pybind.cc 105.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16 17 18 19
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
20

C
chengduoZH 已提交
21
#include <algorithm>
22
#include <cctype>
23
#include <cstdlib>
24
#include <iterator>
C
chengduoZH 已提交
25
#include <map>
S
sneaxiy 已提交
26
#include <memory>
C
chengduoZH 已提交
27
#include <mutex>  // NOLINT // for call_once
28
#include <sstream>
C
chengduoZH 已提交
29
#include <string>
30 31
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
32
#include <unordered_map>
33
#include <unordered_set>
C
chengduoZH 已提交
34 35
#include <utility>
#include <vector>
36

37
#include "paddle/fluid/framework/convert_utils.h"
38
#include "paddle/fluid/framework/custom_operator.h"
39
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
40
#include "paddle/fluid/framework/data_type_transform.h"
41
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
Y
Yi Wang 已提交
42
#include "paddle/fluid/framework/executor.h"
43
#include "paddle/fluid/framework/executor_cache.h"
44
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
46
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
48
#include "paddle/fluid/framework/io/fs.h"
49
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
50
#include "paddle/fluid/framework/ir/cost_model.h"
51
#include "paddle/fluid/framework/ir/generate_pass.h"
52
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
53 54
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
55
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
L
LiYuRio 已提交
56 57
#include "paddle/fluid/framework/new_executor/interpreter/job.h"
#include "paddle/fluid/framework/new_executor/interpreter/plan.h"
58
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
59
#include "paddle/fluid/framework/op_info.h"
60
#include "paddle/fluid/framework/op_registry.h"
61
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
62
#include "paddle/fluid/framework/parallel_executor.h"
63
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
64
#include "paddle/fluid/framework/prune.h"
65
#include "paddle/fluid/framework/raw_tensor.h"
Y
Refine  
Yu Yang 已提交
66
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
67
#include "paddle/fluid/framework/scope_pool.h"
68
#include "paddle/fluid/framework/selected_rows_utils.h"
69
#include "paddle/fluid/framework/tensor_util.h"
70
#include "paddle/fluid/framework/trainer.h"
71
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
72
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
73
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
74
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
75
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
76 77
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/float16.h"
J
Jiabin Yang 已提交
78
#include "paddle/fluid/prim/utils/utils.h"
79 80 81
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
82
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
83
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
84
#include "paddle/fluid/operators/common_infer_shape_functions.h"
85
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
86
#include "paddle/fluid/operators/py_func_op.h"
87
#include "paddle/fluid/platform/cpu_helper.h"
88
#include "paddle/fluid/platform/device/device_wrapper.h"
89
#include "paddle/fluid/platform/device_context.h"
90
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
91
#include "paddle/fluid/platform/enforce.h"
92
#include "paddle/fluid/platform/init.h"
93
#include "paddle/fluid/platform/init_phi.h"
H
hutuxian 已提交
94
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
95 96
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
97 98 99
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
100
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
101
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
102
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
103
#include "paddle/fluid/pybind/box_helper_py.h"
104
#include "paddle/fluid/pybind/communication.h"
105
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
106
#include "paddle/fluid/pybind/const_value.h"
107 108
#include "paddle/fluid/pybind/cuda_streams_py.h"
#include "paddle/fluid/pybind/custom_device_py.h"
D
dongdaxiang 已提交
109
#include "paddle/fluid/pybind/data_set_py.h"
110 111
#include "paddle/fluid/pybind/distributed_py.h"
#include "paddle/fluid/pybind/eager.h"
Y
Yi Wang 已提交
112
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
113
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
114
#include "paddle/fluid/pybind/generator_py.h"
115
#include "paddle/fluid/pybind/global_value_getter_setter.h"
116
#include "paddle/fluid/pybind/gloo_context_py.h"
117
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
118
#include "paddle/fluid/pybind/heter_wrapper_py.h"
119
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
120
#include "paddle/fluid/pybind/inference_api.h"
121
#include "paddle/fluid/pybind/io.h"
F
flame 已提交
122
#include "paddle/fluid/pybind/ir.h"
123
#include "paddle/fluid/pybind/jit.h"
124
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
125
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
126
#include "paddle/fluid/pybind/pybind_variant_caster.h"
127 128
#include "paddle/fluid/pybind/xpu_streams_py.h"
#include "paddle/phi/backends/cpu/cpu_info.h"
129
#include "paddle/phi/backends/device_manager.h"
130 131 132
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
#include "paddle/utils/none.h"
133

134
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
135
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
136
#endif
137
#include "paddle/fluid/framework/data_type.h"
138 139
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
140 141
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
142
#include "paddle/fluid/pybind/reader_py.h"
143
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
144
#include "paddle/fluid/pybind/tensor_py.h"
145
#include "paddle/fluid/string/to_string.h"
146 147
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
148
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
149
#endif
150
#ifndef PADDLE_WITH_HIP
151
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
152
#endif
153
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
154 155
#endif

