pybind.cc 106.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16 17 18 19
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
20

C
chengduoZH 已提交
21
#include <algorithm>
22
#include <cctype>
23
#include <cstdlib>
24
#include <iterator>
C
chengduoZH 已提交
25
#include <map>
S
sneaxiy 已提交
26
#include <memory>
C
chengduoZH 已提交
27
#include <mutex>  // NOLINT // for call_once
28
#include <sstream>
C
chengduoZH 已提交
29
#include <string>
30 31
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
32
#include <unordered_map>
33
#include <unordered_set>
C
chengduoZH 已提交
34 35
#include <utility>
#include <vector>
36

37
#include "paddle/fluid/framework/convert_utils.h"
38
#include "paddle/fluid/framework/custom_operator.h"
39
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
40
#include "paddle/fluid/framework/data_type_transform.h"
41
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
Y
Yi Wang 已提交
42
#include "paddle/fluid/framework/executor.h"
43
#include "paddle/fluid/framework/executor_cache.h"
44
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
46
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
48
#include "paddle/fluid/framework/io/fs.h"
49
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
50
#include "paddle/fluid/framework/ir/cost_model.h"
51
#include "paddle/fluid/framework/ir/generate_pass.h"
52
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
53 54
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
55
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
L
LiYuRio 已提交
56 57
#include "paddle/fluid/framework/new_executor/interpreter/job.h"
#include "paddle/fluid/framework/new_executor/interpreter/plan.h"
58
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
59
#include "paddle/fluid/framework/op_info.h"
60
#include "paddle/fluid/framework/op_registry.h"
61
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
62
#include "paddle/fluid/framework/parallel_executor.h"
63
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
64
#include "paddle/fluid/framework/prune.h"
65
#include "paddle/fluid/framework/raw_tensor.h"
Y
Refine  
Yu Yang 已提交
66
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
67
#include "paddle/fluid/framework/scope_pool.h"
68
#include "paddle/fluid/framework/selected_rows_utils.h"
69
#include "paddle/fluid/framework/tensor_util.h"
70
#include "paddle/fluid/framework/trainer.h"
71
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
72
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
73
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
74
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
75
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
76 77
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/float16.h"
J
Jiabin Yang 已提交
78
#include "paddle/fluid/prim/utils/utils.h"
79 80 81
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
82
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
83
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
84
#include "paddle/fluid/operators/common_infer_shape_functions.h"
85
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
86
#include "paddle/fluid/operators/py_func_op.h"
87
#include "paddle/fluid/platform/cpu_helper.h"
88
#include "paddle/fluid/platform/device/device_wrapper.h"
89
#include "paddle/fluid/platform/device_context.h"
90
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
91
#include "paddle/fluid/platform/enforce.h"
92
#include "paddle/fluid/platform/init.h"
93
#include "paddle/fluid/platform/init_phi.h"
H
hutuxian 已提交
94
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
95 96
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
97 98 99
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
100
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
101
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
102
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
103
#include "paddle/fluid/pybind/box_helper_py.h"
104
#include "paddle/fluid/pybind/communication.h"
105
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
106
#include "paddle/fluid/pybind/const_value.h"
107 108
#include "paddle/fluid/pybind/cuda_streams_py.h"
#include "paddle/fluid/pybind/custom_device_py.h"
D
dongdaxiang 已提交
109
#include "paddle/fluid/pybind/data_set_py.h"
110 111
#include "paddle/fluid/pybind/distributed_py.h"
#include "paddle/fluid/pybind/eager.h"
Y
Yi Wang 已提交
112
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
113
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
114
#include "paddle/fluid/pybind/generator_py.h"
115
#include "paddle/fluid/pybind/global_value_getter_setter.h"
116
#include "paddle/fluid/pybind/gloo_context_py.h"
117
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
118
#include "paddle/fluid/pybind/heter_wrapper_py.h"
119
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
120
#include "paddle/fluid/pybind/inference_api.h"
121
#include "paddle/fluid/pybind/io.h"
F
flame 已提交
122
#include "paddle/fluid/pybind/ir.h"
123
#include "paddle/fluid/pybind/jit.h"
124
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
125
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
126
#include "paddle/fluid/pybind/pybind_variant_caster.h"
127 128
#include "paddle/fluid/pybind/xpu_streams_py.h"
#include "paddle/phi/backends/cpu/cpu_info.h"
129
#include "paddle/phi/backends/device_manager.h"
130 131 132
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
#include "paddle/utils/none.h"
133

134
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
135
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
136
#endif
137
#include "paddle/fluid/framework/data_type.h"
138 139
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
140 141
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
142
#include "paddle/fluid/pybind/reader_py.h"
143
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
144
#include "paddle/fluid/pybind/tensor_py.h"
145
#include "paddle/fluid/string/to_string.h"
146 147
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
148
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
149
#endif
150
#ifndef PADDLE_WITH_HIP
151
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
152
#endif
153
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
154 155
#endif

156
#ifdef PADDLE_WITH_XPU
157
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
158
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
159 160
#endif

161
#ifdef PADDLE_WITH_CUSTOM_DEVICE
162
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
163
#include "paddle/fluid/platform/collective_helper.h"
164 165
#include "paddle/fluid/platform/device/custom/custom_device_resource_pool.h"
#include "paddle/fluid/platform/profiler/custom_device/custom_tracer.h"
166 167 168
#include "paddle/phi/capi/capi.h"
#endif

169
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
170

J
jianghaicheng 已提交
171
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
172 173
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
174
#endif
175

Y
Yanghello 已提交
176 177 178 179
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
180
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
181 182 183
#include "paddle/fluid/pybind/fleet_py.h"
#endif

