tensor, place);
    }
    egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
    egr::EagerUtils::autograd_meta(&cp_tensor)
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
601
  }
602 603 604 605
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
PyDoc_STRVAR(tensor_reconstruct_from___doc__,
             R"DOC(reconstruct_from_($self, other/)
--

Reconstruct the self with other Tensor. It is a deep copy of 'self = other'.

Returns:
    None.

Examples:
    .. code-block:: python

      import paddle

      t1 = paddle.to_tensor([1.0], stop_gradient=False)
      t2 = paddle.to_tensor([2.0], stop_gradient=True)

      t1.reconstruct_from_(t2)

      print(t1)
)DOC");

628 629 630 631
static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
632
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
633
  std::string orig_name = self->tensor.name();
634 635
  VLOG(6) << "Start Reconstructing Tensor from" << src_tensor.name() << " to "
          << orig_name;
636
  self->tensor = src_tensor;
637 638

  // Recover source name
639
  self->tensor.set_name(orig_name);
640 641

  VLOG(6) << "Finished Reconstructing Tensor from" << src_tensor.name()
642
          << " to " << self->tensor.name();
643 644
  RETURN_PY_NONE

645 646 647
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

648 649
static PyObject* tensor_method_copy_(TensorObject* self,
                                     PyObject* args,
650 651
                                     PyObject* kwargs) {
  EAGER_TRY
652
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
653
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
654
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
655
          << self->tensor.name();
656
  if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
657
    eager_gil_scoped_release guard;
658
    egr::EagerUtils::autograd_meta(&(self->tensor))
659 660
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
661
    egr::EagerUtils::autograd_meta(&(self->tensor))
662 663
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
664
    if (src_tensor.initialized()) {
C
Chen Weihang 已提交
665
      self->tensor.copy_(src_tensor, src_tensor.place(), blocking);
666 667 668
    }
  } else {
    if (src_tensor.initialized()) {
W
wanghuancoder 已提交
669
      eager_gil_scoped_release guard;
C
Chen Weihang 已提交
670
      self->tensor.copy_(src_tensor, self->tensor.place(), blocking);
671
    }
672 673
  }

674
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
675
          << self->tensor.name();
676 677
  RETURN_PY_NONE

678 679 680
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

681 682
PyDoc_STRVAR(tensor_method_clone__doc__,  // NOLINT
             R"DOC(clone($self, /)
W
wanghuancoder 已提交
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
--

Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
It will always have a Tensor copy.
Tn addition, the cloned Tensor provides gradient propagation.

Returns:
    Tensor, The cloned Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor(1.0, stop_gradient=False)
        clone_x = x.clone()
        y = clone_x**2
        y.backward()
        print(clone_x.stop_gradient) # False
        print(clone_x.grad)          # [2.0], support gradient propagation
        print(x.stop_gradient)       # False
        print(x.grad)                # [2.0], clone_x support gradient propagation for x

        x = paddle.to_tensor(1.0)
        clone_x = x.clone()
        clone_x.stop_gradient = False
        z = clone_x**3
        z.backward()
        print(clone_x.stop_gradient) # False
        print(clone_x.grad)          # [3.0], support gradient propagation
        print(x.stop_gradient) # True
        print(x.grad)          # None
)DOC");

717 718 719 720
static PyObject* tensor_method_clone(TensorObject* self,
                                     PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
721
  paddle::Tensor out;
W
wanghuancoder 已提交
722 723 724 725 726 727 728 729 730
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE_EQ(
        self->tensor.initialized(),
        true,
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in clone, however we got "
            "uninitialized tensor %s, please check your code.",
            self->tensor.name()));
731

W
wanghuancoder 已提交
732 733
    out = assign_ad_func(self->tensor);
  }
734 735 736 737
  return ToPyObject(out);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
PyDoc_STRVAR(tensor_method_retain_grads__doc__, R"DOC(retain_grads($self, /)
--

Enables this Tensor to have their grad populated during backward(). It is a no-op for leaf tensors.

Returns:
    None.

Examples:
    .. code-block:: python

      import paddle

      x = paddle.to_tensor([1.0, 2.0, 3.0])
      x.stop_gradient = False
      y = x + x
      y.retain_grads()
      loss = y.sum()
      loss.backward()

      print(y.grad) # [1., 1., 1.]

      x = paddle.to_tensor([1.0, 2.0, 3.0])
      x.stop_gradient = False
      y = x + x
      # y.retain_grads()
      loss = y.sum()
      loss.backward()

      print(y.grad) # None
)DOC");

770 771
static PyObject* tensor_retain_grads(TensorObject* self,
                                     PyObject* args,
772
                                     PyObject* kwargs) {
773
  EAGER_TRY
774
  if (egr::Controller::Instance().HasGrad()) {
W
wanghuancoder 已提交
775
    eager_gil_scoped_release guard;
776
    auto meta = egr::EagerUtils::autograd_meta(&(self->tensor));
777
    if (!meta->GetMutableGradNode()) {
778
      VLOG(6) << "Make grad node of tensor: " << self->tensor.name()
779
              << "become accumulation node";
780
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
781
    }
782
    egr::egr_utils_api::RetainGradForTensor(self->tensor);
783
  }
784 785
  RETURN_PY_NONE

786 787 788
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

789
PyDoc_STRVAR(tensor_clear_gradient__doc__,  // NOLINT
W
wanghuancoder 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
             R"DOC(clear_gradient($self, set_to_zero=True, /)
--

Only for Tensor that has gradient, normally we use this for Parameters since
other temporary Tensor doesen't has gradient.

The Gradient of current Tensor will be set to ``0`` elementwise or ``None``.

Args:
    set_to_zero (bool, optional): If set to ``True``, the gradient will be set
        to ``0`` elementwise, otherwise the gradient will be set to ``None``.
        Default: ``True``.

Returns:
    None.

Examples:
    .. code-block:: python

        import paddle
        input = paddle.uniform([10, 2])
        linear = paddle.nn.Linear(2, 3)
        out = linear(input)
        out.backward()
        print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
        linear.weight.clear_gradient()
        print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
)DOC");

819 820
static PyObject* tensor_clear_gradient(TensorObject* self,
                                       PyObject* args,
821
                                       PyObject* kwargs) {
822
  EAGER_TRY
823
  VLOG(4) << "ClearGradient " << self->tensor.name();
824

825 826 827
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
J
Jiabin Yang 已提交
828
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
829 830
  }

831
  paddle::Tensor* grad;
832
  bool is_leaf = egr::EagerUtils::IsLeafTensor(self->tensor);
J
Jiabin Yang 已提交
833
  if (is_leaf) {
834 835 836
    grad = egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
837
                       "Detected nullptr grad"
838 839
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
840
  } else {
841
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
842
    grad = meta->MutableGrad();
843 844
  }

845
  if (grad->impl()) {
W
wanghuancoder 已提交
846
    eager_gil_scoped_release guard;
847 848 849 850 851 852 853 854 855 856
    if (grad->is_selected_rows()) {
      auto selected_rows =
          std::dynamic_pointer_cast<phi::SelectedRows>(grad->impl());
      if (selected_rows->mutable_value()->IsInitialized()) {
        selected_rows->mutable_rows()->clear();
        selected_rows->mutable_value()->clear();
      }
    } else if (grad->is_dense_tensor()) {
      if (grad->initialized()) {
        if (set_to_zero) {
857 858 859 860
          auto* grad_t = static_cast<phi::DenseTensor*>(grad->impl().get());
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
          phi::funcs::set_constant(*dev_ctx, grad_t, 0.0);
J
Jiabin Yang 已提交
861 862 863 864 865
          if (is_leaf) {
            std::static_pointer_cast<egr::GradNodeAccumulation>(
                egr::EagerUtils::grad_node(self->tensor))
                ->SetFakeEmpty(true);
          }
866 867 868 869 870 871 872
        } else {
          VLOG(4) << "Gradient of " << self->tensor.name()
                  << " is initialized, will be released.";
          auto dense_tensor =
              std::dynamic_pointer_cast<phi::DenseTensor>(grad->impl());
          dense_tensor->MoveMemoryHolder();
        }
873 874
      }
    }
875
  }
876

877 878
  RETURN_PY_NONE

879 880 881
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

882 883
static PyObject* tensor__zero_grads(TensorObject* self,
                                    PyObject* args,
884
                                    PyObject* kwargs) {
885
  EAGER_TRY
886
  VLOG(4) << "ZeroGrads " << self->tensor.name();
887

888
  if (egr::EagerUtils::IsLeafTensor(self->tensor)) {
W
wanghuancoder 已提交
889
    eager_gil_scoped_release guard;
890
    // Add RetainGrad as PostHook to AccumulationNode
891
    paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
892 893
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
894
                       "Detected nullptr grad"
895 896 897
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
    if (grad->initialized()) {
898 899 900 901 902 903 904
      if (grad->is_dense_tensor()) {
        auto* t = static_cast<phi::DenseTensor*>(grad->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        grad->set_impl(paddle::experimental::zeros_like(*(grad)).impl());
      }
905
    }
906
  } else {
W
wanghuancoder 已提交
907
    eager_gil_scoped_release guard;
908
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
909
    if (meta->MutableGrad()->initialized()) {
910 911 912 913 914 915 916 917 918
      if (meta->MutableGrad()->is_dense_tensor()) {
        auto* t =
            static_cast<phi::DenseTensor*>(meta->MutableGrad()->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        meta->MutableGrad()->set_impl(
            paddle::experimental::zeros_like(*(meta->MutableGrad())).impl());
      }
919
    }
920 921
  }

922 923
  RETURN_PY_NONE

924 925 926
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

927 928
static PyObject* tensor__share_buffer_to(TensorObject* self,
                                         PyObject* args,
929 930
                                         PyObject* kwargs) {
  EAGER_TRY
931
  paddle::Tensor* dst_ptr =
932
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
933 934
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
935 936 937
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
938
                        self->tensor.name()));
939
  auto* src_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
940 941 942
  if (!dst_ptr->defined()) {
    dst_ptr->set_impl(std::make_shared<phi::DenseTensor>());
  }
943
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
B
Baibaifan 已提交
944
  dst_tensor->ShareBufferWith(*src_tensor);
945
  dst_tensor->ShareDataTypeWith(*src_tensor);
946 947
  RETURN_PY_NONE

948 949 950
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

951 952 953 954
static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
955
  paddle::Tensor* dst_ptr =
956
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
957 958
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
959 960 961
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
962
                        self->tensor.name()));
963
  bool res = false;
964
  if (!self->tensor.defined() || !dst_ptr->defined()) {
965 966
    return ToPyObject(res);
  }
967 968
  auto* self_ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
969 970 971 972 973
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

974 975 976 977
static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
                                                   PyObject* args,
                                                   PyObject* kwargs) {
  EAGER_TRY
978
  paddle::Tensor* src_ptr =
979
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
980 981
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
982 983 984
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
985 986
                        self->tensor.name()));
  src_ptr->set_impl(self->tensor.impl());
987 988
  RETURN_PY_NONE

989 990 991
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

992 993 994 995
static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
                                                         PyObject* args,
                                                         PyObject* kwargs) {
  EAGER_TRY
996
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
997 998
  PADDLE_ENFORCE_EQ(src_tensor.initialized(),
                    true,
999 1000 1001 1002 1003
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
1004
  if (!self->tensor.defined() || !src_tensor.defined()) {
1005 1006
    return ToPyObject(res);
  }
1007
  res = (self->tensor.impl().get() == src_tensor.impl().get());
1008 1009 1010 1011
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1012 1013
PyDoc_STRVAR(tensor_method_detach__doc__,  // NOLINT
             R"DOC(detach($self, /)
W
wanghuancoder 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
--

Returns a new Tensor, detached from the current graph.
It will share data with origin Tensor and always doesn't have a Tensor copy.
In addition, the detached Tensor doesn't provide gradient propagation.