156
#ifdef PADDLE_WITH_XPU
157
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
158
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
159 160
#endif

161
#ifdef PADDLE_WITH_CUSTOM_DEVICE
162
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
163
#include "paddle/fluid/platform/collective_helper.h"
164 165 166
#include "paddle/phi/capi/capi.h"
#endif

167
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
168

J
jianghaicheng 已提交
169
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
170 171
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
172
#endif
173

Y
Yanghello 已提交
174 175 176 177
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
178
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
179 180 181
#include "paddle/fluid/pybind/fleet_py.h"
#endif

182 183 184 185
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
186
#if defined(PADDLE_WITH_RPC)
187 188 189
#include "paddle/fluid/pybind/rpc.h"
#endif

190
#include "paddle/fluid/eager/api/utils/global_utils.h"
191
#include "paddle/fluid/eager/nan_inf_utils.h"
192
#include "paddle/fluid/imperative/layout_autotune.h"
193 194
#include "paddle/fluid/prim/utils/eager/eager_tensor_operants.h"
#include "paddle/fluid/prim/utils/static/static_tensor_operants.h"
195 196
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
197 198
#include "paddle/phi/api/include/operants_manager.h"
#include "paddle/phi/api/include/tensor_operants.h"
199
#include "paddle/phi/core/flags.h"
200 201
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
202 203
#include "pybind11/stl.h"

204
PHI_DECLARE_bool(use_mkldnn);
205

Q
Qiao Longfei 已提交
206 207
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
208 209 210
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
211

212
DECLARE_FILE_SYMBOLS(init_phi);
213
namespace paddle {
214
namespace pybind {
215

0
0x45f 已提交
216
PyTypeObject *g_framework_scope_pytype = nullptr;
217
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
218
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
219

220 221 222 223 224 225 226 227
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

228
bool IsCompiledWithCUDA() {
229 230 231 232 233 234 235
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

236 237 238 239 240 241 242 243
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

261 262
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
263 264 265 266 267 268
  return false;
#else
  return true;
#endif
}

269 270 271 272 273 274 275 276
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

277 278 279 280 281 282 283 284 285 286 287 288 289 290
bool IsCompiledWithCustomDevice(std::string device_type) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
  return false;
#else
  std::vector<std::string> device_types;
  device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
  if (std::count(device_types.begin(), device_types.end(), device_type)) {
    return true;
  } else {
    return false;
  }
#endif
}

J
jianghaicheng 已提交
291 292 293 294 295 296 297 298
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

299 300 301 302 303 304 305 306
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

307 308 309 310 311 312 313 314
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

315 316 317 318 319 320 321 322
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

323 324 325 326
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
327
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_core))
328 329 330 331 332 333
    return true;
  else
    return false;
#endif
}

334 335 336 337
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
338
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_bf16))
339 340 341 342 343 344
    return true;
  else
    return false;
#endif
}

345 346 347 348
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
349 350
  return (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx2) ||
          phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512f));
351 352 353 354 355 356 357
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
358 359
  return phi::backends::cpu::MayIUse(
      phi::backends::cpu::cpu_isa_t::avx512_core_vnni);
360 361 362
#endif
}

363
bool IsCompiledWithBrpc() {
364
#ifndef PADDLE_WITH_DISTRIBUTE
365
  return false;
366
#else
367
  return true;
368
#endif
369 370
}

Y
update  
Yancey1989 已提交
371
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
372
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
373 374 375 376 377 378
  return true;
#else
  return false;
#endif
}

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
struct finfo {
  int64_t bits;
  double eps;
  double min;  // lowest()
  double max;
  double tiny;
  double smallest_normal;  // min()
  double resolution;
  std::string dtype;

  explicit finfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::FP16:
        eps = std::numeric_limits<paddle::platform::float16>::epsilon();
        min = std::numeric_limits<paddle::platform::float16>::lowest();
        max = std::numeric_limits<paddle::platform::float16>::max();
        smallest_normal = std::numeric_limits<paddle::platform::float16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::float16>::digits10);
        bits = 16;
        dtype = "float16";
        break;
      case framework::proto::VarType::FP32:
      case framework::proto::VarType::COMPLEX64:
        eps = std::numeric_limits<float>::epsilon();
        min = std::numeric_limits<float>::lowest();
        max = std::numeric_limits<float>::max();
        smallest_normal = std::numeric_limits<float>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<float>::digits10);
        bits = 32;
        dtype = "float32";
        break;
      case framework::proto::VarType::FP64:
      case framework::proto::VarType::COMPLEX128:
        eps = std::numeric_limits<double>::epsilon();
        min = std::numeric_limits<double>::lowest();
        max = std::numeric_limits<double>::max();
        smallest_normal = std::numeric_limits<double>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<double>::digits10);
        bits = 64;
        dtype = "float64";
        break;
      case framework::proto::VarType::BF16:
        eps = std::numeric_limits<paddle::platform::bfloat16>::epsilon();
        min = std::numeric_limits<paddle::platform::bfloat16>::lowest();
        max = std::numeric_limits<paddle::platform::bfloat16>::max();
        smallest_normal =
            std::numeric_limits<paddle::platform::bfloat16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::bfloat16>::digits10);
        bits = 16;
        dtype = "bfloat16";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.finfo can only be paddle.float32, "
            "paddle.float64, paddle.float16, paddle.bfloat16"
            "paddle.complex64, or paddle.complex128"));
        break;
    }
  }
};