184 185 186 187
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
188
#if defined(PADDLE_WITH_RPC)
189 190 191
#include "paddle/fluid/pybind/rpc.h"
#endif

192
#include "paddle/fluid/eager/api/utils/global_utils.h"
193
#include "paddle/fluid/eager/nan_inf_utils.h"
194
#include "paddle/fluid/imperative/layout_autotune.h"
195 196
#include "paddle/fluid/prim/utils/eager/eager_tensor_operants.h"
#include "paddle/fluid/prim/utils/static/static_tensor_operants.h"
197 198
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
199 200
#include "paddle/phi/api/include/operants_manager.h"
#include "paddle/phi/api/include/tensor_operants.h"
201
#include "paddle/phi/core/flags.h"
202 203
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
204 205
#include "pybind11/stl.h"

206
PHI_DECLARE_bool(use_mkldnn);
207

Q
Qiao Longfei 已提交
208 209
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
210 211 212
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
213

214
DECLARE_FILE_SYMBOLS(init_phi);
215
DECLARE_FILE_SYMBOLS(kernel_dialect);
216
namespace paddle {
217
namespace pybind {
218

0
0x45f 已提交
219
PyTypeObject *g_framework_scope_pytype = nullptr;
220
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
221
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
222

223 224 225 226 227 228 229 230
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

231
bool IsCompiledWithCUDA() {
232 233 234 235 236 237 238
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

239 240 241 242 243 244 245 246
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

264 265
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
266 267 268 269 270 271
  return false;
#else
  return true;
#endif
}

272 273 274 275 276 277 278 279
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

280 281 282 283 284 285 286 287 288 289 290 291 292 293
bool IsCompiledWithCustomDevice(std::string device_type) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
  return false;
#else
  std::vector<std::string> device_types;
  device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
  if (std::count(device_types.begin(), device_types.end(), device_type)) {
    return true;
  } else {
    return false;
  }
#endif
}

J
jianghaicheng 已提交
294 295 296 297 298 299 300 301
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

302 303 304 305 306 307 308 309
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

310 311 312 313 314 315 316 317
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

318 319 320 321 322 323 324 325 326
bool IsRunWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return framework::paddle2cinn::CinnCompiler::GetInstance()
             ->real_compiled_num() > 0;
#endif
}

327 328 329 330 331 332 333 334
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

335 336 337 338
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
339
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_core))
340 341 342 343 344 345
    return true;
  else
    return false;
#endif
}

346 347 348 349
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
350
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_bf16))
351 352 353 354 355 356
    return true;
  else
    return false;
#endif
}

357 358 359 360
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
361 362
  return (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx2) ||
          phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512f));
363 364 365 366 367 368 369
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
370 371
  return phi::backends::cpu::MayIUse(
      phi::backends::cpu::cpu_isa_t::avx512_core_vnni);
372 373 374
#endif
}

375
bool IsCompiledWithBrpc() {
376
#ifndef PADDLE_WITH_DISTRIBUTE
377
  return false;
378
#else
379
  return true;
380
#endif
381 382
}

Y
update  
Yancey1989 已提交
383
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
384
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
385 386 387 388 389 390
  return true;
#else
  return false;
#endif
}

391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
struct finfo {
  int64_t bits;
  double eps;
  double min;  // lowest()
  double max;
  double tiny;
  double smallest_normal;  // min()
  double resolution;
  std::string dtype;

  explicit finfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::FP16:
        eps = std::numeric_limits<paddle::platform::float16>::epsilon();
        min = std::numeric_limits<paddle::platform::float16>::lowest();
        max = std::numeric_limits<paddle::platform::float16>::max();
        smallest_normal = std::numeric_limits<paddle::platform::float16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::float16>::digits10);
        bits = 16;
        dtype = "float16";
        break;
      case framework::proto::VarType::FP32:
      case framework::proto::VarType::COMPLEX64:
        eps = std::numeric_limits<float>::epsilon();
        min = std::numeric_limits<float>::lowest();
        max = std::numeric_limits<float>::max();
        smallest_normal = std::numeric_limits<float>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<float>::digits10);
        bits = 32;
        dtype = "float32";
        break;
      case framework::proto::VarType::FP64:
      case framework::proto::VarType::COMPLEX128:
        eps = std::numeric_limits<double>::epsilon();
        min = std::numeric_limits<double>::lowest();
        max = std::numeric_limits<double>::max();
        smallest_normal = std::numeric_limits<double>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<double>::digits10);
        bits = 64;
        dtype = "float64";
        break;
      case framework::proto::VarType::BF16:
        eps = std::numeric_limits<paddle::platform::bfloat16>::epsilon();
        min = std::numeric_limits<paddle::platform::bfloat16>::lowest();
        max = std::numeric_limits<paddle::platform::bfloat16>::max();
        smallest_normal =
            std::numeric_limits<paddle::platform::bfloat16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::bfloat16>::digits10);
        bits = 16;
        dtype = "bfloat16";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.finfo can only be paddle.float32, "
            "paddle.float64, paddle.float16, paddle.bfloat16"
            "paddle.complex64, or paddle.complex128"));
        break;
    }
  }
};

H
hong 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
526 527
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
528 529
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
543 544
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
545 546
    }
    vec_res.emplace_back(
547
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
548 549 550 551 552 553 554 555 556 557 558 559
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
560 561
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
562 563 564 565 566 567 568 569 570 571 572 573
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
574 575 576
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
577 578 579 580
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
581 582
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
583 584 585 586
  }
  return vec_res;
}

