Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
95fbbc5b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
95fbbc5b
编写于
3月 19, 2022
作者:
Z
zhangkaihuo
提交者:
GitHub
3月 19, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Call sparse op from python (#40608)
* call sparse api from python
上级
a8e5c9be
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
298 addition
and
70 deletion
+298
-70
paddle/fluid/eager/auto_code_generator/final_state_generator/eager_gen.py
...er/auto_code_generator/final_state_generator/eager_gen.py
+10
-7
paddle/fluid/eager/auto_code_generator/final_state_generator/python_c_gen.py
...auto_code_generator/final_state_generator/python_c_gen.py
+1
-1
paddle/fluid/pybind/eager_method.cc
paddle/fluid/pybind/eager_method.cc
+114
-0
paddle/phi/api/include/tensor.h
paddle/phi/api/include/tensor.h
+16
-0
paddle/phi/api/lib/sparse_api_custom_impl.cc
paddle/phi/api/lib/sparse_api_custom_impl.cc
+28
-28
paddle/phi/api/lib/sparse_api_custom_impl.h
paddle/phi/api/lib/sparse_api_custom_impl.h
+3
-5
paddle/phi/api/lib/tensor.cc
paddle/phi/api/lib/tensor.cc
+8
-0
paddle/phi/tests/api/test_sparse_utils_api.cc
paddle/phi/tests/api/test_sparse_utils_api.cc
+6
-9
python/paddle/fluid/tests/unittests/test_sparse_utils_op.py
python/paddle/fluid/tests/unittests/test_sparse_utils_op.py
+60
-0
python/paddle/tensor/to_string.py
python/paddle/tensor/to_string.py
+43
-8
python/paddle/utils/code_gen/sparse_api.yaml
python/paddle/utils/code_gen/sparse_api.yaml
+7
-6
python/paddle/utils/code_gen/sparse_api_gen.py
python/paddle/utils/code_gen/sparse_api_gen.py
+1
-3
python/paddle/utils/code_gen/sparse_bw_api_gen.py
python/paddle/utils/code_gen/sparse_bw_api_gen.py
+1
-3
未找到文件。
paddle/fluid/eager/auto_code_generator/final_state_generator/eager_gen.py
浏览文件 @
95fbbc5b
...
...
@@ -730,7 +730,7 @@ def GenerateNodeCreationCodes(
else
:
# Tuple api_result
if
IsPlainTensorType
(
rtype
):
output_autograd_meta
=
f
" egr::AutogradMeta*
{
output_autograd_meta_name
}
= egr::EagerUtils::autograd_meta(&
api_result[
{
pos
}
]
);"
output_autograd_meta
=
f
" egr::AutogradMeta*
{
output_autograd_meta_name
}
= egr::EagerUtils::autograd_meta(&
std::get<
{
pos
}
>(api_result)
);"
else
:
assert
IsVectorTensorType
(
rtype
)
output_autograd_meta
=
f
" std::vector<egr::AutogradMeta*>
{
output_autograd_meta_vec_name
}
= egr::EagerUtils::autograd_meta(&api_result[
{
pos
}
]);
\n
"
...
...
@@ -767,8 +767,11 @@ def GenerateNodeCreationCodes(
else
:
set_tensor_wrappers
=
f
" grad_node->SetTensorWrapper
{
name
}
(
{
name
}
, true);"
else
:
if
IsVectorTensorType
(
atype
):
tw_name
=
f
"api_result[
{
pos
}
]"
if
num_fwd_outputs
>
1
:
# Aligned with forward output position
assert
name
in
forward_outputs_position_map
.
keys
()
fwd_output_pos
=
forward_outputs_position_map
[
name
][
1
]
tw_name
=
f
"std::get<
{
fwd_output_pos
}
>(api_result)"
else
:
tw_name
=
f
"api_result"
...
...
@@ -805,8 +808,8 @@ def GenerateNodeCreationCodes(
set_retain_grad
=
f
" egr::EagerUtils::CheckAndRetainGrad(api_result);"
set_grad_in_meta
=
f
" grad_node->SetGradInMeta(api_result,
{
pos
}
);"
else
:
set_retain_grad
=
f
" egr::EagerUtils::CheckAndRetainGrad(
api_result[
{
pos
}
]
);"
set_grad_in_meta
=
f
" grad_node->SetGradInMeta(
api_result[
{
pos
}
]
,
{
pos
}
);"
set_retain_grad
=
f
" egr::EagerUtils::CheckAndRetainGrad(
std::get<
{
pos
}
>(api_result)
);"
set_grad_in_meta
=
f
" grad_node->SetGradInMeta(
std::get<
{
pos
}
>(api_result)
,
{
pos
}
);"
set_out_rank_list
.
append
(
set_out_rank
)
set_history_list
.
append
(
set_history
)
...