H
hong 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
514 515
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
516 517
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
531 532
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
533 534
    }
    vec_res.emplace_back(
535
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
536 537 538 539 540 541 542 543 544 545 546 547
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
548 549
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
550 551 552 553 554 555 556 557 558 559 560 561
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
562 563 564
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
565 566 567 568
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
569 570
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
571 572 573 574
  }
  return vec_res;
}

O
OccupyMars2025 已提交
575
static void inline CreateVariableIfNotExist(
576 577
    const py::handle &py_handle,
    const framework::Scope &scope,
578 579 580 581 582 583
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
584 585
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
586 587 588 589 590 591 592 593 594 595 596 597 598
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
599 600 601
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
602 603 604 605 606
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
607 608 609 610 611
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
612 613
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
614
        PADDLE_ENFORCE_NOT_NULL(
615 616 617
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
618 619 620
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
621
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
622
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
623 624
        tensor_temp->mutable_data(
            exe->GetPlace(),
625
            framework::TransToPhiDataType(var_desc.GetDataType()));
626 627 628
      }
    }
  } else {
629 630
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
631 632 633 634 635
  }

  return;
}

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
652 653
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
654 655 656 657 658 659 660
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
661 662 663 664
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
665
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
666 667 668 669 670 671 672 673
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

674
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
675
  BindImperative(&m);
676
  BindEager(&m);
J
Jack Zhou 已提交
677
  BindEagerStringTensor(&m);
678
  BindCudaStream(&m);
J
james 已提交
679
  BindXpuStream(&m);
680
  BindJit(&m);
681
  BindEvalFrame(&m);
682
  BindCustomDevicePy(&m);
683

Y
Yu Yang 已提交
684
  // Not used, just make sure cpu_info.cc is linked.
685
  phi::backends::cpu::CpuTotalPhysicalMemory();
Y
Yu Yang 已提交
686

Y
Refine  
Yu Yang 已提交
687
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
688

689 690
  AssertStaticGraphAndDygraphGradMakerNoDiff();

691
  m.doc() = "C++ core of PaddlePaddle";
692

693 694 695 696
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

697
  BindException(&m);
Y
Yu Yang 已提交
698

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
  py::class_<finfo>(m, "finfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &finfo::min)
      .def_readonly("max", &finfo::max)
      .def_readonly("bits", &finfo::bits)
      .def_readonly("eps", &finfo::eps)
      .def_readonly("resolution", &finfo::resolution)
      .def_readonly("smallest_normal", &finfo::smallest_normal)
      .def_readonly("tiny", &finfo::tiny)
      .def_readonly("dtype", &finfo::dtype)
      .def("__repr__", [](const finfo &a) {
        std::ostringstream oss;
        oss << "paddle.finfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", eps=" << a.eps;
        oss << ", resolution=" << a.resolution;
        oss << ", smallest_normal=" << a.smallest_normal;
        oss << ", tiny=" << a.tiny;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

737 738 739 740 741 742 743 744 745 746
  m.def("__set_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetBwdPrimEnabled);
  m.def("_is_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsBwdPrimEnabled);
  m.def("__set_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetFwdPrimEnabled);
  m.def("_is_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsFwdPrimEnabled);
  m.def("__set_all_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetAllPrimEnabled);
747 748 749 750
  m.def("_is_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsEagerPrimEnabled);
  m.def("__set_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetEagerPrimEnabled);
751 752
  m.def("_set_prim_target_grad_name",
        &paddle::prim::PrimCommonUtils::SetTargetGradName);
753 754
  m.def("set_num_threads", &platform::SetNumThreads);

755 756
  m.def("disable_signal_handler", &DisableSignalHandler);

757 758 759 760 761 762 763 764
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

765
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
766
  m.def("cudnn_version", &platform::DnnVersion);
767 768 769 770 771 772
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
773
#endif
774

Z
Zeng Jinle 已提交
775 776 777 778
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

779 780
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
781
  py::class_<phi::backends::gpu::CUDAGraph>(m, "CUDAGraph")
782 783 784 785 786 787
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
788
      .def_static("gen_new_memory_pool_id",
789 790 791 792 793
                  &phi::backends::gpu::CUDAGraph::UniqueMemoryPoolID)
      .def("replay", &phi::backends::gpu::CUDAGraph::Replay)
      .def("reset", &phi::backends::gpu::CUDAGraph::Reset)
      .def("print_to_dot_files",
           &phi::backends::gpu::CUDAGraph::PrintToDotFiles);
794 795
#endif