O
OccupyMars2025 已提交
587
static void inline CreateVariableIfNotExist(
588 589
    const py::handle &py_handle,
    const framework::Scope &scope,
590 591 592 593 594 595
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
596 597
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
598 599 600 601 602 603 604 605 606 607 608 609 610
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
611 612 613
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
614 615 616 617 618
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
619 620 621 622 623
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
624 625
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
626
        PADDLE_ENFORCE_NOT_NULL(
627 628 629
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
630 631 632
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
633
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
634
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
635 636
        tensor_temp->mutable_data(
            exe->GetPlace(),
637
            framework::TransToPhiDataType(var_desc.GetDataType()));
638 639 640
      }
    }
  } else {
641 642
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
643 644 645 646 647
  }

  return;
}

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
664 665
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
666 667 668 669 670 671 672
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
673 674 675 676
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
677
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
678 679 680 681 682 683 684 685
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

686
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
687
  BindImperative(&m);
688
  BindEager(&m);
J
Jack Zhou 已提交
689
  BindEagerStringTensor(&m);
690
  BindCudaStream(&m);
J
james 已提交
691
  BindXpuStream(&m);
692
  BindJit(&m);
693
  BindEvalFrame(&m);
694
  BindCustomDevicePy(&m);
695

Y
Yu Yang 已提交
696
  // Not used, just make sure cpu_info.cc is linked.
697
  phi::backends::cpu::CpuTotalPhysicalMemory();
Y
Yu Yang 已提交
698

Y
Refine  
Yu Yang 已提交
699
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
700

701 702
  AssertStaticGraphAndDygraphGradMakerNoDiff();

703
  m.doc() = "C++ core of PaddlePaddle";
704

705 706 707 708
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

709
  BindException(&m);
Y
Yu Yang 已提交
710

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
  py::class_<finfo>(m, "finfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &finfo::min)
      .def_readonly("max", &finfo::max)
      .def_readonly("bits", &finfo::bits)
      .def_readonly("eps", &finfo::eps)
      .def_readonly("resolution", &finfo::resolution)
      .def_readonly("smallest_normal", &finfo::smallest_normal)
      .def_readonly("tiny", &finfo::tiny)
      .def_readonly("dtype", &finfo::dtype)
      .def("__repr__", [](const finfo &a) {
        std::ostringstream oss;
        oss << "paddle.finfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", eps=" << a.eps;
        oss << ", resolution=" << a.resolution;
        oss << ", smallest_normal=" << a.smallest_normal;
        oss << ", tiny=" << a.tiny;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

749 750 751 752 753 754 755 756 757 758
  m.def("__set_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetBwdPrimEnabled);
  m.def("_is_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsBwdPrimEnabled);
  m.def("__set_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetFwdPrimEnabled);
  m.def("_is_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsFwdPrimEnabled);
  m.def("__set_all_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetAllPrimEnabled);
759 760 761 762
  m.def("_is_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsEagerPrimEnabled);
  m.def("__set_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetEagerPrimEnabled);
763 764
  m.def("_set_prim_target_grad_name",
        &paddle::prim::PrimCommonUtils::SetTargetGradName);
765 766
  m.def("set_num_threads", &platform::SetNumThreads);

767 768
  m.def("disable_signal_handler", &DisableSignalHandler);

769 770 771 772 773 774 775 776
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

777
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
778
  m.def("cudnn_version", &platform::DnnVersion);
779 780 781 782 783 784
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
785
#endif
786

Z
Zeng Jinle 已提交
787 788 789 790
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

791 792
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
793
  py::class_<phi::backends::gpu::CUDAGraph>(m, "CUDAGraph")
794 795 796 797 798 799
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
800
      .def_static("gen_new_memory_pool_id",
801 802 803 804 805
                  &phi::backends::gpu::CUDAGraph::UniqueMemoryPoolID)
      .def("replay", &phi::backends::gpu::CUDAGraph::Replay)
      .def("reset", &phi::backends::gpu::CUDAGraph::Reset)
      .def("print_to_dot_files",
           &phi::backends::gpu::CUDAGraph::PrintToDotFiles);
806 807
#endif

Z
Zeng Jinle 已提交
808 809 810 811
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
812 813 814
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
815 816

    PADDLE_ENFORCE_NOT_NULL(
817 818 819 820
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
821

6
633WHU 已提交
822 823
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
824
    phi::DenseTensor tensor;
6
633WHU 已提交
825

S
Siming Dai 已提交
826
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
827
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
828
    }
829
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
830
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
831
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
832 833 834 835
    }
#endif
    return tensor;
  });
H
hong 已提交
836

837
  m.def("_create_loaded_parameter",
838 839
        [](const py::handle &vec_var_list,
           const Scope &scope,
840
           const Executor *executor) {
O
OccupyMars2025 已提交
841
          CreateVariableIfNotExist(vec_var_list, scope, executor);
842 843
        });

844 845 846 847 848 849
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
850 851
  });

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

877 878 879 880 881 882
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
883

S
sneaxiy 已提交
884
  m.def(
S
sneaxiy 已提交
885
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
886 887 888 889
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
890 891 892
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
909
            }
910
            all_kernels_info.emplace(op_type, kernel_types);
911
          }
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
928
                }
929 930
              } else {
                kernel_types.emplace_back(kernel_type_str);
931
              }
932
            }
933 934 935
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
936
          }
937
        }
938

939 940 941 942
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
943 944 945
           Return the registered kernels in paddle.