Returns:
    Tensor, The detached Tensor.

Examples:
    .. code-block:: python

      import paddle

      x = paddle.to_tensor([1.0], stop_gradient=False)
      detach_x = x.detach()
      detach_x[0] = 10.0
      print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                  #        [10.])
      y = x**2
      y.backward()
      print(x.grad)         # [20.0]
      print(detach_x.grad)  # None, 'stop_gradient=True' by default

      detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
      z = detach_x**3
      z.backward()

      print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
      print(detach_x.grad)  # [300.0], detach_x has its own graph

      # Due to sharing of data with origin Tensor, There are some unsafe operations:
      # y = 2 * x
      # detach_x[:] = 5.0
      # y.backward()
      # It will raise Error:
      #   one of the variables needed for gradient computation has been modified by an inplace operation.
)DOC");

1053 1054
static PyObject* tensor_method_detach(TensorObject* self,
                                      PyObject* args,
1055 1056
                                      PyObject* kwargs) {
  EAGER_TRY
1057
  PADDLE_ENFORCE_EQ(
1058
      self->tensor.defined(),
1059
      true,
1060
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
1061
                                        self->tensor.name()));
1062

1063
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
1064
  if (obj) {
1065
    auto v = reinterpret_cast<TensorObject*>(obj);
1066
    new (&(v->tensor)) paddle::Tensor();
1067 1068 1069 1070
    v->tensor.set_impl(self->tensor.impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src = egr::EagerUtils::autograd_meta(&(self->tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->tensor));
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
PyDoc_STRVAR(tensor_method_detach___doc__, R"DOC(detach_($self, /)
--

Detach self from the current graph, and returns self Tensor.
In addition, the detached Tensor doesn't provide gradient propagation.

Returns:
    Tensor, The detached Tensor.
)DOC");

W
wanghuancoder 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
static PyObject* tensor_method_detach_(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
      self->tensor.defined(),
      true,
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  auto autograd_meta = std::make_shared<egr::AutogradMeta>();
  autograd_meta->SetPersistable(
      egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  self->tensor.set_autograd_meta(autograd_meta);

  return reinterpret_cast<PyObject*>(self);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
PyDoc_STRVAR(tensor_method_get_tensor__doc__, R"DOC(get_tensor($self, /)
--

Returns the underline tensor in the origin Tensor.

Returns:
    Underline tensor.

Examples:
    .. code-block:: python

      import paddle

      x = paddle.to_tensor([1.0], stop_gradient=False)
      underline_x = x.get_tensor()
      print(underline_x) # a Dense Tensor info
)DOC");

1128 1129 1130 1131
static PyObject* tensor_method_get_underline_tensor(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
1132
  if (!self->tensor.defined()) {
1133 1134 1135
    // The original `get_tensor` method of Variable will create a empty tensor
    phi::DenseTensor empty_tensor;
    return ToPyObject(&empty_tensor);
1136
  }
1137
  if (self->tensor.is_dense_tensor()) {
1138
    auto* tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
1139 1140
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
L
LiYuRio 已提交
1141 1142
  } else if (self->tensor.is_dist_tensor()) {
#ifdef PADDLE_WITH_DISTRIBUTE
1143 1144
    auto* tensor =
        static_cast<phi::distributed::DistTensor*>(self->tensor.impl().get());
1145
    VLOG(6) << "dist tensor: " << tensor->defined();
L
LiYuRio 已提交
1146 1147
    return ToPyObject(tensor);
#else
1148 1149 1150 1151
    PADDLE_THROW(platform::errors::Unavailable(
        "The `get_tensor()` method of (Dist)Tensor is not supported in the "
        "current PaddlePaddle, please recompile and installPaddlePaddle "
        "with the option of `WITH_DISTRIBUTE=ON`."));
L
LiYuRio 已提交
1152
#endif
1153
  } else {
1154
    RETURN_PY_NONE
1155 1156 1157 1158
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1159 1160 1161 1162 1163
static PyObject* tensor_method_get_underline_selected_rows(TensorObject* self,
                                                           PyObject* args,
                                                           PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
1164
    RETURN_PY_NONE
1165 1166 1167 1168 1169 1170
  }
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    return ToPyObject(selected_rows);
  } else {
1171
    RETURN_PY_NONE
1172 1173 1174 1175
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
static PyObject* tensor_method__get_tensor_from_selected_rows(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows."));

  auto* selected_rows =
      static_cast<phi::SelectedRows*>(self->tensor.impl().get());

  PADDLE_ENFORCE(
      selected_rows->initialized(),
      paddle::platform::errors::Fatal("SelectedRows must be initialized."));

1190 1191
  auto* dense_tensor =
      static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
L
Leo Chen 已提交
1192
  VLOG(4) << "dense_tensor: " << dense_tensor->IsInitialized();
1193

1194
  auto t = paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
1195 1196 1197 1198 1199 1200 1201
  t.set_impl(std::make_shared<phi::DenseTensor>(*dense_tensor));

  return ToPyObject(t);

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
1202 1203 1204
static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
1205
  EAGER_TRY
J
Jiabin Yang 已提交
1206 1207 1208
  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  VLOG(4) << "Call _getitem_index_not_tensor";
  std::vector<int> slice_axes, slice_starts, slice_ends, slice_strides,
W
wanghuancoder 已提交
1209 1210
      decrease_axis, none_axes, infer_flags;
  std::vector<int64_t> list_select_idxs;
J
Jiabin Yang 已提交
1211 1212
  // if index is a list, list_select_flag will be true
  bool list_select_flag = false;
1213 1214
  // Note(0x45f): Using defined() instead of initialized()
  // to support slice tensor which shape like [0, 0, 0].
J
Jiabin Yang 已提交
1215
  PADDLE_ENFORCE_EQ(
1216
      self->tensor.defined(),
1217
      true,
J
Jiabin Yang 已提交
1218 1219 1220 1221 1222
      platform::errors::InvalidArgument(
          "tensor %s has not been initialized, we can only slice initialized "
          "tensor please init it first with numpy or other tensor.",
          self->tensor.name()));
  auto tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
  ParseIndexingSlice(tensor,
                     _index,
                     &slice_axes,
                     &slice_starts,
                     &slice_ends,
                     &slice_strides,
                     &decrease_axis,
                     &none_axes,
                     &infer_flags,
                     &list_select_idxs,
                     &list_select_flag);
J
Jiabin Yang 已提交
1234

1235 1236 1237 1238
  auto out =
      slice_axes.empty() && !list_select_flag
          ? self->tensor
          : paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
J
Jiabin Yang 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

  if (!slice_axes.empty()) {
    framework::AttributeMap attrs = {{"axes", slice_axes},
                                     {"starts", slice_starts},
                                     {"ends", slice_ends},
                                     {"infer_flags", infer_flags},
                                     {"decrease_axis", decrease_axis}};
    std::string op_type = "slice";
    for (auto stride : slice_strides) {
      if (stride != 1) {
        op_type = "strided_slice";
        attrs.insert({"strides", slice_strides});
        attrs.erase("decrease_axis");
        break;
      }
    }
1255 1256 1257 1258 1259 1260
    std::vector<int64_t> slice_axes_tmp(slice_axes.begin(), slice_axes.end());
    std::vector<int64_t> infer_flags_tmp(infer_flags.begin(),
                                         infer_flags.end());
    std::vector<int64_t> decrease_axis_tmp(decrease_axis.begin(),
                                           decrease_axis.end());

J
Jiabin Yang 已提交
1261
    if (op_type == "slice") {
W
wanghuancoder 已提交
1262
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
1263 1264 1265 1266 1267 1268
      out = slice_ad_func(self->tensor,
                          slice_axes_tmp,
                          slice_starts,
                          slice_ends,
                          infer_flags_tmp,
                          decrease_axis_tmp);
J
Jiabin Yang 已提交
1269
    } else if (op_type == "strided_slice") {
W
wanghuancoder 已提交
1270
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
1271
      out = strided_slice_ad_func(
1272
          self->tensor, slice_axes, slice_starts, slice_ends, slice_strides);
1273 1274 1275
      if (!decrease_axis_tmp.empty()) {
        out = squeeze_ad_func(out, decrease_axis_tmp);
      }
J
Jiabin Yang 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Slice is only support slice and strided_slice, but we got %s which "
          "is impossible, please check your code first or contact us by "
          "issue. ",
          op_type));
    }
  }