Z
Zeng Jinle 已提交
796 797 798 799
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
800 801 802
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
803 804

    PADDLE_ENFORCE_NOT_NULL(
805 806 807 808
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
809

6
633WHU 已提交
810 811
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
812
    phi::DenseTensor tensor;
6
633WHU 已提交
813

S
Siming Dai 已提交
814
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
815
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
816
    }
817
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
818
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
819
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
820 821 822 823
    }
#endif
    return tensor;
  });
H
hong 已提交
824

825
  m.def("_create_loaded_parameter",
826 827
        [](const py::handle &vec_var_list,
           const Scope &scope,
828
           const Executor *executor) {
O
OccupyMars2025 已提交
829
          CreateVariableIfNotExist(vec_var_list, scope, executor);
830 831
        });

832 833 834 835 836 837
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
838 839
  });

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

865 866 867 868 869 870
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
871

S
sneaxiy 已提交
872
  m.def(
S
sneaxiy 已提交
873
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
874 875 876 877
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
878 879 880
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
897
            }
898
            all_kernels_info.emplace(op_type, kernel_types);
899
          }
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
916
                }
917 918
              } else {
                kernel_types.emplace_back(kernel_type_str);
919
              }
920
            }
921 922 923
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
924
          }
925
        }
926

927 928 929 930
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
931 932 933
           Return the registered kernels in paddle.

           Args:
934
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
935
           )DOC");
936

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
  m.def(
      "_get_registered_phi_kernels",
      [](const std::string &kernel_registered_type) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        auto phi_kernels = phi::KernelFactory::Instance().kernels();
        for (auto &kernel_pair : phi_kernels) {
          auto kernel_name = kernel_pair.first;
          std::vector<std::string> kernel_keys;
          for (auto &info_pair : kernel_pair.second) {
            bool get_function_kernel =
                kernel_registered_type == "function" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::FUNCTION;
            bool get_structure_kernel =
                kernel_registered_type == "structure" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::STRUCTURE;
            if (kernel_registered_type == "all" || get_function_kernel ||
                get_structure_kernel) {
              std::ostringstream stream;
              stream << info_pair.first;
              std::string kernel_key_str = stream.str();
              if (all_kernels_info.count(kernel_name)) {
                bool kernel_exist =
                    std::find(all_kernels_info[kernel_name].begin(),
                              all_kernels_info[kernel_name].end(),
                              kernel_key_str) !=
                    all_kernels_info[kernel_name].end();
                if (!kernel_exist) {
                  all_kernels_info[kernel_name].emplace_back(kernel_key_str);
                }
              } else {
                kernel_keys.emplace_back(kernel_key_str);
              }
            }
          }
          if (!kernel_keys.empty()) {
            all_kernels_info.emplace(kernel_name, kernel_keys);
          }
        }

        return all_kernels_info;
      },
      py::arg("kernel_registered_type") = "function",
      R"DOC(
           Return the registered kernels in phi.

           Args:
               kernel_registered_type[string]: the libarary, could be 'function', 'structure', and 'all'.
           )DOC");

989 990 991 992 993 994
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
995 996
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
997
    platform::XCCLCommContext::Release();
998 999 1000
    phi::DeviceManager::Clear();
#endif
  });
1001

S
sneaxiy 已提交
1002 1003 1004
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
1005
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
1006

1007
  m.def("_set_fuse_parameter_group_size",
1008
        &paddle::framework::ir::SetFuseParameterGroupsSize);
1009
  m.def("_set_fuse_parameter_memory_size",
1010
        &paddle::framework::ir::SetFuseParameterMemorySize);
1011

S
sneaxiy 已提交
1012 1013 1014
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

1015 1016
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
1017 1018
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

1019 1020 1021
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

1022
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1023 1024 1025

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1026
      .def(py::init<>())
1027
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1028
      .def("set_int",
1029 1030
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1031 1032 1033 1034 1035 1036 1037
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
1038 1039
      .def(
          "get_tensor",
1040 1041
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
1042 1043
          },
          py::return_value_policy::reference)
1044 1045
      .def("get_bytes",
           [](Variable &self) {
1046 1047 1048 1049 1050 1051
             if (self.IsType<String>()) {
               return py::bytes(*(self.GetMutable<String>()));
             } else {
               return py::bytes(
                   *(self.GetMutable<RawTensor>()->GetMutable<std::string>()));
             }
1052
           })
S
Steffy-zxf 已提交
1053
      .def("set_string_list",
1054
           [](Variable &self, std::vector<std::string> str_list) {
S
Steffy-zxf 已提交
1055 1056
             *self.GetMutable<Strings>() = str_list;
           })
1057
      .def("set_vocab",
1058 1059
           [](Variable &self,
              const std::unordered_map<std::wstring, std::int32_t> &vocab) {
1060 1061
             *self.GetMutable<Vocab>() = vocab;
           })
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
1088
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1089 1090 1091 1092 1093 1094
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1095
#endif
1096 1097 1098
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
1099 1100
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1111 1112
                scope_vec->size(),
                0,
1113 1114 1115 1116 1117
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1118 1119 1120 1121
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1122

S
sneaxiy 已提交
1123
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1124

0
0x45f 已提交
1125
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1139
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1140 1141 1142 1143 1144
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1145 1146 1147
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1148 1149
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1150 1151 1152 1153 1154 1155 1156
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1157
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1158

1159
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1160
           current scope, the variable would be created. Otherwise,
1161
           return the existing variable.
S
sneaxiy 已提交
1162 1163

           Args:
1164 1165
               name (str): the variable name.