           Args:
946
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
947
           )DOC");
948

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
  m.def(
      "_get_registered_phi_kernels",
      [](const std::string &kernel_registered_type) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        auto phi_kernels = phi::KernelFactory::Instance().kernels();
        for (auto &kernel_pair : phi_kernels) {
          auto kernel_name = kernel_pair.first;
          std::vector<std::string> kernel_keys;
          for (auto &info_pair : kernel_pair.second) {
            bool get_function_kernel =
                kernel_registered_type == "function" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::FUNCTION;
            bool get_structure_kernel =
                kernel_registered_type == "structure" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::STRUCTURE;
            if (kernel_registered_type == "all" || get_function_kernel ||
                get_structure_kernel) {
              std::ostringstream stream;
              stream << info_pair.first;
              std::string kernel_key_str = stream.str();
              if (all_kernels_info.count(kernel_name)) {
                bool kernel_exist =
                    std::find(all_kernels_info[kernel_name].begin(),
                              all_kernels_info[kernel_name].end(),
                              kernel_key_str) !=
                    all_kernels_info[kernel_name].end();
                if (!kernel_exist) {
                  all_kernels_info[kernel_name].emplace_back(kernel_key_str);
                }
              } else {
                kernel_keys.emplace_back(kernel_key_str);
              }
            }
          }
          if (!kernel_keys.empty()) {
            all_kernels_info.emplace(kernel_name, kernel_keys);
          }
        }

        return all_kernels_info;
      },
      py::arg("kernel_registered_type") = "function",
      R"DOC(
           Return the registered kernels in phi.

           Args:
               kernel_registered_type[string]: the libarary, could be 'function', 'structure', and 'all'.
           )DOC");

1001 1002 1003 1004 1005 1006
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
1007 1008
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1009
    platform::XCCLCommContext::Release();
1010 1011 1012
    platform::CustomTracer::GetMap().clear();
    platform::CustomDeviceEventResourcePool::GetMap().clear();
    platform::CustomDeviceStreamResourcePool::GetMap().clear();
1013 1014 1015
    phi::DeviceManager::Clear();
#endif
  });
1016

S
sneaxiy 已提交
1017 1018 1019
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
1020
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
1021

1022
  m.def("_set_fuse_parameter_group_size",
1023
        &paddle::framework::ir::SetFuseParameterGroupsSize);
1024
  m.def("_set_fuse_parameter_memory_size",
1025
        &paddle::framework::ir::SetFuseParameterMemorySize);
1026

S
sneaxiy 已提交
1027 1028 1029
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

1030 1031
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
1032 1033
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

1034 1035 1036
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

1037
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1038 1039 1040

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1041
      .def(py::init<>())
1042
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1043
      .def("set_int",
1044 1045
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1046 1047 1048 1049 1050 1051 1052
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
1053 1054
      .def(
          "get_tensor",
1055 1056
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
1057 1058
          },
          py::return_value_policy::reference)
1059 1060
      .def("get_bytes",
           [](Variable &self) {
1061 1062 1063 1064 1065 1066
             if (self.IsType<String>()) {
               return py::bytes(*(self.GetMutable<String>()));
             } else {
               return py::bytes(
                   *(self.GetMutable<RawTensor>()->GetMutable<std::string>()));
             }
1067
           })
S
Steffy-zxf 已提交
1068
      .def("set_string_list",
1069
           [](Variable &self, std::vector<std::string> str_list) {
S
Steffy-zxf 已提交
1070 1071
             *self.GetMutable<Strings>() = str_list;
           })
1072
      .def("set_vocab",
1073 1074
           [](Variable &self,
              const std::unordered_map<std::wstring, std::int32_t> &vocab) {
1075 1076
             *self.GetMutable<Vocab>() = vocab;
           })
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
1103
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1104 1105 1106 1107 1108 1109
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1110
#endif
1111 1112 1113
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
1114 1115
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1126 1127
                scope_vec->size(),
                0,
1128 1129 1130 1131 1132
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1133 1134 1135 1136
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1137

S
sneaxiy 已提交
1138
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1139

0
0x45f 已提交
1140
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1154
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1155 1156 1157 1158 1159
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1160 1161 1162
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1163 1164
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1165 1166
      .def("raw_address",
           [](Scope &self) { return reinterpret_cast<uint64_t>(&self); })
1167 1168 1169 1170 1171 1172 1173
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1174
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1175

1176
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1177
           current scope, the variable would be created. Otherwise,
1178
           return the existing variable.
S
sneaxiy 已提交
1179 1180

           Args:
1181 1182
               name (str): the variable name.

S
sneaxiy 已提交
1183
           Returns:
1184
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1185
           )DOC",
1186
          py::return_value_policy::reference)
1187 1188 1189
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1190
           R"DOC(
1191
           Find variable named :code:`name` in the current scope or
1192
           its parent scope. Return None if not found.
1193

S
sneaxiy 已提交
1194 1195
           Args:
               name (str): the variable name.
1196

S
sneaxiy 已提交
1197
           Returns:
1198
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1199
           )DOC",
1200
           py::return_value_policy::reference)
1201
      .def("size", &Scope::Size)
1202 1203 1204
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1205 1206
           R"DOC(
           Find variable named :code:`name` in the current scope or
1207
           its parent scope. Return None if not found.
1208 1209 1210 1211 1212 1213 1214 1215

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1216
      .def(
1217 1218
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1219
          R"DOC(
S
sneaxiy 已提交
1220 1221 1222 1223 1224
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1225
          py::return_value_policy::reference)
1226 1227
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1228 1229
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1230
           )DOC")
1231
      .def("_kids", &Scope::kids)
C
co63oc 已提交
1232
      .def_property("_can_reused", &Scope::CanReused, &Scope::SetCanReused);
1233

1234 1235 1236 1237 1238 1239 1240 1241
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1242
        Create a new scope.
1243

S
sneaxiy 已提交
1244 1245 1246
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1247
      py::return_value_policy::reference);
S
sneaxiy 已提交
1248