1285
  bool set_to_1d = FLAGS_set_to_1d;
1286 1287 1288 1289 1290 1291

  if (set_to_1d) {
    // NOTE(zoooo0820): When all axes are decreased, the output will be 1-D
    // with FLAGS_set_to_1d=True. In this case, one `None` should be pop out,
    // otherwise the output shape will be not correct.
    if (static_cast<int>(decrease_axis.size()) == tensor->dims().size()) {
J
JYChen 已提交
1292
      VLOG(1)
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
          << "Warning: In Tensor '__getitem__', if the number of scalar "
             "elements "
             "in the index is equal to the rank of the Tensor, the output "
             "should "
             "be 0-D. In order to be consistent with the behavior of previous "
             "versions, it will be processed to 1-D. But it is not correct and "
             "will be "
             "removed in release 2.6. "
             "If 1-D is still wanted, please modify the index element from "
             "scalar to slice "
             "(e.g. 'x[i]' => 'x[i:i+1]'). ";
      if (!none_axes.empty()) {
1305 1306 1307
        none_axes.pop_back();
      }
    }
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
  }
  if (!none_axes.empty()) {
    paddle::Tensor new_out;
    {
      eager_gil_scoped_release guard;
      // Deal with cases that decrease_axes is not empty
      // For example:
      // # x.shape: (2,3,4)
      // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
      for (auto& axis : none_axes) {
        int len = 0;
        for (int da : decrease_axis) {
          if (da < axis) {
            len++;
J
Jiabin Yang 已提交
1322 1323
          }
        }
1324
        axis -= len;
J
Jiabin Yang 已提交
1325
      }
1326
      new_out = unsqueeze_ad_func(out, none_axes);
J
Jiabin Yang 已提交
1327
    }
1328
    return ToPyObject(new_out);
J
Jiabin Yang 已提交
1329 1330 1331 1332
  }

  // the index is a list
  if (list_select_flag) {
W
wanghuancoder 已提交
1333
    eager_gil_scoped_release guard;
W
wanghuancoder 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
    if (FLAGS_use_stride_kernel && list_select_idxs.size() == 1) {
      out = index_select_strided_ad_func(self->tensor, list_select_idxs[0], 0);
    } else {
      auto select_index =
          paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
      auto idx_tensor = std::make_shared<phi::DenseTensor>();
      select_index.set_impl(idx_tensor);
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(
          egr::Controller::Instance().GetExpectedPlace());
      paddle::framework::TensorFromVector(
          list_select_idxs, *dev_ctx, idx_tensor.get());
      out = index_select_ad_func(self->tensor, select_index, 0);
    }
J
Jiabin Yang 已提交
1347 1348 1349
  }

  return ToPyObject(out);
1350 1351 1352
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1353 1354
static PyObject* tensor__getitem_from_offset(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
1355 1356
                                             PyObject* kwargs) {
  EAGER_TRY
1357 1358 1359 1360 1361 1362 1363 1364
  phi::DenseTensor* ptr = nullptr;
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    ptr = static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
  } else {
    ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  }
1365 1366 1367
  PADDLE_ENFORCE_NOT_NULL(ptr,
                          platform::errors::InvalidArgument(
                              "%s is not a DenseTensor.", self->tensor.name()));
W
wanghuancoder 已提交
1368 1369
  const auto& tensor = *ptr;
  PADDLE_ENFORCE_EQ(
1370 1371
      tensor.IsInitialized(),
      true,
W
wanghuancoder 已提交
1372 1373 1374 1375 1376 1377 1378
      platform::errors::InvalidArgument(
          "Tensor of %s is Empty, please check if it has no data.",
          self->tensor.name()));

  const auto& tensor_dims = tensor.dims();

  std::vector<size_t> dims(tensor_dims.size());
W
wanghuancoder 已提交
1379
  std::vector<size_t> stride = phi::vectorize<size_t>(tensor.strides());
W
wanghuancoder 已提交
1380 1381 1382 1383 1384 1385 1386 1387

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    dims[i] = static_cast<size_t>(tensor_dims[i]);
    numel *= dims[i];
  }
  size_t offset = 0;
  if (PyTuple_Size(args) == 0) {
1388 1389
    PADDLE_ENFORCE_EQ(numel,
                      1,
W
wanghuancoder 已提交
1390 1391 1392 1393 1394 1395
                      platform::errors::InvalidArgument(
                          "only one element tensors can be converted to Python "
                          "scalars when no input coordinates"));
  } else if (PyTuple_Size(args) == 1) {
    offset = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
    PADDLE_ENFORCE_LT(
1396 1397
        offset,
        numel,
W
wanghuancoder 已提交
1398 1399 1400
        platform::errors::InvalidArgument(
            "index %d is out of bounds for size %d", offset, numel));
  } else {
1401 1402
    PADDLE_ENFORCE_EQ(PyTuple_Size(args),
                      dims.size(),
W
wanghuancoder 已提交
1403 1404 1405 1406 1407 1408
                      platform::errors::InvalidArgument(
                          "incorrect number of indices for Tensor"));

    for (Py_ssize_t i = 0; i < PyTuple_Size(args); ++i) {
      size_t index = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, i), i);
      PADDLE_ENFORCE_LT(
1409 1410
          index,
          dims[i],
W
wanghuancoder 已提交
1411
          platform::errors::InvalidArgument(
1412 1413 1414
              "index %d is out fo bounds for axis %d with size %d",
              index,
              i,
W
wanghuancoder 已提交
1415
              dims[i]));
W
wanghuancoder 已提交
1416
      offset += index * stride[i];
W
wanghuancoder 已提交
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
    }
  }
#define PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(_) \
  _(bool, DataType::BOOL)                     \
  _(int8_t, DataType::INT8)                   \
  _(uint8_t, DataType::UINT8)                 \
  _(int16_t, DataType::INT16)                 \
  _(uint16_t, DataType::UINT16)               \
  _(int32_t, DataType::INT32)                 \
  _(uint32_t, DataType::UINT32)               \
  _(int64_t, DataType::INT64)                 \
  _(uint64_t, DataType::UINT64)               \
  _(bfloat16, DataType::BFLOAT16)             \
  _(float16, DataType::FLOAT16)               \
  _(float, DataType::FLOAT32)                 \
  _(double, DataType::FLOAT64)                \
  _(complex64, DataType::COMPLEX64)           \
  _(complex128, DataType::COMPLEX128)

#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
  if (tensor.dtype() == proto_type) {                                        \
    auto numpy_dtype = TensorDtype2NumpyDtype(proto_type);                   \
    T b = paddle::pybind::TensorGetElement<T>(tensor, offset);               \
1440 1441
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];    /* NOLINT */  \
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank]; /* NOLINT */  \
W
wanghuancoder 已提交
1442 1443
    auto& api = pybind11::detail::npy_api::get();                            \
    PyObject* array = api.PyArray_NewFromDescr_(                             \
1444 1445
        api.PyArray_Type_,                                                   \
        api.PyArray_DescrFromType_(numpy_dtype),                             \
1446
        0,                                                                   \
1447 1448 1449
        py_dims,                                                             \
        py_strides,                                                          \
        nullptr,                                                             \
W
wanghuancoder 已提交
1450 1451 1452 1453 1454
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |                      \
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,                 \
        nullptr);                                                            \
    std::memcpy(                                                             \
        reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data), \
1455 1456
        static_cast<void*>(&b),                                              \
        sizeof(b));                                                          \
W
wanghuancoder 已提交
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
    return array;                                                            \
  }

  PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Call __setitem_eager_tensor";

  auto self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());

  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  PyObject* value_obj = PyTuple_GET_ITEM(args, 1);
  // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
  // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
  PyObject* index_ptr =
      !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
    if (!PyTuple_Check(_index)) {
      Py_DECREF(index_ptr);
      VLOG(4) << "Call Py_DECREF";
    }
  });

  // 1. Check argumnets
  bool parse_index = true;

  // Check whether _index can be parsed.
  const int size = PyTuple_GET_SIZE(index_ptr);
  for (int dim = 0; dim < size; ++dim) {
    PyObject* slice_item = PyTuple_GetItem(index_ptr, dim);
    if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
          slice_item == Py_Ellipsis || slice_item == Py_None)) {
      parse_index = false;
      break;
    }
  }

  // 2. Call op set_value to speed up if the condition is met,
  // otherwise call TensorToPyArray.
  // TODO(liym27): Try not to call TensorToPyArray because it always
  // copys data to cpu place, which reduces performance.
  if (parse_index) {
    std::vector<int> axes, starts, ends, steps, decrease_axes, none_axes,
W
wanghuancoder 已提交
1508 1509
        infer_flags;
    std::vector<int64_t> list_select_idxs;
W
wanghuancoder 已提交
1510 1511
    // if index is a list, list_select_flag will be true
    bool list_select_flag = false;
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
    ParseIndexingSlice(self_tensor,
                       index_ptr,
                       &axes,
                       &starts,
                       &ends,
                       &steps,
                       &decrease_axes,
                       &none_axes,
                       &infer_flags,
                       &list_select_idxs,
                       &list_select_flag);
W
wanghuancoder 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532

    framework::AttributeMap attrs = {{"axes", axes},
                                     {"starts", starts},
                                     {"ends", ends},
                                     {"steps", steps},
                                     {"decrease_axes", decrease_axes},
                                     {"none_axes", none_axes}};

    if (egr::Controller::Instance().HasGrad()) {
      PADDLE_ENFORCE_EQ(
1533
          egr::EagerUtils::IsLeafTensor(self->tensor) &&
W
wanghuancoder 已提交
1534
              !egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient(),
1535 1536 1537 1538 1539
          false,
          platform::errors::InvalidArgument(
              "Leaf Tensor (%s) that doesn't stop gradient can't use "
              "inplace strategy.",
              self->tensor.name()));
W
wanghuancoder 已提交
1540 1541
    }