S
sneaxiy 已提交
1166
           Returns:
1167
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1168
           )DOC",
1169
          py::return_value_policy::reference)
1170 1171 1172
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1173
           R"DOC(
1174
           Find variable named :code:`name` in the current scope or
1175
           its parent scope. Return None if not found.
1176

S
sneaxiy 已提交
1177 1178
           Args:
               name (str): the variable name.
1179

S
sneaxiy 已提交
1180
           Returns:
1181
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1182
           )DOC",
1183
           py::return_value_policy::reference)
1184
      .def("size", &Scope::Size)
1185 1186 1187
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1188 1189
           R"DOC(
           Find variable named :code:`name` in the current scope or
1190
           its parent scope. Return None if not found.
1191 1192 1193 1194 1195 1196 1197 1198

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1199
      .def(
1200 1201
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1202
          R"DOC(
S
sneaxiy 已提交
1203 1204 1205 1206 1207
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1208
          py::return_value_policy::reference)
1209 1210
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1211 1212
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1213
           )DOC")
1214
      .def("_kids", &Scope::kids)
C
co63oc 已提交
1215
      .def_property("_can_reused", &Scope::CanReused, &Scope::SetCanReused);
1216

1217 1218 1219 1220 1221 1222 1223 1224
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1225
        Create a new scope.
1226

S
sneaxiy 已提交
1227 1228 1229
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1230
      py::return_value_policy::reference);
S
sneaxiy 已提交
1231

Y
Yu Yang 已提交
1232 1233
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1234 1235
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1236 1237 1238 1239
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1240
        PADDLE_ENFORCE_EQ(
1241 1242
            info.Proto().SerializeToString(&str),
            true,
1243 1244
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1245 1246 1247
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1248 1249
    return ret_values;
  });
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1288 1289 1290 1291 1292 1293 1294 1295
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1296
              res = op_checker->GetDefaultAttrsMap();
1297 1298 1299 1300
            }
          }
          return res;
        });
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });
  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1317 1318 1319
  m.def("_add_skip_comp_ops", &paddle::prim::PrimCommonUtils::AddSkipCompOps);
  m.def("_remove_skip_comp_ops",
        &paddle::prim::PrimCommonUtils::RemoveSkipCompOps);
1320 1321 1322 1323 1324
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
J
Jiabin Yang 已提交
1325 1326 1327

          auto op_info = framework::OpInfoMap::Instance().Get(op_desc.Type());
          auto grad_op_maker = op_info.GradOpMaker();
1328
          auto grad_comp_op_maker = op_info.CompGradOpMaker();
J
Jiabin Yang 已提交
1329 1330 1331 1332

          if ((grad_op_maker == nullptr) && (grad_comp_op_maker == nullptr)) {
            // Normally, proto_ should not be null, except some special
            // operators, such as LeaklyReluDoubleGrad op.
1333
            std::string type = op_desc.Type();
J
Jiabin Yang 已提交
1334
            PADDLE_THROW(platform::errors::NotFound(
1335
                "Neither operator %s's GradOpMaker nor CompGradOpMaker has "
J
Jiabin Yang 已提交
1336 1337 1338 1339 1340 1341 1342 1343
                "been registered.\nPlease check whether (%s) operator has "
                "gradient operator.\nIf not, please set stop_gradient to be "
                "True for its input and output variables using "
                "var.stop_gradient=True.",
                type.c_str(),
                type.c_str()));
          }

1344
          // In PrimEnabled mode, the priority of CompGradOpMaker is greater
J
Jiabin Yang 已提交
1345 1346
          // than GradCompMaker as we need split first-order grad operator into
          // primitive operators for compiler. In PrimDisabled mode, the
1347
          // priority of CompGradOpMaker is less than GradCompMaker for better
J
Jiabin Yang 已提交
1348 1349
          // performance.
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs;
1350 1351 1352
          auto need_skip =
              paddle::prim::PrimCommonUtils::CheckSkipCompOps(op_desc.Type());
          VLOG(3) << "need skip: " << need_skip << std::endl;
1353
          if (paddle::prim::PrimCommonUtils::IsBwdPrimEnabled()) {
1354
            if ((grad_comp_op_maker != nullptr) && (!need_skip)) {
1355 1356
              VLOG(3) << "Prim Flag Open: Runing composite grad fun for "
                      << op_desc.Type();
J
Jiabin Yang 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            } else {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            }
          } else {
            if (grad_op_maker != nullptr) {
1368
              VLOG(6) << "Prim Flag Close: Runing origin grad fun for "
1369
                      << op_desc.Type();
J
Jiabin Yang 已提交
1370 1371 1372
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            } else {
1373
              VLOG(6) << "Prim Flag Close: Runing composite grad fun for "
1374
                      << op_desc.Type();
J
Jiabin Yang 已提交
1375 1376 1377 1378 1379 1380 1381 1382
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            }
          }