Y
Yu Yang 已提交
1249 1250
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1251 1252
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1253 1254 1255 1256
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1257
        PADDLE_ENFORCE_EQ(
1258 1259
            info.Proto().SerializeToString(&str),
            true,
1260 1261
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1262 1263 1264
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1265 1266
    return ret_values;
  });
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1305 1306 1307 1308 1309 1310 1311 1312
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1313
              res = op_checker->GetDefaultAttrsMap();
1314 1315 1316 1317
            }
          }
          return res;
        });
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });
  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1334 1335 1336
  m.def("_add_skip_comp_ops", &paddle::prim::PrimCommonUtils::AddSkipCompOps);
  m.def("_remove_skip_comp_ops",
        &paddle::prim::PrimCommonUtils::RemoveSkipCompOps);
1337 1338 1339 1340 1341
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
J
Jiabin Yang 已提交
1342 1343 1344

          auto op_info = framework::OpInfoMap::Instance().Get(op_desc.Type());
          auto grad_op_maker = op_info.GradOpMaker();
1345
          auto grad_comp_op_maker = op_info.CompGradOpMaker();
J
Jiabin Yang 已提交
1346 1347 1348 1349

          if ((grad_op_maker == nullptr) && (grad_comp_op_maker == nullptr)) {
            // Normally, proto_ should not be null, except some special
            // operators, such as LeaklyReluDoubleGrad op.
1350
            std::string type = op_desc.Type();
J
Jiabin Yang 已提交
1351
            PADDLE_THROW(platform::errors::NotFound(
1352
                "Neither operator %s's GradOpMaker nor CompGradOpMaker has "
J
Jiabin Yang 已提交
1353 1354 1355 1356 1357 1358 1359 1360
                "been registered.\nPlease check whether (%s) operator has "
                "gradient operator.\nIf not, please set stop_gradient to be "
                "True for its input and output variables using "
                "var.stop_gradient=True.",
                type.c_str(),
                type.c_str()));
          }

1361
          // In PrimEnabled mode, the priority of CompGradOpMaker is greater
J
Jiabin Yang 已提交
1362 1363
          // than GradCompMaker as we need split first-order grad operator into
          // primitive operators for compiler. In PrimDisabled mode, the
1364
          // priority of CompGradOpMaker is less than GradCompMaker for better
J
Jiabin Yang 已提交
1365 1366
          // performance.
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs;
1367 1368 1369
          auto need_skip =
              paddle::prim::PrimCommonUtils::CheckSkipCompOps(op_desc.Type());
          VLOG(3) << "need skip: " << need_skip << std::endl;
1370
          if (paddle::prim::PrimCommonUtils::IsBwdPrimEnabled()) {
1371
            if ((grad_comp_op_maker != nullptr) && (!need_skip)) {
1372 1373
              VLOG(3) << "Prim Flag Open: Runing composite grad fun for "
                      << op_desc.Type();
J
Jiabin Yang 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            } else {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            }
          } else {
            if (grad_op_maker != nullptr) {
1385
              VLOG(6) << "Prim Flag Close: Runing origin grad fun for "
1386
                      << op_desc.Type();
J
Jiabin Yang 已提交
1387 1388 1389
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            } else {
1390
              VLOG(6) << "Prim Flag Close: Runing composite grad fun for "
1391
                      << op_desc.Type();
J
Jiabin Yang 已提交
1392 1393 1394 1395 1396 1397 1398 1399
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            }
          }

1400 1401 1402 1403 1404 1405 1406 1407
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1408 1409 1410
  m.def("has_comp_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasCompGradOpMaker();
  });
1411 1412 1413
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1414 1415 1416 1417 1418
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1419 1420 1421
  m.def("has_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasEmptyGradOpMaker();
  });
1422 1423 1424
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1425
  m.def("infer_no_need_buffer_slots",
1426 1427
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1455 1456 1457 1458 1459 1460
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1461 1462
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1463

1464
            Args:
1465 1466 1467
                   program (ProgramDesc): The original program.

             Returns:
1468
                   tuple(ProgramDesc, map<int, int>): The first part is
1469 1470 1471 1472
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1473 1474 1475 1476
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1477 1478
    VLOG(4) << s;
    return s;
1479 1480 1481 1482 1483 1484
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1485
  });
1486 1487 1488 1489
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1490 1491 1492
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1493 1494
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1495

Y
Yu Yang 已提交
1496
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1497
      .def_static("create",
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
1513 1514 1515 1516
                    context->SetHostZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(paddle::platform::CPUPlace())
                            .get());
1517
                    return context;
Q
qijun 已提交
1518
                  })
1519 1520 1521 1522
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1523
#ifndef PADDLE_WITH_XPU
1524 1525 1526
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1527
#else
W
Wilber 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
1541 1542 1543 1544
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(paddle::platform::CPUPlace())
          .get());
W
Wilber 已提交
1545
      return context;
1546
#endif
1547 1548 1549 1550
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1551
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1552 1553 1554 1555
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1556 1557
#else
                return new paddle::platform::CustomDeviceContext(place);
1558
#endif
1559 1560 1561 1562 1563
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1564
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1565 1566 1567
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1568
#else
L
Leo Chen 已提交
1569
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
1582 1583 1584 1585
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(paddle::platform::CPUPlace())
        .get());
W
wanghuancoder 已提交
1586 1587 1588 1589
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1590 1591
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1592
#endif
1593 1594 1595 1596 1597
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1598
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1599 1600 1601
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1602 1603 1604
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1605
          });
1606
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1607 1608
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1609 1610 1611
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1612
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1613
#else
R
ronnywang 已提交
1614
          VLOG(1) << string::Sprintf(
1615 1616 1617 1618
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1619
              "PaddlePaddle by: pip install paddlepaddle\n");
1620 1621 1622 1623 1624 1625
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1626
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1627
#else
R
ronnywang 已提交
1628
          VLOG(1) << string::Sprintf(
1629 1630 1631 1632
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1633
              "PaddlePaddle by: pip install paddlepaddle\n");
1634 1635 1636 1637 1638 1639
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1640
    devices = phi::DeviceManager::GetAllDeviceList();
1641
#else
R
ronnywang 已提交
1642
          VLOG(1) << string::Sprintf(
1643 1644 1645 1646
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1647
              "PaddlePaddle by: pip install paddlepaddle\n");
1648 1649 1650 1651 1652 1653
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1654
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1655
#else
R
ronnywang 已提交
1656
          VLOG(1) << string::Sprintf(
1657 1658 1659 1660 1661 1662
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1663
              "PaddlePaddle by: pip install paddlepaddle\n");
1664 1665 1666
#endif
    return devices;
  });
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
  m.def("get_custom_device_count", [](const std::string &device_type) {
    size_t device_count = 0;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    // TODO(duanyanhui): Optimize DeviceManager::GetDeviceCount to support
    // returning default device when only one device is registered in
    // DeviceManager.
    device_count = phi::DeviceManager::GetDeviceCount(device_type);
#else
          VLOG(1) << string::Sprintf(
              "Cannot use get_custom_device_count because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_custom_device_count, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle\n");
#endif
    return device_count;
  });
Y
Yu Yang 已提交
1686