1542
    paddle::Tensor value_tensor;
W
wanghuancoder 已提交
1543 1544 1545 1546

    if (PyCheckTensor(value_obj)) {
      value_tensor = reinterpret_cast<TensorObject*>(value_obj)->tensor;
    } else if (py::isinstance<py::array>(value_obj)) {
1547
      paddle::Tensor value_tensor_tmp(
W
wanghuancoder 已提交
1548 1549 1550 1551
          std::make_shared<phi::DenseTensor>(),
          egr::Controller::Instance().GenerateUniqueName());
      py::object value_obj_tmp(py::handle(value_obj), true);
      py::object value = value_obj_tmp;
1552
      if (self->tensor.dtype() == phi::DataType::FLOAT32) {
W
wanghuancoder 已提交
1553 1554 1555
        if (!py::isinstance<py::array_t<float>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<float>(value_obj_tmp);
        }
1556
      } else if (self->tensor.dtype() == phi::DataType::FLOAT64) {
W
wanghuancoder 已提交
1557 1558 1559
        if (!py::isinstance<py::array_t<double>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<double>(value_obj_tmp);
        }
1560
      } else if (self->tensor.dtype() == phi::DataType::INT32) {
W
wanghuancoder 已提交
1561 1562 1563
        if (!py::isinstance<py::array_t<int32_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int32_t>(value_obj_tmp);
        }
1564
      } else if (self->tensor.dtype() == phi::DataType::INT64) {
W
wanghuancoder 已提交
1565 1566 1567
        if (!py::isinstance<py::array_t<int64_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int64_t>(value_obj_tmp);
        }
1568
      } else if (self->tensor.dtype() == phi::DataType::BOOL) {
W
wanghuancoder 已提交
1569 1570 1571
        if (!py::isinstance<py::array_t<bool>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<bool>(value_obj_tmp);
        }
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
      } else if (self->tensor.dtype() == phi::DataType::COMPLEX64) {
        if (!py::isinstance<py::array_t<std::complex<float>>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<std::complex<float>>(
              value_obj_tmp);
        }
      } else if (self->tensor.dtype() == phi::DataType::COMPLEX128) {
        if (!py::isinstance<py::array_t<std::complex<double>>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<std::complex<double>>(
              value_obj_tmp);
        }
W
wanghuancoder 已提交
1582 1583 1584 1585
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "When assign a numpy.np value to a paddle.Tensor, "
            "the data type of the paddle.Tensor must be bool, "
1586
            "float32, float64, complex64, complex128, int32 or int64, "
W
wanghuancoder 已提交
1587 1588 1589
            "please check the type of tensor."));
      }

W
wanghuancoder 已提交
1590 1591 1592 1593 1594
      SetTensorFromPyArray(
          static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
          value,
          self->tensor.place(),
          false);
W
wanghuancoder 已提交
1595 1596 1597 1598 1599 1600 1601

      value_tensor = value_tensor_tmp;
    } else {
      py::object value_obj_tmp(py::handle(value_obj), true);
      // convert the value to self data type
      if (py::isinstance<py::float_>(value_obj_tmp) ||
          py::isinstance<py::int_>(value_obj_tmp) ||
1602 1603
          py::isinstance<py::bool_>(value_obj_tmp) ||
          PyComplex_Check(value_obj)) {
1604
        if (self->tensor.dtype() == phi::DataType::FLOAT32) {
1605 1606
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<float>()};
1607
        } else if (self->tensor.dtype() == phi::DataType::FLOAT64) {
1608 1609
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<double>()};
1610
        } else if (self->tensor.dtype() == phi::DataType::INT32) {
1611 1612
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<int32_t>()};
1613
        } else if (self->tensor.dtype() == phi::DataType::INT64) {
1614 1615
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<int64_t>()};
1616
        } else if (self->tensor.dtype() == phi::DataType::BOOL) {
1617 1618
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<bool>()};
1619
        } else if (self->tensor.dtype() == phi::DataType::FLOAT16) {
1620 1621 1622 1623 1624 1625 1626 1627
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<float>()};
        } else if (self->tensor.dtype() == phi::DataType::COMPLEX64) {
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<std::complex<float>>()};
        } else if (self->tensor.dtype() == phi::DataType::COMPLEX128) {
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<std::complex<double>>()};
W
wanghuancoder 已提交
1628 1629 1630 1631
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "When assign a value to a paddle.Tensor, "
              "the data type of the paddle.Tensor must be bool, "
1632 1633
              "float32, float64, complex64, complex128, int32, int64 or "
              "float16, "
W
wanghuancoder 已提交
1634 1635 1636 1637 1638 1639 1640
              "please check the type of tensor."));
        }
        attrs["shape"] = std::vector<int64_t>{1};

      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Value type error. The assign value allows "
1641
            "numpy.ndarray, integer, float, complex  or bool, "
W
wanghuancoder 已提交
1642 1643 1644 1645 1646 1647 1648
            "but received %s.",
            Py_TYPE(value_obj)));
      }
    }
    {
      // Release gil and do tracing
      py::gil_scoped_release release;
1649
      // use inplace set_value_ operator
J
Jiabin Yang 已提交
1650 1651
      if (value_tensor.initialized() &&
          (self->tensor.dtype() != value_tensor.dtype())) {
1652
        paddle::small_vector<std::vector<paddle::Tensor>,
J
Jiabin Yang 已提交
1653 1654 1655 1656 1657 1658 1659
                             egr::kSlotSmallVectorSize>
            tmps = {{self->tensor}, {value_tensor}};
        auto amp_dtype = egr::GetAmpDestDtype("set_value", tmps);
        self->tensor = egr::EagerAmpAutoCast(
            self->tensor.name(), self->tensor, amp_dtype, "set_value");
        value_tensor = egr::EagerAmpAutoCast(
            value_tensor.name(), value_tensor, amp_dtype, "set_value");
1660 1661 1662
        if (self->tensor.dtype() != value_tensor.dtype()) {
          value_tensor = cast_ad_func(value_tensor, self->tensor.dtype());
        }
J
Jiabin Yang 已提交
1663
      }
1664 1665
      self->tensor = set_value__dygraph_function(
          self->tensor, value_tensor, {}, {}, {}, attrs);
1666 1667 1668 1669 1670 1671 1672 1673 1674
    }
    if (PyCheckTensor(value_obj)) {
      // pass the stop_gradient from value to tensor.
      // pass stop gradient should be done after CheckInplace in
      // set_value__dygraph_function.
      if (!egr::EagerUtils::autograd_meta(&value_tensor)->StopGradient() &&
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient()) {
        egr::EagerUtils::autograd_meta(&self->tensor)->SetStopGradient(false);
      }
W
wanghuancoder 已提交
1675 1676
    }
  } else {
1677
    auto self_numpy = TensorToPyArray(*self_tensor, true);
W
wanghuancoder 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
    VLOG(4) << "parse_index is false";
    if (PyCheckTensor(_index)) {
      VLOG(4) << "index is tensor";
      auto index_tensor = static_cast<phi::DenseTensor*>(
          reinterpret_cast<TensorObject*>(_index)->tensor.impl().get());
      auto index_numpy = TensorToPyArray(*index_tensor);
      self_numpy[index_numpy] = py::object(py::handle(value_obj), true);
    } else {
      VLOG(4) << "index is not tensor";
      self_numpy[_index] = py::object(py::handle(value_obj), true);
    }
1689
    if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
1690
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1691 1692 1693 1694
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CUDAPlace(0)),
                           false);
W
wanghuancoder 已提交
1695
#else
1696 1697 1698 1699
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CPUPlace()),
                           false);
W
wanghuancoder 已提交
1700 1701
#endif
    } else {
1702 1703
      SetTensorFromPyArray(
          self_tensor, self_numpy, self->tensor.place(), false);
W
wanghuancoder 已提交
1704 1705
    }
  }
1706 1707
  RETURN_PY_NONE

W
wanghuancoder 已提交
1708 1709 1710
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1711 1712
static PyObject* tensor_register_grad_hook(TensorObject* self,
                                           PyObject* args,
1713 1714 1715
                                           PyObject* kwargs) {
  EAGER_TRY
  int64_t hook_id;
1716
  if (egr::EagerUtils::IsLeafTensor(self->tensor)) {
1717
    VLOG(6) << "Register hook for leaf tensor: " << self->tensor.name();
1718 1719 1720 1721 1722

    auto autograd_meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);

    if (autograd_meta && !autograd_meta->StopGradient()) {
      if (!autograd_meta->GetMutableGradNode()) {
1723
        VLOG(6) << "Detected nullptr grad_node, Leaf tensor should have had "
1724 1725 1726 1727 1728 1729
                   "grad_node with type: GradNodeAccumulation.";
        autograd_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
      }
    }

1730 1731 1732 1733 1734 1735 1736 1737 1738
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();
    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    hook_id = accumulation_grad_node->RegisterGradientHook(
1739 1740
        rank_info.first,
        rank_info.second,
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
        std::make_shared<PyTensorHook>(hook_func));

  } else {
    VLOG(6) << "Register hook for non leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    hook_id = grad_node->RegisterGradientHook(
1753 1754
        rank_info.first,
        rank_info.second,
1755 1756 1757 1758 1759 1760
        std::make_shared<PyTensorHook>(hook_func));
  }
  return ToPyObject(hook_id);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1761 1762
static PyObject* tensor_remove_grad_hook(TensorObject* self,
                                         PyObject* args,
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Remove the registered hook for tensor: " << self->tensor.name();
  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);

  int64_t hook_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);

  return ToPyObject(grad_node->RemoveGradientHook(hook_id));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
static PyObject* tensor_inplace_assign(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "inplace assign for tensor:" << self->tensor.name();
  PyObject* other = PyTuple_GET_ITEM(args, 0);
  PyObject* self_obj = reinterpret_cast<PyObject*>(self);
  ShareTensor(self_obj, other);
  RETURN_PY_NONE;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1787
PyDoc_STRVAR(tensor_method__register_reduce_hook__doc__,  // NOLINT
W
wanghuancoder 已提交
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
             R"DOC(_register_backward_hook($self, hook, /)
--

Registers a backward hook for current Tensor.

This hook will be called every time the gradient of current Tensor has been fully calculated.

There are two differences with `_register_grad_hook`:
1. This backward hook will be executed after the gradient accumulation completed across batches,
  but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
  completed in current batch.
2. This backward hook function should have the following signature:

    hook() -> None

  It requires no input and no return value.