1383 1384 1385 1386 1387 1388 1389 1390
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1391 1392 1393
  m.def("has_comp_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasCompGradOpMaker();
  });
1394 1395 1396
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1397 1398 1399 1400 1401
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1402 1403 1404
  m.def("has_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasEmptyGradOpMaker();
  });
1405 1406 1407
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1408
  m.def("infer_no_need_buffer_slots",
1409 1410
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1438 1439 1440 1441 1442 1443
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1444 1445
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1446

1447
            Args:
1448 1449 1450
                   program (ProgramDesc): The original program.

             Returns:
1451
                   tuple(ProgramDesc, map<int, int>): The first part is
1452 1453 1454 1455
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1456 1457 1458 1459
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1460 1461
    VLOG(4) << s;
    return s;
1462 1463 1464 1465 1466 1467
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1468
  });
1469 1470 1471 1472
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1473 1474 1475
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1476 1477
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1478

Y
Yu Yang 已提交
1479
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1480
      .def_static("create",
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
1496 1497 1498 1499
                    context->SetHostZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(paddle::platform::CPUPlace())
                            .get());
1500
                    return context;
Q
qijun 已提交
1501
                  })
1502 1503 1504 1505
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1506
#ifndef PADDLE_WITH_XPU
1507 1508 1509
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1510
#else
W
Wilber 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
1524 1525 1526 1527
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(paddle::platform::CPUPlace())
          .get());
W
Wilber 已提交
1528
      return context;
1529
#endif
1530 1531 1532 1533
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1534
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1535 1536 1537 1538
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1539 1540
#else
                return new paddle::platform::CustomDeviceContext(place);
1541
#endif
1542 1543 1544 1545 1546
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1547
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1548 1549 1550
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1551
#else
L
Leo Chen 已提交
1552
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
1565 1566 1567 1568
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(paddle::platform::CPUPlace())
        .get());
W
wanghuancoder 已提交
1569 1570 1571 1572
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1573 1574
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1575
#endif
1576 1577 1578 1579 1580
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1581
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1582 1583 1584
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1585 1586 1587
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1588
          });
1589
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1590 1591
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1592 1593 1594
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1595
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1596
#else
R
ronnywang 已提交
1597
          VLOG(1) << string::Sprintf(
1598 1599 1600 1601
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1602
              "PaddlePaddle by: pip install paddlepaddle\n");
1603 1604 1605 1606 1607 1608
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1609
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1610
#else
R
ronnywang 已提交
1611
          VLOG(1) << string::Sprintf(
1612 1613 1614 1615
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1616
              "PaddlePaddle by: pip install paddlepaddle\n");
1617 1618 1619 1620 1621 1622
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1623
    devices = phi::DeviceManager::GetAllDeviceList();
1624
#else
R
ronnywang 已提交
1625
          VLOG(1) << string::Sprintf(
1626 1627 1628 1629
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1630
              "PaddlePaddle by: pip install paddlepaddle\n");
1631 1632 1633 1634 1635 1636
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1637
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1638
#else
R
ronnywang 已提交
1639
          VLOG(1) << string::Sprintf(
1640 1641 1642 1643 1644 1645
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1646
              "PaddlePaddle by: pip install paddlepaddle\n");
1647 1648 1649
#endif
    return devices;
  });
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
  m.def("get_custom_device_count", [](const std::string &device_type) {
    size_t device_count = 0;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    // TODO(duanyanhui): Optimize DeviceManager::GetDeviceCount to support
    // returning default device when only one device is registered in
    // DeviceManager.
    device_count = phi::DeviceManager::GetDeviceCount(device_type);
#else
          VLOG(1) << string::Sprintf(
              "Cannot use get_custom_device_count because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_custom_device_count, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle\n");
#endif
    return device_count;
  });
Y
Yu Yang 已提交
1669

Y
Yu Yang 已提交
1670
  py::class_<OperatorBase>(m, "Operator")
1671 1672 1673 1674 1675 1676 1677
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1678 1679
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1680 1681 1682 1683 1684 1685
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1686
      .def("run",
1687 1688
           [](OperatorBase &self,
              const Scope &scope,
1689 1690 1691 1692
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1693
      .def("run",
1694 1695
           [](OperatorBase &self,
              const Scope &scope,
1696 1697 1698 1699
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1700
      .def("run",
1701 1702
           [](OperatorBase &self,
              const Scope &scope,
1703 1704 1705 1706
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1707
      .def("run",
1708 1709
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1710
              const platform::CUDAPinnedPlace &place) {
1711
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1712 1713
             self.Run(scope, place);
           })
R
ronnywang 已提交
1714
      .def("run",
1715 1716
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1717 1718 1719 1720
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1721 1722 1723 1724 1725
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1726 1727
             return op.Outputs();
           })
Q
qijun 已提交
1728 1729
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1730
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1731
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1732 1733 1734 1735
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1736