Y
Yu Yang 已提交
1687
  py::class_<OperatorBase>(m, "Operator")
1688 1689 1690 1691 1692 1693 1694
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1695 1696
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1697 1698 1699 1700 1701 1702
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1703
      .def("run",
1704 1705
           [](OperatorBase &self,
              const Scope &scope,
1706 1707 1708 1709
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1710
      .def("run",
1711 1712
           [](OperatorBase &self,
              const Scope &scope,
1713 1714 1715 1716
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1717
      .def("run",
1718 1719
           [](OperatorBase &self,
              const Scope &scope,
1720 1721 1722 1723
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1724
      .def("run",
1725 1726
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1727
              const platform::CUDAPinnedPlace &place) {
1728
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1729 1730
             self.Run(scope, place);
           })
R
ronnywang 已提交
1731
      .def("run",
1732 1733
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1734 1735 1736 1737
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1738 1739 1740 1741 1742
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1743 1744
             return op.Outputs();
           })
Q
qijun 已提交
1745 1746
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1747
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1748
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1749 1750 1751 1752
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1753

1754 1755 1756
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1757 1758
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1759 1760 1761 1762 1763 1764
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1765 1766
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1767

1768 1769
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1770
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1771
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1772
      .def("close", &Executor::Close)
1773 1774
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1775
           py::call_guard<py::gil_scoped_release>())
1776 1777
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1778
           py::call_guard<py::gil_scoped_release>())
1779
      .def("init_for_dataset",
1780 1781 1782 1783
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1784
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1785
             pybind11::gil_scoped_release release;
1786 1787 1788 1789 1790 1791 1792
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1793
      .def("run_prepared_ctx",
1794 1795 1796
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1797
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1798
              std::map<std::string, FetchType *> *fetch_targets,
1799 1800
              bool create_local_scope = true,
              bool create_vars = true,
1801 1802 1803
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1804 1805 1806 1807 1808 1809 1810 1811
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1812
           })
1813
      .def("run_prepared_ctx",
1814 1815 1816 1817 1818
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1819 1820
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1821 1822
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1823
           })
1824
      .def("prepare",
1825 1826 1827
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1828 1829 1830 1831
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1832 1833
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1834 1835
           })
      .def("create_variables", &Executor::CreateVariables)
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1852

1853
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1854
      .def(py::init<>())
1855 1856 1857 1858 1859
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1860

1861
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
1862 1863 1864
      .def(py::init<const platform::Place &,
                    const interpreter::Plan &,
                    Scope *>())
1865
      .def("run",
1866
           [](StandaloneExecutor &self, std::vector<std::string> feed_names) {
1867 1868 1869
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1870
               ret = self.Run(feed_names);
1871 1872
             }
             return py::cast(std::move(ret));
H
hong 已提交
1873 1874
           });

1875 1876
  py::class_<framework::interpreter::Job,
             std::shared_ptr<framework::interpreter::Job>>(m, "Job")
L
LiYuRio 已提交
1877
      .def(py::init<const std::string &>(), py::arg("type"))
1878 1879 1880 1881
      .def("micro_batch_id", &framework::interpreter::Job::MicroBatchId)
      .def("type", &framework::interpreter::Job::Type)
      .def("set_col_attr_for_fetch_op",
           &framework::interpreter::Job::SetColAttrForFetchOp)
Z
zhaoyingli 已提交
1882 1883
      .def("set_micro_batch_id", &framework::interpreter::Job::SetMicroBatchId)
      .def("set_skip_gc_vars", &framework::interpreter::Job::SetSkipGcVars);
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895

  py::class_<framework::interpreter::Plan>(m, "Plan")
      .def(
          py::init<
              const std::vector<std::shared_ptr<framework::interpreter::Job>> &,
              const std::unordered_map<std::string, framework::ProgramDesc *>
                  &>(),
          py::arg("job_list"),
          py::arg("type_to_program"))
      .def("job_list", &framework::interpreter::Plan::JobList)
      .def("micro_batch_num", &framework::interpreter::Plan::MicroBatchNum)
      .def("program", &framework::interpreter::Plan::Program);
L
LiYuRio 已提交
1896