...
@@ -934,7 +937,7 @@ def GenerateForwardDefinition(fwd_api_name, bwd_api_name,
returns_list
[
0
]
=
f
"api_result"
else
:
# Tuple api_result
returns_list
[
pos
]
=
f
"
api_result[
{
pos
}
]
"
returns_list
[
pos
]
=
f
"
std::get<
{
pos
}
>(api_result)
"
if
IsPlainTensorType
(
rtype
):
returns_type_list
[
pos
]
=
"paddle::experimental::Tensor"
...
...
@@ -1084,7 +1087,7 @@ def GenerateNodeCCFile(filepath, node_definition_str):
#include "paddle/fluid/eager/api/generated/eager_generated/backwards/nodes.h"
#include "paddle/fluid/eager/to_static/run_program_op_node.h"
#include "paddle/phi/api/
include/sparse
_api.h"
#include "paddle/phi/api/
backward/sparse_bw
_api.h"
"""
file_contents
+=
node_definition_str
with
open
(
filepath
,
'a'
)
as
f
:
...
...
paddle/fluid/eager/auto_code_generator/final_state_generator/python_c_gen.py
浏览文件 @
95fbbc5b
...
...
@@ -337,7 +337,7 @@ class PythonCSingleFunctionGenerator:
"paddle::experimental::"
,
namespace
,
forward_api_name
)
else
:
fwd_function_name
=
FUNCTION_NAME_TEMPLATE
.
format
(
""
,
namespace
,
GetForwardFunctionName
(
forward_api_name
))
"
::
"
,
namespace
,
GetForwardFunctionName
(
forward_api_name
))
# Generate Record Event for performance profiling
pythonc_record_event_str
=
RECORD_EVENT_TEMPLATE
.
format
(
...
...
paddle/fluid/pybind/eager_method.cc
浏览文件 @
95fbbc5b
...
...
@@ -36,6 +36,8 @@ limitations under the License. */
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
namespace
paddle
{
namespace
pybind
{
...
...
@@ -718,6 +720,98 @@ static PyObject* set_grad_type(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_get_non_zero_indices
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
PADDLE_ENFORCE
(
self
->
tensor
.
is_sparse_coo_tensor
(),
paddle
::
platform
::
errors
::
Fatal
(
"this method is only effective for SparseCooTensor"
));
auto
sparse_coo_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
SparseCooTensor
>
(
self
->
tensor
.
impl
());
paddle
::
experimental
::
Tensor
tensor
(
std
::
make_shared
<
phi
::
DenseTensor
>
(
sparse_coo_tensor
->
non_zero_indices
()));
return
ToPyObject
(
tensor
);
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_get_non_zero_elements
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
PADDLE_ENFORCE
(
self
->
tensor
.
is_sparse_coo_tensor
()
||
self
->
tensor
.
is_sparse_csr_tensor
(),
paddle
::
platform
::
errors
::
Fatal
(
"this method is only effective for "
"SparseCooTensor or SparseCsrTensor"
));
if
(
self
->
tensor
.
is_sparse_coo_tensor
())
{
auto
sparse_coo_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
SparseCooTensor
>
(
self
->
tensor
.
impl
());
paddle
::
experimental
::
Tensor
tensor
(
std
::
make_shared
<
phi
::
DenseTensor
>
(
sparse_coo_tensor
->
non_zero_elements
()));
return
ToPyObject
(
tensor
);
}
else
{
auto
sparse_csr_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
SparseCsrTensor
>
(
self
->
tensor
.
impl
());
paddle
::
experimental
::
Tensor
tensor
(
std
::
make_shared
<
phi
::
DenseTensor
>
(
sparse_csr_tensor
->
non_zero_elements
()));
return
ToPyObject
(
tensor
);
}
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_get_non_zero_crows
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
PADDLE_ENFORCE
(
self
->
tensor
.
is_sparse_csr_tensor
(),
paddle
::
platform
::
errors
::
Fatal
(
"this method is only effective for SparseCsrTensor"
));
auto
sparse_csr_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
SparseCsrTensor
>
(
self
->
tensor
.