Args:
    hook(function): A backward hook to be registered for Tensor.gradient

Returns:
    None
)DOC");
1811 1812
static PyObject* tensor_register_reduce_hook(TensorObject* self,
                                             PyObject* args,
1813 1814 1815 1816 1817 1818
                                             PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Register reduce hook for tensor: " << self->tensor.name();

  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);
1819
  PADDLE_ENFORCE_EQ(egr::EagerUtils::IsLeafTensor(self->tensor),
1820
                    true,
1821 1822 1823 1824
                    platform::errors::InvalidArgument(
                        "Only can register backward hook for leaf Tensor."));
  PADDLE_ENFORCE_EQ(
      !egr::EagerUtils::unsafe_autograd_meta(self->tensor)->StopGradient(),
1825 1826 1827 1828
      true,
      platform::errors::InvalidArgument(
          "Cannot register backward hook on a Tensor that stop "
          "gradient."));
1829 1830
  PADDLE_ENFORCE(
      grad_node.get() != nullptr,
1831
      paddle::platform::errors::Fatal("Detected nullptr grad_node,"
1832 1833 1834 1835 1836 1837 1838
                                      "Leaf tensor should have had grad_node "
                                      "with type: GradNodeAccumulation."));
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

  auto accumulation_grad_node =
      std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
  accumulation_grad_node->RegisterReduceHook(
1839
      std::make_shared<PyVoidHook>(hook_func));
1840

1841 1842
  RETURN_PY_NONE

1843 1844 1845
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1846 1847
static PyObject* tensor__set_grad_type(TensorObject* self,
                                       PyObject* args,
J
Jiabin Yang 已提交
1848
                                       PyObject* kwargs) {
1849 1850 1851
  EAGER_TRY
  auto var_type = pybind::CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensor =
1852
      egr::EagerUtils::autograd_meta(&self->tensor)->MutableGrad();
1853
  if (var_type == framework::proto::VarType::LOD_TENSOR) {
1854
    grad_tensor->set_impl(std::make_shared<phi::DenseTensor>());
1855
  } else if (var_type == framework::proto::VarType::SELECTED_ROWS) {
1856
    grad_tensor->set_impl(std::make_shared<phi::SelectedRows>());
1857
  }
1858 1859
  RETURN_PY_NONE

1860 1861 1862
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1863 1864
static PyObject* tensor__clear(TensorObject* self,
                               PyObject* args,
J
Jiabin Yang 已提交
1865 1866 1867
                               PyObject* kwargs) {
  EAGER_TRY
  self->tensor.reset();
1868 1869
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1870 1871 1872
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1873 1874 1875 1876 1877 1878 1879 1880 1881
static PyObject* tensor__clear_dataptr(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  self->tensor.set_impl(nullptr);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1882 1883
static PyObject* tensor__copy_gradient_from(TensorObject* self,
                                            PyObject* args,
J
Jiabin Yang 已提交
1884 1885 1886
                                            PyObject* kwargs) {
  EAGER_TRY
  auto src = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
1887
  if (self->tensor.initialized()) {
1888 1889
    PADDLE_ENFORCE_EQ(self->tensor.dtype(),
                      src.dtype(),
J
Jiabin Yang 已提交
1890 1891
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
1892 1893
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1894 1895 1896 1897 1898
    PADDLE_ENFORCE_EQ(self->tensor.impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
1899 1900
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1901 1902 1903 1904
  }
  VLOG(6) << "Tensor copy gradient from: " << src.name();
  auto* p_grad = egr::EagerUtils::mutable_grad(self->tensor);
  if (p_grad) {
1905 1906
    PADDLE_ENFORCE_EQ(src.initialized(),
                      true,
J
Jiabin Yang 已提交
1907 1908 1909 1910
                      platform::errors::InvalidArgument(
                          "Tensor %s has not been initialized", src.name()));
    p_grad->set_impl(src.impl());
  }
1911 1912
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1913 1914
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1915

1916 1917 1918
static PyObject* tensor__use_gpudnn(TensorObject* self,
                                    PyObject* args,
                                    PyObject* kwargs) {
1919 1920 1921
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.defined() && self->tensor.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
1922
                     "function _use_gpudnn is only effective for DenseTensor"));
1923

1924
  bool use_gpudnn = pybind::CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
1925

1926
  // Set the same use_gpudnn attribute, return directly
1927 1928 1929 1930
  phi::DenseTensor* dense_tensor =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  phi::DenseTensorMeta* dense_tensor_meta =
      phi::DenseTensorUtils::GetMutableMeta(dense_tensor);
1931
  if (use_gpudnn == dense_tensor_meta->use_gpudnn) {
1932 1933 1934
    return ToPyObject(self->tensor);
  }

1935
  // Share all other members of Tensor except use_gpudnn
1936
  phi::DenseTensorMeta target_dense_meta = *dense_tensor_meta;
1937
  target_dense_meta.use_gpudnn = use_gpudnn;
1938 1939 1940 1941
  phi::DenseTensor target_dense_tensor;
  target_dense_tensor.ShareDataWith(*dense_tensor);
  target_dense_tensor.set_meta(target_dense_meta);
  // Construct returned tensor
1942
  paddle::Tensor target_tensor(
1943 1944 1945 1946
      std::make_shared<phi::DenseTensor>(target_dense_tensor),
      self->tensor.name());
  target_tensor.set_autograd_meta(self->tensor.mutable_autograd_meta());
  VLOG(4) << "Tensor: " << target_tensor.name()
1947
          << " set use_gpudnn = " << use_gpudnn;
1948 1949 1950 1951 1952

  return ToPyObject(target_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1953 1954
static PyObject* tensor_method_set_vocab(TensorObject* self,
                                         PyObject* args,
1955 1956
                                         PyObject* kwargs) {
  EAGER_TRY
1957
  using Vocab = paddle::framework::Vocab;
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
  auto vocab = CastPyArg2Vocab(PyTuple_GET_ITEM(args, 0), 0);
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Vocab>() = vocab;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_set_string_list(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
1970
  using Strings = paddle::framework::Strings;
1971
  auto strings = CastPyArg2VectorOfString(PyTuple_GET_ITEM(args, 0), 0);
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Strings>() = strings;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_map_tensor(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
1984 1985
      egr::IsVariableCompatTensor(self->tensor),
      true,
1986 1987
      paddle::platform::errors::Fatal(
          "this method is only effective for VariableCompatTensor"));
1988
  using Vocab = paddle::framework::Vocab;
1989 1990 1991 1992 1993 1994
  auto* var_tensor =
      static_cast<const egr::VariableCompatTensor*>(self->tensor.impl().get());
  return ToPyObject(var_tensor->Get<Vocab>());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
PyDoc_STRVAR(tensor_method_nnz__doc__,
             R"DOC(nnz($self, /)
--

Note:
    **This API is only available for SparseCooTensor or SparseCsrTensor.**

Returns the total number of non zero elements in input SparseCooTensor/SparseCsrTensor.

Returns:
    int

Examples:
    .. code-block:: python

        import paddle

        indices = [[0, 1, 2], [1, 2, 0]]
        values = [1.0, 2.0, 3.0]
        dense_shape = [3, 3]
        coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
        coo.nnz()
        # 3

)DOC");

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
static PyObject* tensor_method_get_non_zero_nums(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    return ToPyObject(sparse_coo_tensor->nnz());
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    return ToPyObject(sparse_csr_tensor->nnz());
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
PyDoc_STRVAR(tensor_method_indices__doc__,
             R"DOC(indices($self, /)
--

Note:
    **This API is only available for SparseCooTensor.**

Returns the indices of non zero elements in input SparseCooTensor.

Returns:
    DenseTesnor

Examples:
    .. code-block:: python

        import paddle

        indices = [[0, 1, 2], [1, 2, 0]]
        values = [1.0, 2.0, 3.0]
        dense_shape = [3, 3]
        coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
        coo.indices()
        # Tensor(shape=[2, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
        #        [[0, 1, 2],
        #         [1, 2, 0]])

)DOC");

2070 2071 2072 2073 2074 2075 2076 2077 2078
static PyObject* tensor_method_get_non_zero_indices(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_coo_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCooTensor"));
  auto sparse_coo_tensor =
      std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
2079
  paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
2080 2081 2082 2083 2084
      sparse_coo_tensor->non_zero_indices()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
PyDoc_STRVAR(tensor_method_values__doc__,
             R"DOC(values($self, /)
--

Note:
    **This API is only available for SparseCooTensor or SparseCsrTensor.**

Returns the values of non zero elements in input SparseCooTensor.

Returns:
    DenseTesnor

Examples:
    .. code-block:: python

        import paddle

        indices = [[0, 1, 2], [1, 2, 0]]
        values = [1.0, 2.0, 3.0]
        dense_shape = [3, 3]
        coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
        coo.values()
        # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
        #        [1., 2., 3.])

)DOC");

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
static PyObject* tensor_method_get_non_zero_elements(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
2124
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
2125 2126 2127 2128 2129
        sparse_coo_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
2130
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
2131 2132 2133 2134 2135 2136
        sparse_csr_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
PyDoc_STRVAR(tensor_method_crows__doc__,
             R"DOC(crows($self, /)
--

Note:
    **This API is only available for SparseCsrTensor.**

Returns the compressed row index of non zero elements in input SparseCsrTensor.

Returns:
    DenseTesnor

Examples:
    .. code-block:: python

        import paddle

        crows = [0, 2, 3, 5]
        cols = [1, 3, 2, 0, 1]
        values = [1, 2, 3, 4, 5]
        dense_shape = [3, 4]
        csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
        csr.crows()
        # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
        #        [0, 2, 3, 5])

)DOC");

2165 2166 2167 2168 2169 2170 2171 2172 2173
static PyObject* tensor_method_get_non_zero_crows(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
2174
  paddle::Tensor tensor(
2175 2176 2177 2178 2179
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_crows()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
PyDoc_STRVAR(tensor_method_cols__doc__,
             R"DOC(cols($self, /)
--

Note:
    **This API is only available for SparseCsrTensor.**

Returns the column index of non zero elements in input SparseCsrTensor.

Returns:
    DenseTesnor

Examples:
    .. code-block:: python

        import paddle

        crows = [0, 2, 3, 5]
        cols = [1, 3, 2, 0, 1]
        values = [1, 2, 3, 4, 5]
        dense_shape = [3, 4]
        csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
        csr.cols()
        # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
        #        [1, 3, 2, 0, 1])

)DOC");

2208 2209 2210 2211 2212 2213 2214 2215 2216
static PyObject* tensor_method_get_non_zero_cols(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
2217
  paddle::Tensor tensor(
2218 2219 2220 2221 2222
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_cols()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
PyDoc_STRVAR(tensor_method_is_dense__doc__, R"DOC(is_dense($self, /)
--

Whether the Tensor is a Dense Tensor.

Returns:
    Whether the Tensor is a Dense Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([1.0], stop_gradient=False)
        print(x.is_dense())
)DOC");

2240 2241
static PyObject* tensor_method_is_dense(TensorObject* self,
                                        PyObject* args,
2242 2243 2244 2245 2246 2247 2248 2249 2250
                                        PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dense_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
PyDoc_STRVAR(tensor_method_is_dist__doc__, R"DOC(is_dist($self, /)
--

Whether the Tensor is a Distributed Tensor.