D
dzhwinter 已提交
1897
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1898
  m.def("init_glog", framework::InitGLOG);
1899
  m.def("init_memory_method", framework::InitMemoryMethod);
1900 1901 1902 1903
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1904 1905 1906 1907 1908 1909 1910 1911
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
1912 1913
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1914 1915 1916 1917 1918 1919 1920 1921 1922
  m.def("init_tensor_operants", []() {
    paddle::OperantsManager::Instance().eager_operants.reset(
        new paddle::prim::EagerTensorOperants());
    paddle::OperantsManager::Instance().static_operants.reset(
        new paddle::prim::StaticTensorOperants());
    paddle::OperantsManager::Instance().phi_operants.reset(
        new paddle::operants::PhiTensorOperants());
    VLOG(4) << "Initialize tensor operants successfully";
  });
1923
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
1924
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1925
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1926
  m.def("is_compiled_with_custom_device", IsCompiledWithCustomDevice);
J
jianghaicheng 已提交
1927
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1928
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1929
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1930
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
1931 1932
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
1933
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1934
  m.def("is_run_with_cinn", IsRunWithCINN);
1935
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1936
  m.def("supports_bfloat16", SupportsBfloat16);
1937
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1938 1939
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1940
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1941
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1942
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1943 1944 1945
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
1946 1947 1948 1949 1950
  m.def("_test_enforce_gpu_success", []() {
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_GPU_SUCCESS(cudaErrorInsufficientDriver);
#endif
  });
H
hutuxian 已提交
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1970 1971 1972
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
L
Leo Chen 已提交
1973 1974
  m.def("host_memory_stat_current_value", memory::HostMemoryStatCurrentValue);
  m.def("host_memory_stat_peak_value", memory::HostMemoryStatPeakValue);
1975 1976
  m.def(
      "run_cmd",
1977 1978
      [](const std::string &cmd,
         int time_out = -1,
1979
         int sleep_inter = -1) -> const std::string {
1980 1981
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
1982
      },
1983 1984 1985
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
1986 1987
  m.def(
      "shell_execute_cmd",
1988 1989 1990
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
1991
         bool redirect_stderr = false) -> std::vector<std::string> {
1992 1993
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
1994
      },
1995 1996 1997
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
1998
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
1999

S
Steffy-zxf 已提交
2000
  m.def("set_feed_variable",
2001 2002
        static_cast<void (*)(  // NOLINT
            Scope *,
2003
            const phi::DenseTensor &,
2004 2005
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
2006
  m.def("set_feed_variable",
2007 2008
        static_cast<void (*)(  // NOLINT
            Scope *,
2009
            const std::vector<std::string> &,
2010 2011
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
2012
  m.def("get_fetch_variable",
2013 2014
        [](const Scope &scope,
           const std::string &var_name,
2015 2016 2017
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2018
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
2019
          } else {
R
Ruibiao Chen 已提交
2020
            return py::cast(PADDLE_GET(LoDTensorArray, var));
2021 2022
          }
        });
2023
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2024

X
Xin Pan 已提交
2025 2026
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2027 2028 2029 2030
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2031
  BindCostModel(&m);
2032
  BindConstValue(&m);
2033
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
2034
  BindFleetExecutor(&m);
2035
  BindTCPStore(&m);
2036
  BindCommContextManager(&m);
2037
  BindAutoParallel(&m);
2038
  BindJitProperty(&m);
Y
Yu Yang 已提交
2039

Y
Yu Yang 已提交
2040 2041 2042 2043 2044 2045 2046 2047 2048
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2049
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2050
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2051 2052 2053

    Examples:
        .. code-block:: python
2054

Z
Zeng Jinle 已提交
2055 2056 2057
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2058 2059 2060 2061
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2062 2063
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
2064 2065 2066 2067
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
2068 2069
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
2070
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
2071 2072
             PADDLE_ENFORCE_LT(i,
                               self.size(),
2073 2074 2075
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2076 2077 2078
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
2079 2080
      .def(
          "append",
2081
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
2082 2083 2084 2085
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
2086 2087
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
2088
             Append a LoDensor to LoDTensorArray.
2089

2090 2091 2092 2093 2094
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2106
           )DOC")
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2118

2119
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
2120
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
2121
        )DOC")
2122 2123 2124 2125 2126 2127
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
2128
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
2129
                res[i] = py::cast(std::move(data));
2130 2131 2132
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
2133
              } else {
R
Ruibiao Chen 已提交
2134
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
2146

2147 2148
      .def(
          "append",
2149
          [](FetchList &self, const phi::DenseTensor &t) {
2150
            self.emplace_back();
2151
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
2152 2153 2154 2155 2156 2157 2158 2159 2160
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
2161
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
2162 2163 2164 2165 2166 2167
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
2168 2169

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
2170
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2171
        )DOC")
2172 2173 2174 2175 2176 2177 2178 2179
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
2180
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
2181 2182
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
2183
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2198

Y
Yu Yang 已提交
2199
  m.def("op_support_gpu", OpSupportGPU);
2200
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2201
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2202
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2203 2204 2205 2206 2207 2208 2209 2210
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2211 2212 2213 2214 2215 2216
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2217 2218

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2244
      });
D
dangqingqing 已提交
2245

2246
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2247 2248 2249
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2250 2251 2252
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2253 2254 2255
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2256
#endif
P
peizhilin 已提交
2257
#endif
Y
Yu Yang 已提交
2258

J
jianghaicheng 已提交
2259 2260 2261 2262
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2263 2264 2265 2266 2267 2268
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2269 2270 2271 2272
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2273
      .value("kAll", platform::ProfilerState::kAll)
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2285
  m.def("set_tracer_option", platform::SetTracerOption);
2286 2287
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2288
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2289
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2290
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2291
    PADDLE_ENFORCE_EQ(
2292 2293
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2294 2295 2296
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2297
    callable.inc_ref();
2298 2299 2300 2301
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
2302 2303
              new framework::ir::GeneratePass(py::cast<std::string>(callable()),
                                              pass_type));
2304 2305
          return pass;
        });
2306
  });
2307
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2308 2309 2310
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2311