impl
());
paddle
::
experimental
::
Tensor
tensor
(
std
::
make_shared
<
phi
::
DenseTensor
>
(
sparse_csr_tensor
->
non_zero_crows
()));
return
ToPyObject
(
tensor
);
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_get_non_zero_cols
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
PADDLE_ENFORCE
(
self
->
tensor
.
is_sparse_csr_tensor
(),
paddle
::
platform
::
errors
::
Fatal
(
"this method is only effective for SparseCsrTensor"
));
auto
sparse_csr_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
SparseCsrTensor
>
(
self
->
tensor
.
impl
());
paddle
::
experimental
::
Tensor
tensor
(
std
::
make_shared
<
phi
::
DenseTensor
>
(
sparse_csr_tensor
->
non_zero_cols
()));
return
ToPyObject
(
tensor
);
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_is_sparse
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
return
ToPyObject
(
self
->
tensor
.
is_sparse_coo_tensor
()
||
self
->
tensor
.
is_sparse_csr_tensor
());
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_is_sparse_coo
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
return
ToPyObject
(
self
->
tensor
.
is_sparse_coo_tensor
());
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor_method_is_sparse_csr
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
return
ToPyObject
(
self
->
tensor
.
is_sparse_csr_tensor
());
EAGER_CATCH_AND_THROW_RETURN_NULL
}
static
PyObject
*
tensor__inplace_version
(
TensorObject
*
self
,
PyObject
*
args
,
PyObject
*
kwargs
)
{
EAGER_TRY
...
...
@@ -775,6 +869,26 @@ PyMethodDef variable_methods[] = {
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"_set_grad_type"
,
(
PyCFunction
)(
void
(
*
)(
void
))
set_grad_type
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
/***the method of sparse tensor****/
{
"non_zero_indices"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_indices
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"non_zero_elements"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_elements
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"non_zero_crows"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_crows
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"non_zero_cols"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_get_non_zero_cols
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"is_sparse"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_is_sparse
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"is_sparse_coo"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_is_sparse_coo
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
"is_sparse_csr"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor_method_is_sparse_csr
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
/***the method of sparse tensor****/
{
"_inplace_version"
,
(
PyCFunction
)(
void
(
*
)(
void
))
tensor__inplace_version
,
METH_VARARGS
|
METH_KEYWORDS
,
NULL
},
{
NULL
,
NULL
,
0
,
NULL
}};
...
...
paddle/phi/api/include/tensor.h
浏览文件 @
95fbbc5b
...
...
@@ -225,6 +225,22 @@ class PADDLE_API Tensor final {
*/
bool
is_selected_rows
()
const
;
/**
* @brief Determine whether tensor is SparseCooTensor
*
* @return true
* @return false
*/
bool
is_sparse_coo_tensor
()
const
;
/**
* @brief Determine whether tensor is SparseCsrTensor
*
* @return true
* @return false
*/
bool
is_sparse_csr_tensor
()
const
;
/* Part 3: Device and Backend methods */
/**
...
...
paddle/phi/api/lib/sparse_api_custom_impl.cc
浏览文件 @
95fbbc5b
...
...
@@ -25,25 +25,24 @@ namespace paddle {
namespace
experimental
{
namespace
sparse
{
Tensor
to_sparse_coo_impl
(
const
Tensor
&
x
,
Backend
backend
,
const
int64_t
sparse_dim
)
{
Tensor
to_sparse_coo_impl
(
const
Tensor
&
x
,
const
int64_t
sparse_dim
)
{
if
(
x
.
layout
()
==
phi
::
DataLayout
::
SPARSE_COO
)
{
return
x
;
}
// 1. Get kernel signature and kernel
auto
kernel_key_set
=
ParseKernelKeyByInputArgs
(
x
);
kernel_key_set
.
backend_set
=
kernel_key_set
.
backend_set
|
BackendSet
(
backend
);
auto
kernel_key
=
kernel_key_set
.
GetHighestPriorityKernelKey
();
std
::
string
kernel_name
=
"dense_to_sparse_coo"
;
if
(
x
.
layout
()
==
phi
::
DataLayout
::
SPARSE_CSR
)
{
kernel_name
=
"sparse_csr_to_coo"
;
}
auto
kernel_key_set
=
ParseKernelKeyByInputArgs
(
x
);
auto
kernel_key
=
kernel_key_set
.
GetHighestPriorityKernelKey
();
auto
kernel
=
phi
::
KernelFactory
::
Instance
().
SelectKernelOrThrowError
(
kernel_name
,
kernel_key
);
VLOG
(
6
)
<<
"
to
API kernel key: "
<<
kernel_key
;
VLOG
(
6
)
<<
"
add
API kernel key: "
<<
kernel_key
;
VLOG
(
6
)
<<
"to API kernel: "
<<
kernel
;
// 2. Get Device Context
...