Returns:
    Whether the Tensor is a Distributed Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([1.0], stop_gradient=False)
        print(x.is_dist()) # False
)DOC");

L
LiYuRio 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
static PyObject* tensor_method_is_dist(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dist_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
PyDoc_STRVAR(tensor_is_sparse__doc__,
             R"DOC(is_sparse($self, /)
--

Returns whether the input Tensor is SparseCooTensor or SparseCsrTensor.

When input is SparseCooTensor/SparseCsrTensor, will return True. When input is DenseTensor, will return False.

Returns:
    bool

Examples:
    .. code-block:: python

        import paddle

        indices = [[0, 1, 2], [1, 2, 0]]
        values = [1.0, 2.0, 3.0]
        dense_shape = [3, 3]
        coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
        coo.is_sparse()
        # True

)DOC");
2303 2304
static PyObject* tensor_method_is_sparse(TensorObject* self,
                                         PyObject* args,
2305 2306
                                         PyObject* kwargs) {
  EAGER_TRY
2307 2308 2309
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
2310 2311 2312 2313 2314
  return ToPyObject(self->tensor.is_sparse_coo_tensor() ||
                    self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
PyDoc_STRVAR(tensor_is_sparse_coo__doc__,
             R"DOC(is_sparse_coo($self, /)
--

Returns whether the input Tensor is SparseCooTensor.

When input is SparseCooTensor, will return True. When input is DenseTensor/SparseCsrTensor, will return False.

Returns:
    bool

Examples:
    .. code-block:: python

        import paddle

        indices = [[0, 1, 2], [1, 2, 0]]
        values = [1.0, 2.0, 3.0]
        dense_shape = [3, 3]
        coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
        coo.is_sparse_coo()
        # True

)DOC");

2340 2341
static PyObject* tensor_method_is_sparse_coo(TensorObject* self,
                                             PyObject* args,
2342 2343
                                             PyObject* kwargs) {
  EAGER_TRY
2344 2345 2346
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
2347 2348 2349 2350
  return ToPyObject(self->tensor.is_sparse_coo_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
PyDoc_STRVAR(tensor_is_sparse_csr__doc__,
             R"DOC(is_sparse_csr($self, /)
--

Returns whether the input Tensor is SparseCsrTensor.

When input is SparseCsrTensor, will return True. When input is DenseTensor/SparseCooTensor, will return False.

Returns:
    bool

Examples:
    .. code-block:: python

        import paddle

        crows = [0, 2, 3, 5]
        cols = [1, 3, 2, 0, 1]
        values = [1, 2, 3, 4, 5]
        dense_shape = [3, 4]
        csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
        csr.is_sparse_csr()
        # True

)DOC");

2377 2378
static PyObject* tensor_method_is_sparse_csr(TensorObject* self,
                                             PyObject* args,
2379 2380
                                             PyObject* kwargs) {
  EAGER_TRY
2381 2382 2383
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
2384 2385 2386 2387
  return ToPyObject(self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
PyDoc_STRVAR(tensor_to_sparse_csr__doc__,
             R"DOC(to_sparse_csr($self, /)
--

Note:
    **This API is only available for DenseTensor or SparseCooTensor.**

Convert input Tensor to SparseCsrTensor.

When input is SparseCooTensor, will convert `COO` to `CSR` . When input is DenseTensor, will convert `Dense` to `CSR` .

Returns:
    SparseCsrTensor

Examples:
    .. code-block:: python

        import paddle

        indices = [[0, 1, 2], [1, 2, 0]]
        values = [1.0, 2.0, 3.0]
        dense_shape = [3, 3]
        coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
        coo.to_sparse_csr()
        # Tensor(shape=[3, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
        #        crows=[0, 1, 2, 3],
        #        cols=[1, 2, 0],
        #        values=[1., 2., 3.])

)DOC");

2419 2420
static PyObject* tensor_method_to_sparse_csr(TensorObject* self,
                                             PyObject* args,
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
                                             PyObject* kwargs) {
  EAGER_TRY
  auto csr_tensor = self->tensor.to_sparse_csr();
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetStopGradient(
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(csr_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
PyDoc_STRVAR(tensor_is_same_shape__doc__,
             R"DOC(is_same_shape($self, y, /)
--

Return the results of shape comparison between two Tensors, check whether x.shape equal to y.shape.
Any two type Tensor among DenseTensor/SparseCooTensor/SparseCsrTensor are supported.

Args:
    x (Tensor): The input tensor. It can be DenseTensor/SparseCooTensor/SparseCsrTensor.
    y (Tensor): The input tensor. It can be DenseTensor/SparseCooTensor/SparseCsrTensor.

Returns:
    bool: True for same shape and False for different shape.

Examples:

    .. code-block:: python

        import paddle

        x = paddle.rand([2, 3, 8])
        y = paddle.rand([2, 3, 8])
        y = y.to_sparse_csr()
        z = paddle.rand([2, 5])

        x.is_same_shape(y)
        # True
        x.is_same_shape(z)
        # False

)DOC");

2466 2467 2468 2469 2470 2471 2472 2473 2474
static PyObject* tensor_method_is_same_shape(TensorObject* self,
                                             PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto other = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  return ToPyObject(self->tensor.shape() == other.shape());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2475 2476
static PyObject* tensor__inplace_version(TensorObject* self,
                                         PyObject* args,
2477 2478 2479 2480 2481 2482 2483 2484
                                         PyObject* kwargs) {
  EAGER_TRY
  uint32_t inplace_version = self->tensor.current_inplace_version();

  return ToPyObject(inplace_version);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2485 2486
PyDoc_STRVAR(tensor_method_element_size__doc__,  // NOLINT
             R"DOC(element_size($self, /)
W
wanghuancoder 已提交
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
--

Returns the size in bytes of an element in the Tensor.

Returns:
    int, The size in bytes of an element in the Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor(1, dtype='bool')
        x.element_size() # 1

        x = paddle.to_tensor(1, dtype='float16')
        x.element_size() # 2

        x = paddle.to_tensor(1, dtype='float32')
        x.element_size() # 4

        x = paddle.to_tensor(1, dtype='float64')
        x.element_size() # 8

        x = paddle.to_tensor(1, dtype='complex128')
        x.element_size() # 16
)DOC");

2515 2516
static PyObject* tensor_method_element_size(TensorObject* self,
                                            PyObject* args,
2517 2518
                                            PyObject* kwargs) {
  EAGER_TRY
2519
  uint32_t element_size = phi::SizeOf(self->tensor.dtype());
2520 2521 2522 2523 2524

  return ToPyObject(element_size);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2525
PyDoc_STRVAR(tensor_method__bump_inplace_version__doc__,  // NOLINT
W
wanghuancoder 已提交
2526 2527 2528
             R"DOC(_bump_inplace_version($self, /)
--

2529
Note:
W
wanghuancoder 已提交
2530 2531
    **This API is ONLY available in Dygraph mode.**
    **This is a very low level API. Users should not use it directly. **
2532

W
wanghuancoder 已提交
2533 2534
  Bump the version whenever the Tensor is modified through an inplace operation.
)DOC");
2535 2536 2537 2538 2539
static PyObject* tensor__bump_inplace_version(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  self->tensor.bump_inplace_version();
2540
  RETURN_PY_NONE
2541 2542 2543
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2544 2545 2546 2547
static PyObject* tensor_method_is_selected_rows(TensorObject* self,
                                                PyObject* args,
                                                PyObject* kwargs) {
  EAGER_TRY
2548 2549 2550
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
2551 2552 2553 2554
  return ToPyObject(self->tensor.is_selected_rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2555 2556
static PyObject* tensor_method_get_rows(TensorObject* self,
                                        PyObject* args,
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
                                        PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows"));
  auto selected_rows =
      std::dynamic_pointer_cast<phi::SelectedRows>(self->tensor.impl());
  return ToPyObject(selected_rows->rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
static PyObject* tensor__reset_grad_inplace_version(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  }

2578
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2579 2580 2581 2582
  if (grad && grad->defined() && grad->is_dense_tensor() &&
      grad->initialized()) {
    grad->reset_inplace_version(set_to_zero);
  }
2583 2584
  RETURN_PY_NONE

2585 2586 2587
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2588 2589
static PyObject* tensor_method__share_memory(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
2590 2591 2592
                                             PyObject* kwargs) {
  EAGER_TRY
#ifndef _WIN32
2593 2594
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
W
wanghuancoder 已提交
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
                    platform::errors::InvalidArgument(
                        "Sharing memory only support CPU Tensor currently"));
  // 1. get LoDTensor
  auto* t =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl()).get();
  // 2. allocate shared memory
  void* data_ptr = t->data();
  size_t data_size =
      t->numel() *
      framework::SizeOfType(framework::TransToProtoVarType(t->dtype()));
  auto shared_writer_holder =
      memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
  // 3. maintain mmap fd set & backup ipc_name
  const std::string& ipc_name = shared_writer_holder->ipc_name();
  memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
  // 4. copy data & reset holder
2611 2612 2613 2614 2615
  memory::Copy(platform::CPUPlace(),
               shared_writer_holder->ptr(),
               platform::CPUPlace(),
               data_ptr,
               data_size);
W
wanghuancoder 已提交
2616 2617 2618 2619 2620
  t->ResetHolder(shared_writer_holder);
  return ToPyObject(t);
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "Sharing memory in Windows OS is not supported currently"));
2621 2622
  RETURN_PY_NONE