1737 1738 1739
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1740 1741
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1742 1743 1744 1745 1746 1747
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1748 1749
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1750

1751 1752
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1753
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1754
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1755
      .def("close", &Executor::Close)
1756 1757
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1758
           py::call_guard<py::gil_scoped_release>())
1759 1760
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1761
           py::call_guard<py::gil_scoped_release>())
1762
      .def("init_for_dataset",
1763 1764 1765 1766
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1767
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1768
             pybind11::gil_scoped_release release;
1769 1770 1771 1772 1773 1774 1775
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1776
      .def("run_prepared_ctx",
1777 1778 1779
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1780
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1781
              std::map<std::string, FetchType *> *fetch_targets,
1782 1783
              bool create_local_scope = true,
              bool create_vars = true,
1784 1785 1786
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1787 1788 1789 1790 1791 1792 1793 1794
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1795
           })
1796
      .def("run_prepared_ctx",
1797 1798 1799 1800 1801
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1802 1803
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1804 1805
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1806
           })
1807
      .def("prepare",
1808 1809 1810
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1811 1812 1813 1814
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1815 1816
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1817 1818
           })
      .def("create_variables", &Executor::CreateVariables)
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1835

1836
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1837
      .def(py::init<>())
1838 1839 1840 1841 1842
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1843

1844
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
1845
      .def(py::init<const platform::Place &, const ProgramDesc &>())
1846
      .def("run",
1847
           [](StandaloneExecutor &self,
1848
              Scope *scope,
1849
              std::vector<std::string> feed_names,
1850 1851 1852 1853
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1854
               ret = self.Run(scope, feed_names, fetch_names);
1855 1856
             }
             return py::cast(std::move(ret));
H
hong 已提交
1857 1858
           });

L
LiYuRio 已提交
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
  py::class_<framework::Job>(m, "job")
      .def(py::init<const std::string &>(), py::arg("type"))
      .def("type", &framework::Job::GetJobType)
      .def("micro_batch_id", &framework::Job::GetMicroBatchId)
      .def("set_micro_batch_id", &framework::Job::SetMicroBatchId);

  py::class_<framework::Plan>(m, "plan")
      .def(py::init<const std::vector<Job *> &,
                    const std::unordered_map<std::string,
                                             framework::ProgramDesc *> &>(),
           py::arg("job_list"),
           py::arg("type_to_program"))
      .def("job_list", &framework::Plan::GetJobList)
      .def("type_to_program", &framework::Plan::GetTypeToProgram);

D
dzhwinter 已提交
1874
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1875
  m.def("init_glog", framework::InitGLOG);
1876
  m.def("init_memory_method", framework::InitMemoryMethod);
1877 1878 1879 1880
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1881 1882 1883 1884 1885 1886 1887 1888
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
1889 1890
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1891 1892 1893 1894 1895 1896 1897 1898 1899
  m.def("init_tensor_operants", []() {
    paddle::OperantsManager::Instance().eager_operants.reset(
        new paddle::prim::EagerTensorOperants());
    paddle::OperantsManager::Instance().static_operants.reset(
        new paddle::prim::StaticTensorOperants());
    paddle::OperantsManager::Instance().phi_operants.reset(
        new paddle::operants::PhiTensorOperants());
    VLOG(4) << "Initialize tensor operants successfully";
  });
1900
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
1901
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1902
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1903
  m.def("is_compiled_with_custom_device", IsCompiledWithCustomDevice);
J
jianghaicheng 已提交
1904
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1905
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1906
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1907
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
1908 1909
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
1910
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1911
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1912
  m.def("supports_bfloat16", SupportsBfloat16);
1913
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1914 1915
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1916
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1917
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1918
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1919 1920 1921
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
1922 1923 1924 1925 1926
  m.def("_test_enforce_gpu_success", []() {
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_GPU_SUCCESS(cudaErrorInsufficientDriver);
#endif
  });
H
hutuxian 已提交
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1946 1947 1948
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
L
Leo Chen 已提交
1949 1950
  m.def("host_memory_stat_current_value", memory::HostMemoryStatCurrentValue);
  m.def("host_memory_stat_peak_value", memory::HostMemoryStatPeakValue);
1951 1952
  m.def(
      "run_cmd",
1953 1954
      [](const std::string &cmd,
         int time_out = -1,
1955
         int sleep_inter = -1) -> const std::string {
1956 1957
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
1958
      },
1959 1960 1961
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
1962 1963
  m.def(
      "shell_execute_cmd",
1964 1965 1966
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
1967
         bool redirect_stderr = false) -> std::vector<std::string> {
1968 1969
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
1970
      },
1971 1972 1973
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
1974
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
1975