...
@@ -62,18 +61,18 @@ Tensor to_sparse_coo_impl(const Tensor& x,
// 4. InferMeta
auto
indices_meta
=
phi
::
DenseTensorMeta
(
phi
::
DataType
::
INT64
,
{
-
1
},
phi
::
DataLayout
::
NCHW
);
auto
elements_meta
=
phi
::
DenseTensorMeta
(
x
.
dtype
(),
{
-
1
},
x
.
layout
());
phi
::
DenseTensorMeta
(
phi
::
DataType
::
INT64
,
{
1
},
phi
::
DataLayout
::
NCHW
);
auto
elements_meta
=
phi
::
DenseTensorMeta
(
x
.
dtype
(),
{
1
},
x
.
layout
());
// 5. Prepare outputs
// create empty SparseCooTensor
phi
::
DenseTensor
non_zero_indices
(
phi
::
make_intrusive
<
paddle
::
experimental
::
SharedStorage
>
(
phi
::
TransToPhiPlace
(
backend
)),
phi
::
TransToPhiPlace
(
kernel_key
.
backend
()
)),
std
::
move
(
indices_meta
));
phi
::
DenseTensor
non_zero_elements
(
phi
::
make_intrusive
<
paddle
::
experimental
::
SharedStorage
>
(
phi
::
TransToPhiPlace
(
backend
)),
phi
::
TransToPhiPlace
(
kernel_key
.
backend
()
)),
std
::
move
(
elements_meta
));
auto
coo
=
std
::
make_shared
<
phi
::
SparseCooTensor
>
(
non_zero_indices
,
non_zero_elements
,
x
.
dims
());
...
...
@@ -88,23 +87,23 @@ Tensor to_sparse_coo_impl(const Tensor& x,
return
out
;
}
Tensor
to_sparse_csr_impl
(
const
Tensor
&
x
,
Backend
backend
)
{
Tensor
to_sparse_csr_impl
(
const
Tensor
&
x
)
{
if
(
x
.
layout
()
==
phi
::
DataLayout
::
SPARSE_CSR
)
{
return
x
;
}
// 1. Get kernel signature and kernel
auto
kernel_key_set
=
ParseKernelKeyByInputArgs
(
x
);
kernel_key_set
.
backend_set
=
kernel_key_set
.
backend_set
|
BackendSet
(
backend
);
auto
kernel_key
=
kernel_key_set
.
GetHighestPriorityKernelKey
();
std
::
string
kernel_name
=
"dense_to_sparse_csr"
;
if
(
x
.
layout
()
==
phi
::
DataLayout
::
SPARSE_COO
)
{
kernel_name
=
"sparse_coo_to_csr"
;
}
auto
kernel_key_set
=
ParseKernelKeyByInputArgs
(
x
);
auto
kernel_key
=
kernel_key_set
.
GetHighestPriorityKernelKey
();
auto
kernel
=
phi
::
KernelFactory
::
Instance
().
SelectKernelOrThrowError
(
kernel_name
,
kernel_key
);
VLOG
(
6
)
<<
"
to
API kernel key: "
<<
kernel_key
;
VLOG
(
6
)
<<
"
add
API kernel key: "
<<
kernel_key
;
VLOG
(
6
)
<<
"to API kernel: "
<<
kernel
;
// 2. Get Device Context
...
...
@@ -122,24 +121,24 @@ Tensor to_sparse_csr_impl(const Tensor& x, Backend backend) {
// 4. InferMeta
auto
crows_meta
=
phi
::
DenseTensorMeta
(
phi
::
DataType
::
INT64
,
{
-
1
},
phi
::
DataLayout
::
NCHW
);
phi
::
DenseTensorMeta
(
phi
::
DataType
::
INT64
,
{
1
},
phi
::
DataLayout
::
NCHW
);
auto
cols_meta
=
phi
::
DenseTensorMeta
(
phi
::
DataType
::
INT64
,
{
-
1
},
phi
::
DataLayout
::
NCHW
);
auto
elements_meta
=
phi
::
DenseTensorMeta
(
x
.
dtype
(),
{
-
1
},
x
.
layout
());
phi
::
DenseTensorMeta
(
phi
::
DataType
::
INT64
,
{
1
},
phi
::
DataLayout
::
NCHW
);
auto
elements_meta
=
phi
::
DenseTensorMeta
(
x
.