W
wanghuancoder 已提交
2623 2624 2625 2626
#endif
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2627 2628
static PyObject* tensor__offset(TensorObject* self,
                                PyObject* args,
2629 2630 2631 2632
                                PyObject* kwargs) {
  EAGER_TRY
  auto t = std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  PADDLE_ENFORCE_EQ(
2633 2634
      t->IsInitialized(),
      true,
2635 2636 2637 2638 2639 2640 2641
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  return ToPyObject(t->offset());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2642 2643
static PyObject* tensor__grad_name(TensorObject* self,
                                   PyObject* args,
2644 2645
                                   PyObject* kwargs) {
  EAGER_TRY
2646
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2647 2648 2649 2650 2651 2652
  PADDLE_ENFORCE_EQ(
      grad != nullptr,
      true,
      platform::errors::InvalidArgument(
          "Detected nullptr grad. Please check if you have manually "
          "cleared the grad inside autograd_meta"));
2653 2654 2655 2656
  return ToPyObject(grad->name());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2657 2658
static PyObject* tensor__grad_value(TensorObject* self,
                                    PyObject* args,
2659 2660
                                    PyObject* kwargs) {
  EAGER_TRY
2661
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2662 2663 2664 2665 2666 2667
  PADDLE_ENFORCE_EQ(
      grad != nullptr,
      true,
      platform::errors::InvalidArgument(
          "Detected nullptr grad. Please check if you have manually "
          "cleared the grad inside autograd_meta"));
2668 2669

  if (!grad->defined()) {
2670
    RETURN_PY_NONE
2671 2672
  }
  if (grad->is_dense_tensor()) {
2673
    auto* grad_tensor = static_cast<phi::DenseTensor*>(grad->impl().get());
2674 2675 2676 2677
    return ToPyObject(grad_tensor);
  } else {
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "this method is only supported for DenseTensor"));
2678
    RETURN_PY_NONE
2679 2680 2681 2682
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2683 2684
static PyObject* tensor__unset_fake_empty(TensorObject* self,
                                          PyObject* args,
2685 2686
                                          PyObject* kwargs) {
  EAGER_TRY
2687
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2688 2689 2690 2691 2692 2693
  PADDLE_ENFORCE_EQ(
      grad != nullptr,
      true,
      platform::errors::InvalidArgument(
          "Detected nullptr grad. Please check if you have manually "
          "cleared the grad inside autograd_meta"));
2694

2695
  bool is_leaf = egr::EagerUtils::IsLeafTensor(self->tensor);
2696 2697 2698 2699 2700 2701 2702 2703 2704
  if (is_leaf) {
    std::static_pointer_cast<egr::GradNodeAccumulation>(
        egr::EagerUtils::grad_node(self->tensor))
        ->SetFakeEmpty(false);
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
PyDoc_STRVAR(tensor_data_ptr__doc__,
             R"DOC(data_ptr($self, /)
--

Returns the address of the first element of current Tensor.

Returns:
    int, The address of the first element of current Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([1, 2, 3])
        print(x.data_ptr())
)DOC");

2723 2724 2725 2726 2727
static PyObject* tensor_data_ptr(TensorObject* self,
                                 PyObject* args,
                                 PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.initialized() && self->tensor.is_dense_tensor()) {
S
sneaxiy 已提交
2728 2729 2730 2731
    return ToPyObject(
        (int64_t)std::dynamic_pointer_cast<phi::DenseTensor>(  // NOLINT
            self->tensor.impl())
            ->data());
2732 2733 2734 2735 2736
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
static PyObject* tensor__grad_ivar(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Get grad for tensor: " << self->tensor.name();
  auto meta = egr::EagerUtils::nullable_autograd_meta(self->tensor);
  VLOG(6) << meta << " initialized: " << meta->Grad().initialized();
  if (meta && meta->Grad().initialized()) {
    return ToPyObject(meta->Grad());
  } else {
    RETURN_PY_NONE
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
PyDoc_STRVAR(tensor_get_strides__doc__,
             R"DOC(get_strides($self, /)
--

Returns the strides of current Tensor.

Returns:
    List, the strides of current Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([1, 2, 3])
        y = x[1]
        print(y.get_strides())
)DOC");

W
wanghuancoder 已提交
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
static PyObject* tensor_method_strides(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  std::vector<int64_t> value;
  if (!self->tensor.defined() || !self->tensor.is_dense_tensor()) {
    return ToPyObject(value);
  }
  auto stride = self->tensor.strides();
  size_t rank = static_cast<size_t>(stride.size());
  value.resize(rank);
  for (size_t i = 0; i < rank; i++) {
    value[i] = stride[i];
  }
  return ToPyObject(value);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
PyDoc_STRVAR(tensor_contiguous__doc__,
             R"DOC(contiguous($self, /)
--

Returns a contiguous in memory tensor containing the same data as current Tensor.
If self tensor is already contiguous, this function returns the current Tensor.

Returns:
    Tensor, The contiguous Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([1, 2, 3])
        y = x[1]
        y = y.contiguous()
        print(y)
)DOC");

W
wanghuancoder 已提交
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
static PyObject* tensor_contiguous(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.is_dense_tensor()) {
    auto dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
    if (dense_tensor->meta().is_contiguous()) {
      Py_INCREF(self);
      return reinterpret_cast<PyObject*>(self);
    } else {
      eager_gil_scoped_release guard;
      return ToPyObject(
          paddle::Tensor(std::make_shared<phi::DenseTensor>(std::move(
              paddle::experimental::Trans2Contiguous(*(dense_tensor.get()))))));
    }

  } else {
    Py_INCREF(self);
    return reinterpret_cast<PyObject*>(self);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
PyDoc_STRVAR(tensor_is_contiguous__doc__,
             R"DOC(is_contiguous($self, /)
--

Whether the Tensor is contiguous.

Returns:
    Bool, Whether the Tensor is contiguous.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([1, 2, 3])
        y = x[1]
        print(y.is_contiguous())
)DOC");
W
wanghuancoder 已提交
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
static PyObject* tensor_is_contiguous(TensorObject* self,
                                      PyObject* args,
                                      PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.is_dense_tensor()) {
    auto dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
    return ToPyObject(dense_tensor->meta().is_contiguous());
  } else {
    return ToPyObject(true);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2866
#if defined(PADDLE_WITH_CUDA)
2867 2868
static PyObject* tensor_method__uva(TensorObject* self,
                                    PyObject* args,
2869 2870 2871
                                    PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in tensor_method__uva.";
2872 2873
  PADDLE_ENFORCE_EQ(self->tensor.is_dense_tensor(),
                    true,
W
Weilong Wu 已提交
2874 2875 2876
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "DenseTensor currently."));
2877 2878
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
2879 2880 2881 2882
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "CPU Tensor currently."));
  int device_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
2883
  auto* self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
2884 2885
  tensor_uva(self_tensor, device_id);

2886 2887
  RETURN_PY_NONE

2888 2889 2890
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
#endif
J
Jack Zhou 已提交
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
static PyObject* tensor_method__is_string_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto string_tensor =
      std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
  if (string_tensor) {
    return ToPyObject(string_tensor->initialized());
  } else {
    return ToPyObject(false);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
2903