2312
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2313 2314
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2315 2316
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2317 2318
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2319 2320 2321 2322 2323 2324 2325 2326 2327
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2328

2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2392 2393
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2394 2395 2396 2397
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
2398 2399 2400
      .def_readwrite("attributes",
                     &paddle::platform::HostPythonNode::attributes)
      .def_readwrite("op_id", &paddle::platform::HostPythonNode::op_id)
C
chenjian 已提交
2401 2402 2403 2404 2405
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2406 2407 2408
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2409 2410

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2411 2412
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2413
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2414
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2415 2416
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
2417
      .def("is_xpti_supported", &paddle::platform::Profiler::IsXPTISupported)
C
chenjian 已提交
2418 2419 2420 2421 2422 2423
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2447 2448 2449 2450 2451 2452 2453 2454
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2473 2474
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
2475 2476
  m.def("enable_op_info_recorder", &phi::EnableOpInfoRecorder);
  m.def("disable_op_info_recorder", &phi::DisableOpInfoRecorder);
2477

2478
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2479 2480 2481 2482
  m.def("set_cublas_switch", phi::SetAllowTF32Cublas);
  m.def("get_cublas_switch", phi::AllowTF32Cublas);
  m.def("set_cudnn_switch", phi::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", phi::AllowTF32Cudnn);
2483
#endif  // PADDLE_WITH_CUDA
2484 2485 2486 2487 2488 2489 2490 2491
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2492

J
jianghaicheng 已提交
2493 2494
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2495 2496 2497
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2498 2499 2500 2501 2502 2503 2504
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2505
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2506 2507
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2508
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2519 2520 2521 2522
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2545 2546
                         option.get_type(),
                         option_name));
2547 2548 2549 2550 2551 2552 2553
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2554 2555
                         option_name,
                         option.first.cast<std::string>(),
2556 2557
                         option.second.cast<std::uint64_t>());
                   }
2558 2559 2560 2561 2562 2563
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2564 2565 2566 2567 2568 2569 2570 2571 2572
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2609 2610
                           option.second.get_type(),
                           option_key));
2611
                     }
2612 2613
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2614 2615 2616 2617 2618 2619
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2620 2621
                     element.second.get_type(),
                     option_name));
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2652 2653
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2654 2655 2656
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2657 2658
#endif

2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
  m.def("get_low_precision_op_list", [] {
    py::dict op_list;
    auto list_op = phi::KernelFactory::Instance().GetLowPrecisionKernelList();
    for (auto iter = list_op.begin(); iter != list_op.end(); iter++) {
      auto op_name = (iter->first).c_str();
      auto counts = iter->second;
      op_list[op_name] = std::to_string(counts.fp16_called_) + "," +
                         std::to_string(counts.bf16_called_) + "," +
                         std::to_string(counts.fp32_called_) + "," +
                         std::to_string(counts.other_called_);
    }
    return op_list;
  });

  m.def("clear_low_precision_op_list",
        [] { phi::KernelFactory::Instance().ClearLowPrecisionKernelList(); });

2676 2677 2678 2679 2680 2681 2682 2683
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2684
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2685 2686 2687 2688 2689 2690 2691 2692 2693
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
2694
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2695 2696 2697 2698 2699 2700 2701
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2702 2703
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2704

2705 2706
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2707

2708 2709
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2710
  // Add the api for nan op debug
2711 2712 2713 2714
  m.def("set_nan_inf_stack_limit",
        &paddle::framework::details::SetNanInfStackLimit);

  // Add the api for nan op debug
2715 2716
  m.def("set_nan_inf_debug_path",
        &paddle::framework::details::SetNanInfDebugPath);
2717

2718 2719 2720 2721 2722 2723 2724 2725
  // Add check op lost
  m.def("set_checked_op_list",
        [](const std::string &op_list) { egr::SetCheckOpList(op_list); });

  // Add skipped op list
  m.def("set_skipped_op_list",
        [](const std::string &op_list) { egr::SetSkipOpList(op_list); });

D
dongdaxiang 已提交
2726
  BindFleetWrapper(&m);
2727
  BindIO(&m);
2728 2729 2730
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2731

T
Thunderbrook 已提交
2732
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2733
  BindHeterWrapper(&m);
2734
  BindMetrics(&m);
T
Thunderbrook 已提交
2735
#endif
T
Thunderbrook 已提交
2736
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2737
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2738 2739 2740
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2741
#endif
2742
  BindGlooWrapper(&m);
H
hutuxian 已提交
2743
  BindBoxHelper(&m);
H
hutuxian 已提交
2744 2745 2746
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2747
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2748
  BindNCCLWrapper(&m);
2749 2750 2751
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2752
#endif
F
flame 已提交
2753 2754
  BindGraph(&m);
  BindNode(&m);
2755
  BindPass(&m);
F
flame 已提交
2756
  BindInferenceApi(&m);
2757
  BindCompatible(&m);
2758
  BindDataset(&m);
Y
yaoxuefeng 已提交
2759
  BindGenerator(&m);
2760
#ifndef PADDLE_NO_PYTHON
2761 2762
  BindDistributed(&m);
#endif
Y
Yanghello 已提交
2763 2764 2765
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2766

T
tangwei12 已提交
2767
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2768 2769
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2770
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2771 2772
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2773 2774 2775 2776 2777
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2778 2779 2780 2781
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2782
#ifdef PADDLE_WITH_HETERPS
2783 2784
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2785 2786 2787
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2788
#endif
X
Xinger 已提交
2789
#if defined(PADDLE_WITH_RPC)
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
L
Luo Tao 已提交
2802
}
2803
}  // namespace pybind
2804
}  // namespace paddle