dtype
(),
{
1
},
x
.
layout
());
// 5. Prepare outputs
// create empty SparseCooTensor
phi
::
DenseTensor
non_zero_crows
(
phi
::
make_intrusive
<
paddle
::
experimental
::
SharedStorage
>
(
phi
::
TransToPhiPlace
(
backend
)),
phi
::
TransToPhiPlace
(
kernel_key
.
backend
()
)),
std
::
move
(
crows_meta
));
phi
::
DenseTensor
non_zero_cols
(
phi
::
make_intrusive
<
paddle
::
experimental
::
SharedStorage
>
(
phi
::
TransToPhiPlace
(
backend
)),
phi
::
TransToPhiPlace
(
kernel_key
.
backend
()
)),
std
::
move
(
cols_meta
));
phi
::
DenseTensor
non_zero_elements
(
phi
::
make_intrusive
<
paddle
::
experimental
::
SharedStorage
>
(
phi
::
TransToPhiPlace
(
backend
)),
phi
::
TransToPhiPlace
(
kernel_key
.
backend
()
)),
std
::
move
(
elements_meta
));
auto
csr
=
std
::
make_shared
<
phi
::
SparseCsrTensor
>
(
non_zero_crows
,
non_zero_cols
,
non_zero_elements
,
x
.
dims
());
...
...
@@ -154,24 +153,25 @@ Tensor to_sparse_csr_impl(const Tensor& x, Backend backend) {
return
out
;
}
Tensor
to_dense_impl
(
const
Tensor
&
x
,
Backend
backend
)
{
Tensor
to_dense_impl
(
const
Tensor
&
x
)
{
if
(
x
.
layout
()
!=
phi
::
DataLayout
::
SPARSE_CSR
&&
x
.
layout
()
!=
phi
::
DataLayout
::
SPARSE_COO
)
{
return
x
;
}
// 1. Get kernel signature and kernel
auto
kernel_key_set
=
ParseKernelKeyByInputArgs
(
x
);
kernel_key_set
.
backend_set
=
kernel_key_set
.
backend_set
|
BackendSet
(
backend
);
auto
kernel_key
=
kernel_key_set
.
GetHighestPriorityKernelKey
();
std
::
string
kernel_name
=
"sparse_coo_to_dense"
;
if
(
x
.
layout
()
==
phi
::
DataLayout
::
SPARSE_CSR
)
{
kernel_name
=
"sparse_csr_to_dense"
;
}
auto
kernel_key_set
=
ParseKernelKeyByInputArgs
(
x
);
auto
kernel_key
=
kernel_key_set
.
GetHighestPriorityKernelKey
();
auto
kernel
=
phi
::
KernelFactory
::
Instance
().
SelectKernelOrThrowError
(
kernel_name
,
kernel_key
);
VLOG
(
6
)
<<
"
to
API kernel key: "
<<
kernel_key
;
VLOG
(
6
)
<<
"
add
API kernel key: "
<<
kernel_key
;
VLOG
(
6
)
<<
"to API kernel: "
<<
kernel
;
// 2. Get Device Context
...
...
@@ -194,7 +194,7 @@ Tensor to_dense_impl(const Tensor& x, Backend backend) {
// create empty SparseCooTensor
auto
dense_out
=
std
::
make_shared
<
phi
::
DenseTensor
>
(
phi
::
make_intrusive
<
paddle
::
experimental
::
SharedStorage
>
(
phi
::
TransToPhiPlace
(
backend
)),
phi
::
TransToPhiPlace
(
kernel_key
.
backend
()
)),
std
::
move
(
dense_meta
));
kernel_context
.
EmplaceBackOutput
(
dense_out
.
get
());
...
...
paddle/phi/api/lib/sparse_api_custom_impl.h
浏览文件 @
95fbbc5b
...
...
@@ -21,13 +21,11 @@ namespace paddle {
namespace
experimental
{
namespace
sparse
{
Tensor
to_dense_impl
(
const
Tensor
&
x
,
Backend
backend
);
Tensor
to_dense_impl
(
const
Tensor
&
x
);
Tensor
to_sparse_coo_impl
(
const
Tensor
&
x
,
Backend
backend
,
const
int64_t
sparse_dim
);
Tensor
to_sparse_coo_impl
(
const
Tensor
&
x
,
const
int64_t
sparse_dim
);
Tensor
to_sparse_csr_impl
(
const
Tensor
&
x
,
Backend
backend
);
Tensor
to_sparse_csr_impl
(
const
Tensor
&
x
);
}
// namespace sparse
}
// namespace experimental
...