2904
PyMethodDef variable_methods[] = {  // NOLINT
2905
    {"numpy",
2906
     (PyCFunction)(void (*)())tensor_method_numpy,
2907
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2908
     tensor_method_numpy__doc__},
2909
    {"_is_initialized",
2910
     (PyCFunction)(void (*)())tensor_method__is_initialized,
2911
     METH_VARARGS | METH_KEYWORDS,
2912
     nullptr},
W
wanghuancoder 已提交
2913
    {"_is_dense_tensor_hold_allocation",
2914 2915
     (PyCFunction)(void (*)(
         void))tensor_method__is_dense_tensor_hold_allocation,
2916
     METH_VARARGS | METH_KEYWORDS,
2917
     nullptr},
2918
    {"_copy_to",
2919
     (PyCFunction)(void (*)())tensor_method__copy_to,
2920
     METH_VARARGS | METH_KEYWORDS,
2921
     nullptr},
2922
    {"copy_",
2923
     (PyCFunction)(void (*)())tensor_method_copy_,
2924
     METH_VARARGS | METH_KEYWORDS,
2925
     nullptr},
2926
    {"clone",
2927
     (PyCFunction)(void (*)())tensor_method_clone,
2928
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2929
     tensor_method_clone__doc__},
2930
    {"reconstruct_from_",
2931
     (PyCFunction)(void (*)())tensor_method_reconstruct_from_,
2932
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2933
     tensor_reconstruct_from___doc__},
2934
    {"retain_grads",
2935
     (PyCFunction)(void (*)())tensor_retain_grads,
2936
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2937
     tensor_method_retain_grads__doc__},
2938
    {"clear_gradient",
2939
     (PyCFunction)(void (*)())tensor_clear_gradient,
2940
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2941
     tensor_clear_gradient__doc__},
2942
    {"is_dense",
2943
     (PyCFunction)(void (*)())tensor_method_is_dense,
2944
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2945
     tensor_method_is_dense__doc__},
L
LiYuRio 已提交
2946
    {"is_dist",
2947
     (PyCFunction)(void (*)())tensor_method_is_dist,
L
LiYuRio 已提交
2948
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2949
     tensor_method_is_dist__doc__},
2950
    {"_zero_grads",
2951
     (PyCFunction)(void (*)())tensor__zero_grads,
2952
     METH_VARARGS | METH_KEYWORDS,
2953
     nullptr},
2954
    {"_share_buffer_to",
2955
     (PyCFunction)(void (*)())tensor__share_buffer_to,
2956
     METH_VARARGS | METH_KEYWORDS,
2957
     nullptr},
2958
    {"_is_shared_buffer_with",
2959
     (PyCFunction)(void (*)())tensor__is_shared_buffer_with,
2960
     METH_VARARGS | METH_KEYWORDS,
2961
     nullptr},
2962
    {"_share_underline_tensor_to",
2963
     (PyCFunction)(void (*)())tensor__share_underline_tensor_to,
2964
     METH_VARARGS | METH_KEYWORDS,
2965
     nullptr},
2966
    {"_is_shared_underline_tensor_with",
2967
     (PyCFunction)(void (*)())tensor__is_shared_underline_tensor_with,
2968
     METH_VARARGS | METH_KEYWORDS,
2969
     nullptr},
2970
    {"detach",
2971
     (PyCFunction)(void (*)())tensor_method_detach,
2972
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2973
     tensor_method_detach__doc__},
W
wanghuancoder 已提交
2974 2975 2976
    {"detach_",
     (PyCFunction)(void (*)(void))tensor_method_detach_,
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2977
     tensor_method_detach___doc__},
2978
    {"get_tensor",
2979
     (PyCFunction)(void (*)())tensor_method_get_underline_tensor,
2980
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2981
     tensor_method_get_tensor__doc__},
2982
    {"get_selected_rows",
2983
     (PyCFunction)(void (*)())tensor_method_get_underline_selected_rows,
2984
     METH_VARARGS | METH_KEYWORDS,
2985
     nullptr},
2986
    {"_get_tensor_from_selected_rows",
2987
     (PyCFunction)(void (*)())tensor_method__get_tensor_from_selected_rows,
2988
     METH_VARARGS | METH_KEYWORDS,
2989
     nullptr},
J
Jiabin Yang 已提交
2990
    {"_getitem_index_not_tensor",
2991
     (PyCFunction)(void (*)())tensor__getitem_index_not_tensor,
2992
     METH_VARARGS | METH_KEYWORDS,
2993
     nullptr},
W
wanghuancoder 已提交
2994
    {"_getitem_from_offset",
2995
     (PyCFunction)(void (*)())tensor__getitem_from_offset,
2996
     METH_VARARGS | METH_KEYWORDS,
2997
     nullptr},
W
wanghuancoder 已提交
2998
    {"__setitem_eager_tensor__",
2999
     (PyCFunction)(void (*)())tensor_method__setitem_eager_tensor,
3000
     METH_VARARGS | METH_KEYWORDS,
3001
     nullptr},
3002
    {"_register_grad_hook",
3003
     (PyCFunction)(void (*)())tensor_register_grad_hook,
3004
     METH_VARARGS | METH_KEYWORDS,
3005
     nullptr},
3006 3007 3008 3009
    {"_inplace_assign",  // NOTE(xiongkun03): only used in sot.
     (PyCFunction)(void (*)())tensor_inplace_assign,
     METH_VARARGS | METH_KEYWORDS,
     nullptr},
3010
    {"_remove_grad_hook",
3011
     (PyCFunction)(void (*)())tensor_remove_grad_hook,
3012
     METH_VARARGS | METH_KEYWORDS,
3013
     nullptr},
3014
    {"_register_backward_hook",
3015
     (PyCFunction)(void (*)())tensor_register_reduce_hook,
3016
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3017
     tensor_method__register_reduce_hook__doc__},
3018
    {"_set_grad_type",
3019
     (PyCFunction)(void (*)())tensor__set_grad_type,
3020
     METH_VARARGS | METH_KEYWORDS,
3021
     nullptr},
3022
    {"_clear",
3023
     (PyCFunction)(void (*)())tensor__clear,
3024
     METH_VARARGS | METH_KEYWORDS,
3025
     nullptr},
3026
    {"_clear_dataptr",
3027
     (PyCFunction)(void (*)())tensor__clear_dataptr,
3028
     METH_VARARGS | METH_KEYWORDS,
3029
     nullptr},
J
Jiabin Yang 已提交
3030
    {"_copy_gradient_from",
3031
     (PyCFunction)(void (*)())tensor__copy_gradient_from,
3032
     METH_VARARGS | METH_KEYWORDS,
3033
     nullptr},
3034
    {"_tensor_use_gpudnn",
3035
     (PyCFunction)(void (*)())tensor__use_gpudnn,
3036
     METH_VARARGS | METH_KEYWORDS,
3037
     nullptr},
3038 3039
    /** the methods to adapt old dygraph, will be removed in the future **/
    {"set_string_list",
3040
     (PyCFunction)(void (*)())tensor_method_set_string_list,
3041
     METH_VARARGS | METH_KEYWORDS,
3042
     nullptr},
3043
    {"set_vocab",
3044
     (PyCFunction)(void (*)())tensor_method_set_vocab,
3045
     METH_VARARGS | METH_KEYWORDS,
3046
     nullptr},
3047
    {"get_map_tensor",
3048
     (PyCFunction)(void (*)())tensor_method_get_map_tensor,
3049
     METH_VARARGS | METH_KEYWORDS,
3050
     nullptr},
3051
    /***the method of sparse tensor****/
3052
    {"nnz",
3053
     (PyCFunction)(void (*)())tensor_method_get_non_zero_nums,
3054
     METH_VARARGS | METH_KEYWORDS,
3055
     tensor_method_nnz__doc__},
3056
    {"indices",
3057
     (PyCFunction)(void (*)())tensor_method_get_non_zero_indices,
3058
     METH_VARARGS | METH_KEYWORDS,
3059
     tensor_method_indices__doc__},
3060
    {"values",
3061
     (PyCFunction)(void (*)())tensor_method_get_non_zero_elements,
3062
     METH_VARARGS | METH_KEYWORDS,
3063
     tensor_method_values__doc__},
3064
    {"crows",
3065
     (PyCFunction)(void (*)())tensor_method_get_non_zero_crows,
3066
     METH_VARARGS | METH_KEYWORDS,
3067
     tensor_method_crows__doc__},
3068
    {"cols",
3069
     (PyCFunction)(void (*)())tensor_method_get_non_zero_cols,
3070
     METH_VARARGS | METH_KEYWORDS,
3071
     tensor_method_cols__doc__},
3072
    {"is_sparse",
3073
     (PyCFunction)(void (*)())tensor_method_is_sparse,
3074
     METH_VARARGS | METH_KEYWORDS,
3075
     tensor_is_sparse__doc__},
3076
    {"is_sparse_coo",
3077
     (PyCFunction)(void (*)())tensor_method_is_sparse_coo,
3078
     METH_VARARGS | METH_KEYWORDS,
3079
     tensor_is_sparse_coo__doc__},
3080
    {"is_sparse_csr",
3081
     (PyCFunction)(void (*)())tensor_method_is_sparse_csr,
3082
     METH_VARARGS | METH_KEYWORDS,
3083
     tensor_is_sparse_csr__doc__},
3084
    {"is_same_shape",
3085
     (PyCFunction)(void (*)())tensor_method_is_same_shape,
3086
     METH_VARARGS | METH_KEYWORDS,
3087
     tensor_is_same_shape__doc__},
3088
    {"to_sparse_csr",
3089
     (PyCFunction)(void (*)())tensor_method_to_sparse_csr,
3090
     METH_VARARGS | METH_KEYWORDS,
3091 3092
     tensor_to_sparse_csr__doc__},
    /***the method of sparse tensor****/
3093
    {"element_size",
3094
     (PyCFunction)(void (*)())tensor_method_element_size,
3095
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3096
     tensor_method_element_size__doc__},
3097
    {"_inplace_version",
3098
     (PyCFunction)(void (*)())tensor__inplace_version,
3099
     METH_VARARGS | METH_KEYWORDS,
3100
     nullptr},
3101
    {"_bump_inplace_version",
3102
     (PyCFunction)(void (*)())tensor__bump_inplace_version,
3103
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3104
     tensor_method__bump_inplace_version__doc__},
3105
    {"is_selected_rows",
3106
     (PyCFunction)(void (*)())tensor_method_is_selected_rows,
3107
     METH_VARARGS | METH_KEYWORDS,
3108
     nullptr},
3109
    {"rows",
3110
     (PyCFunction)(void (*)())tensor_method_get_rows,
3111
     METH_VARARGS | METH_KEYWORDS,
3112
     nullptr},
3113
    {"_reset_grad_inplace_version",
3114
     (PyCFunction)(void (*)())tensor__reset_grad_inplace_version,
3115
     METH_VARARGS | METH_KEYWORDS,
3116
     nullptr},
3117
    {"_share_memory",
3118
     (PyCFunction)(void (*)())tensor_method__share_memory,
3119
     METH_VARARGS | METH_KEYWORDS,
3120
     nullptr},
3121
    {"_offset",
3122
     (PyCFunction)(void (*)())tensor__offset,
3123
     METH_VARARGS | METH_KEYWORDS,
3124
     nullptr},
3125
    {"_grad_name",
3126
     (PyCFunction)(void (*)())tensor__grad_name,
3127
     METH_VARARGS | METH_KEYWORDS,
3128
     nullptr},
3129
    {"_grad_value",
3130
     (PyCFunction)(void (*)())tensor__grad_value,
3131
     METH_VARARGS | METH_KEYWORDS,
3132
     nullptr},
3133
    {"_unset_fake_empty",
3134
     (PyCFunction)(void (*)())tensor__unset_fake_empty,
3135
     METH_VARARGS | METH_KEYWORDS,
3136
     nullptr},
3137
    {"data_ptr",
3138
     (PyCFunction)(void (*)())tensor_data_ptr,
3139
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3140
     tensor_data_ptr__doc__},
W
wanghuancoder 已提交
3141
    {"_grad_ivar",
3142
     (PyCFunction)(void (*)())tensor__grad_ivar,
W
wanghuancoder 已提交
3143
     METH_VARARGS | METH_KEYWORDS,
3144
     nullptr},
W
wanghuancoder 已提交
3145 3146 3147
    {"contiguous",
     (PyCFunction)(void (*)(void))tensor_contiguous,
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3148
     tensor_contiguous__doc__},
W
wanghuancoder 已提交
3149 3150 3151
    {"is_contiguous",
     (PyCFunction)(void (*)(void))tensor_is_contiguous,
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3152
     tensor_is_contiguous__doc__},
W
wanghuancoder 已提交
3153 3154 3155
    {"get_strides",
     (PyCFunction)(void (*)(void))tensor_method_strides,
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
3156
     tensor_get_strides__doc__},
3157
#if defined(PADDLE_WITH_CUDA)
3158
    {"_tensor_uva",
3159
     (PyCFunction)(void (*)())tensor_method__uva,
3160
     METH_VARARGS | METH_KEYWORDS,
3161
     nullptr},
3162
#endif
3163
    {nullptr, nullptr, 0, nullptr}};
3164

J
Jack Zhou 已提交
3165
// variable_methods for core.eager.StringTensor
3166
PyMethodDef string_tensor_variable_methods[] = {  // NOLINT
J
Jack Zhou 已提交
3167
    {"numpy",
3168
     (PyCFunction)(void (*)())tensor_method_numpy_for_string_tensor,
3169
     METH_VARARGS | METH_KEYWORDS,
3170
     nullptr},
J
Jack Zhou 已提交
3171
    {"_is_initialized",
3172
     (PyCFunction)(void (*)())tensor_method__is_initialized,
3173
     METH_VARARGS | METH_KEYWORDS,
3174
     nullptr},
J
Jack Zhou 已提交
3175
    {"_is_string_tensor_hold_allocation",
3176 3177
     (PyCFunction)(void (*)(
         void))tensor_method__is_string_tensor_hold_allocation,
3178
     METH_VARARGS | METH_KEYWORDS,
3179
     nullptr},
J
Jack Zhou 已提交
3180
    // TODO(zhoushunjie): Need to add _copy_to, copy_ for StringTensor.
3181
    {nullptr, nullptr, 0, nullptr}};
J
Jack Zhou 已提交
3182

3183 3184
}  // namespace pybind
}  // namespace paddle