...
paddle/phi/api/lib/tensor.cc
浏览文件 @
95fbbc5b
...
...
@@ -25,6 +25,8 @@ limitations under the License. */
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/selected_rows.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
#include "paddle/phi/core/tensor_base.h"
#include "paddle/phi/core/tensor_meta.h"
#include "paddle/phi/core/tensor_utils.h"
...
...
@@ -132,6 +134,12 @@ bool Tensor::is_dense_tensor() const {
bool
Tensor
::
is_selected_rows
()
const
{
return
phi
::
SelectedRows
::
classof
(
impl_
.
get
());
}
bool
Tensor
::
is_sparse_coo_tensor
()
const
{
return
phi
::
SparseCooTensor
::
classof
(
impl_
.
get
());
}
bool
Tensor
::
is_sparse_csr_tensor
()
const
{
return
phi
::
SparseCsrTensor
::
classof
(
impl_
.
get
());
}
/* Part 3: Device and Backend methods */
PlaceType
Tensor
::
place
()
const
{
...
...
paddle/phi/tests/api/test_sparse_utils_api.cc
浏览文件 @
95fbbc5b
...
...
@@ -53,8 +53,7 @@ TEST(API, to_sparse_coo) {
// 1. test dense_to_sparse_coo
paddle
::
experimental
::
Tensor
x
(
dense_x
);
auto
out
=
paddle
::
experimental
::
sparse
::
to_sparse_coo
(
x
,
phi
::
Backend
::
CPU
,
sparse_dim
);
auto
out
=
paddle
::
experimental
::
sparse
::
to_sparse_coo
(
x
,
sparse_dim
);
auto
coo
=
std
::
dynamic_pointer_cast
<
phi
::
SparseCooTensor
>
(
out
.
impl
());
ASSERT_EQ
(
coo
->
nnz
(),
non_zero_num
);
int
cmp_indices
=
memcmp
(
coo
->
non_zero_indices
().
data
<
int64_t
>
(),
...
...
@@ -91,8 +90,7 @@ TEST(API, to_sparse_coo) {
auto
csr
=
std
::
make_shared
<
phi
::
SparseCsrTensor
>
(
crows
,
cols
,
values
,
dense_dims
);
paddle
::
experimental
::
Tensor
csr_x
(
csr
);
auto
out2
=
paddle
::
experimental
::
sparse
::
to_sparse_coo
(
csr_x
,
phi
::
Backend
::
CPU
,
sparse_dim
);
auto
out2
=
paddle
::
experimental
::
sparse
::
to_sparse_coo
(
csr_x
,
sparse_dim
);
auto
coo2
=
std
::
dynamic_pointer_cast
<
phi
::
SparseCooTensor
>
(
out
.
impl
());
ASSERT_EQ
(
coo2
->
nnz
(),
non_zero_num
);
...
...
@@ -132,7 +130,7 @@ TEST(API, to_sparse_csr) {
// 1. test dense_to_sparse_csr
paddle
::
experimental
::
Tensor
x
(
dense_x
);
auto
out
=
paddle
::
experimental
::
sparse
::
to_sparse_csr
(
x
,
phi
::
Backend
::
CPU
);
auto
out
=
paddle
::
experimental
::
sparse
::
to_sparse_csr
(
x
);
auto
csr
=
std
::
dynamic_pointer_cast
<
phi
::
SparseCsrTensor
>
(
out
.
impl
());
auto
check
=
[
&
](
const
phi
::
SparseCsrTensor
&
csr
)
{
ASSERT_EQ
(
csr
.
non_zero_cols
().
numel
(),
non_zero_num
);
...
...
@@ -170,8 +168,7 @@ TEST(API, to_sparse_csr) {
auto
coo
=
std
::
make_shared
<
phi
::
SparseCooTensor
>
(
indices
,
values
,
dense_dims
);
paddle
::
experimental
::
Tensor
coo_x
(
coo
);
auto
out2
=
paddle
::
experimental
::
sparse
::
to_sparse_csr
(
coo_x
,
phi
::
Backend
::
CPU
);
auto
out2
=
paddle
::
experimental
::
sparse
::
to_sparse_csr
(
coo_x
);
auto
csr2
=
std
::
dynamic_pointer_cast
<
phi
::
SparseCsrTensor
>
(
out
.
impl
());
check
(
*
csr2
);
...
...
@@ -212,7 +209,7 @@ TEST(API, to_dense) {
std
::
make_shared
<
phi
::
SparseCooTensor
>
(
indices
,
values
,
dense_dims
);
paddle
::
experimental
::
Tensor
coo_x
(
coo
);
auto
out
=
paddle
::
experimental
::
sparse
::
to_dense
(
coo_x
,
phi
::
Backend
::
CPU
);
auto
out
=
paddle
::
experimental
::
sparse
::
to_dense
(
coo_x
);
auto
dense_out
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
out
.
impl
());
int
cmp1
=
memcmp
(
dense_out
->
data
<
float
>
(),
&
dense_data
[
0
][
0
],
9
*
sizeof
(
float
));
...
...
@@ -237,7 +234,7 @@ TEST(API, to_dense) {
auto
csr
=
std
::
make_shared
<
phi
::
SparseCsrTensor
>
(
crows
,
cols
,
values
,
dense_dims
);
paddle
::
experimental
::
Tensor
csr_x
(
csr
);
auto
out2
=
paddle
::
experimental
::
sparse
::
to_dense
(
csr_x
,
phi
::
Backend
::
CPU
);
auto
out2
=
paddle
::
experimental
::
sparse
::
to_dense
(
csr_x
);
auto
dense_out2
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
out
.
impl
());
int
cmp2
=
...
...
python/paddle/fluid/tests/unittests/test_sparse_utils_op.py
0 → 100644
浏览文件 @
95fbbc5b
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
from
paddle
import
_C_ops
from
paddle.fluid.framework
import
_test_eager_guard
class
TestSparseUtils
(
unittest
.
TestCase
):
def
test_to_sparse_coo
(
self
):
with
_test_eager_guard
():
x
=
[[
0
,
1
,
0
,
2
],
[
0
,
0
,
3
,
0
],
[
4
,
5
,
0
,
0
]]
non_zero_indices
=
[[
0
,
0
,
1
,
2
,
2
],
[
1
,
3
,
2
,
0
,
1
]]
non_zero_elements
=
[
1
,
2
,
3
,
4
,
5
]
dense_x
=
paddle
.
to_tensor
(
x
)
#TODO(zhangkaihuo): change to test the corresponding API
out
=
_C_ops
.
final_state_to_sparse_coo
(
dense_x
,
2
)
print
(
out
)
assert
np
.
array_equal
(
out
.
non_zero_indices
().
numpy
(),
non_zero_indices
)
assert
np
.
array_equal
(
out
.
non_zero_elements
().
numpy
(),
non_zero_elements
)
dense_tensor
=
_C_ops
.
final_state_to_dense
(
out
)
assert
np
.
array_equal
(
dense_tensor
.
numpy
(),
x
)
def
test_to_sparse_csr
(
self
):
with
_test_eager_guard
():
x
=
[[
0
,
1
,
0
,
2
],
[
0
,
0
,
3
,
0
],
[
4
,
5
,
0
,
0
]]
non_zero_crows
=
[
0
,
2
,
3
,
5
]
non_zero_cols
=
[
1
,
3
,
2
,
0
,
1
]
non_zero_elements
=
[
1
,
2
,
3
,
4
,
5
]
dense_x
=
paddle
.
to_tensor
(
x
)
out
=
_C_ops
.
final_state_to_sparse_csr
(
dense_x
)
print
(
out
)
assert
np
.
array_equal
(
out
.
non_zero_crows
().
numpy
(),
non_zero_crows
)
assert
np
.
array_equal
(
out
.
non_zero_cols
().
numpy
(),
non_zero_cols
)
assert
np
.
array_equal
(
out
.
non_zero_elements
().
numpy
(),
non_zero_elements
)
dense_tensor
=
_C_ops
.
final_state_to_dense
(
out
)
assert
np
.
array_equal
(
dense_tensor
.
numpy
(),
x
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/tensor/to_string.py
浏览文件 @
95fbbc5b
...
...
@@ -263,14 +263,7 @@ def to_string(var, prefix='Tensor'):
data
=
data
)
def
tensor_to_string
(
tensor
,
prefix
=
'Tensor'
):
indent
=
len
(
prefix
)
+
1
_template
=
"{prefix}(shape={shape}, dtype={dtype}, place={place}, stop_gradient={stop_gradient},
\n
{indent}{data})"
if
not
tensor
.
_is_initialized
():
return
"Tensor(Not initialized)"
def
_format_dense_tensor
(
tensor
,
indent
):
np_tensor
=
tensor
.
numpy
()
if
len
(
tensor
.
shape
)
==
0
:
...
...
@@ -288,6 +281,26 @@ def tensor_to_string(tensor, prefix='Tensor'):
data
=
_format_tensor
(
np_tensor
,
sumary
,
indent
=
indent
,
max_width
=
max_width
,
signed
=
signed
)
return
data
def
sparse_tensor_to_string
(
tensor
,
prefix
=
'Tensor'
):
indent
=
len
(
prefix
)
+
1
_template
=
"{prefix}(shape={shape}, dtype={dtype}, place={place}, stop_gradient={stop_gradient},
\n
{indent}{data})"
if
tensor
.
is_sparse_coo
():
indices_tensor
=
tensor
.
non_zero_indices
()
elements_tensor
=
tensor
.
non_zero_elements
()
indices_data
=
_format_dense_tensor
(
indices_tensor
,
indent
)
elements_data
=
_format_dense_tensor
(
elements_tensor
,
indent
)
data
=
'non_zero_indices='
+
indices_data
+
',
\n
non_zero_elements='
+
elements_data
else
:
crows_tensor
=
tensor
.
non_zero_crows
()
cols_tensor
=
tensor
.
non_zero_cols
()
elements_tensor
=
tensor
.
non_zero_elements
()
crows_data
=
_format_dense_tensor
(
crows_tensor
,
indent
)
cols_data
=
_format_dense_tensor
(
cols_tensor
,
indent
)
elements_data
=
_format_dense_tensor
(
elements_tensor
,
indent
)
data
=
'non_zero_crows='
+
crows_data
+
',
\n
non_zero_cols='
+
cols_data
+
',
\n
non_zero_elements='
+
elements_data
return
_template
.
format
(
prefix
=
prefix
,
...
...
@@ -297,3 +310,25 @@ def tensor_to_string(tensor, prefix='Tensor'):
stop_gradient
=
tensor
.
stop_gradient
,
indent
=
' '
*
indent
,
data
=
data
)
def
tensor_to_string
(
tensor
,
prefix
=
'Tensor'
):
indent
=
len
(
prefix
)
+
1
_template
=
"{prefix}(shape={shape}, dtype={dtype}, place={place}, stop_gradient={stop_gradient},
\n
{indent}{data})"
if
not
tensor
.
_is_initialized
():
return
"Tensor(Not initialized)"
if
tensor
.
is_sparse
():
return
sparse_tensor_to_string
(
tensor
,
prefix
)
else
:
data
=
_format_dense_tensor
(
tensor
,
indent
)
return
_template
.
format
(
prefix
=
prefix
,
shape
=
tensor
.
shape
,
dtype
=
tensor
.
dtype
,
place
=
tensor
.
_place_str
,
stop_gradient
=
tensor
.
stop_gradient
,
indent
=
' '
*
indent
,
data
=
data
)
python/paddle/utils/code_gen/sparse_api.yaml
浏览文件 @
95fbbc5b
...
...
@@ -4,18 +4,19 @@
kernel
:
func
:
sparse_conv3d
layout
:
x
backward
:
conv3d_grad
-
api
:
to_dense
args
:
(Tensor x
, Backend backend
)
args
:
(Tensor x)
output
:
Tensor(out@DenseTensor)
invoke
:
to_dense_impl(x
, backend
)
invoke
:
to_dense_impl(x)
-
api
:
to_sparse_coo
args
:
(Tensor x,
Backend backend,
int64 sparse_dim)
args
:
(Tensor x, int64 sparse_dim)
output
:
Tensor(out@SparseCooTensor)
invoke
:
to_sparse_coo_impl(x,
backend,
sparse_dim)
invoke
:
to_sparse_coo_impl(x, sparse_dim)
-
api
:
to_sparse_csr
args
:
(Tensor x
, Backend backend
)
args
:
(Tensor x)
output
:
Tensor(out@SparseCsrTensor)
invoke
:
to_sparse_csr_impl(x
, backend
)
invoke
:
to_sparse_csr_impl(x)
python/paddle/utils/code_gen/sparse_api_gen.py
浏览文件 @
95fbbc5b
...
...
@@ -192,9 +192,7 @@ def source_include(header_file_path):
def
api_register
():
return
"""
PD_REGISTER_API(Test);
"""
return
""
def
api_namespace
():
...
...
python/paddle/utils/code_gen/sparse_bw_api_gen.py
浏览文件 @
95fbbc5b
...
...
@@ -115,9 +115,7 @@ def source_include(header_file_path):
def
api_register
():
return
"""
PD_REGISTER_API(Test);
"""
return
""
def
api_namespace
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录