S
Steffy-zxf 已提交
1976
  m.def("set_feed_variable",
1977 1978
        static_cast<void (*)(  // NOLINT
            Scope *,
1979
            const phi::DenseTensor &,
1980 1981
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
1982
  m.def("set_feed_variable",
1983 1984
        static_cast<void (*)(  // NOLINT
            Scope *,
1985
            const std::vector<std::string> &,
1986 1987
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
1988
  m.def("get_fetch_variable",
1989 1990
        [](const Scope &scope,
           const std::string &var_name,
1991 1992 1993
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1994
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
1995
          } else {
R
Ruibiao Chen 已提交
1996
            return py::cast(PADDLE_GET(LoDTensorArray, var));
1997 1998
          }
        });
1999
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2000

X
Xin Pan 已提交
2001 2002
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2003 2004 2005 2006
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2007
  BindCostModel(&m);
2008
  BindConstValue(&m);
2009
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
2010
  BindFleetExecutor(&m);
2011
  BindTCPStore(&m);
2012
  BindCommContextManager(&m);
2013
  BindAutoParallel(&m);
2014
  BindJitProperty(&m);
Y
Yu Yang 已提交
2015

Y
Yu Yang 已提交
2016 2017 2018 2019 2020 2021 2022 2023 2024
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2025
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2026
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2027 2028 2029

    Examples:
        .. code-block:: python
2030

Z
Zeng Jinle 已提交
2031 2032 2033
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2034 2035 2036 2037
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2038 2039
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
2040 2041 2042 2043
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
2044 2045
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
2046
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
2047 2048
             PADDLE_ENFORCE_LT(i,
                               self.size(),
2049 2050 2051
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2052 2053 2054
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
2055 2056
      .def(
          "append",
2057
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
2058 2059 2060 2061
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
2062 2063
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
2064
             Append a LoDensor to LoDTensorArray.
2065

2066 2067 2068 2069 2070
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2082
           )DOC")
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2094

2095
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
2096
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
2097
        )DOC")
2098 2099 2100 2101 2102 2103
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
2104
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
2105
                res[i] = py::cast(std::move(data));
2106 2107 2108
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
2109
              } else {
R
Ruibiao Chen 已提交
2110
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
2122

2123 2124
      .def(
          "append",
2125
          [](FetchList &self, const phi::DenseTensor &t) {
2126
            self.emplace_back();
2127
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
2128 2129 2130 2131 2132 2133 2134 2135 2136
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
2137
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
2138 2139 2140 2141 2142 2143
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
2144 2145

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
2146
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2147
        )DOC")
2148 2149 2150 2151 2152 2153 2154 2155
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
2156
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
2157 2158
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
2159
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2174

Y
Yu Yang 已提交
2175
  m.def("op_support_gpu", OpSupportGPU);
2176
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2177
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2178
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2179 2180 2181 2182 2183 2184 2185 2186
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2187 2188 2189 2190 2191 2192
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2193 2194

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2220
      });
D
dangqingqing 已提交
2221

2222
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2223 2224 2225
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2226 2227 2228
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2229 2230 2231
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2232
#endif
P
peizhilin 已提交
2233
#endif
Y
Yu Yang 已提交
2234

J
jianghaicheng 已提交
2235 2236 2237 2238
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2239 2240 2241 2242 2243 2244
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2245 2246 2247 2248
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2249
      .value("kAll", platform::ProfilerState::kAll)
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2261
  m.def("set_tracer_option", platform::SetTracerOption);
2262 2263
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2264
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2265
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2266
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2267
    PADDLE_ENFORCE_EQ(
2268 2269
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2270 2271 2272
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2273
    callable.inc_ref();
2274 2275 2276 2277
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
2278 2279
              new framework::ir::GeneratePass(py::cast<std::string>(callable()),
                                              pass_type));
2280 2281
          return pass;
        });
2282
  });
2283
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2284 2285 2286
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2287

2288
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2289 2290
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2291 2292
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2293 2294
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2295 2296 2297 2298 2299 2300 2301 2302 2303
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2304

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2368 2369
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2370 2371 2372 2373
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
2374 2375 2376
      .def_readwrite("attributes",
                     &paddle::platform::HostPythonNode::attributes)
      .def_readwrite("op_id", &paddle::platform::HostPythonNode::op_id)
C
chenjian 已提交
2377 2378 2379 2380 2381
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2382 2383 2384
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2385 2386

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2387 2388
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2389
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2390
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2391 2392
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2393 2394 2395 2396 2397 2398
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2422 2423 2424 2425 2426 2427 2428 2429
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2448 2449
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
2450 2451
  m.def("enable_op_info_recorder", &phi::EnableOpInfoRecorder);
  m.def("disable_op_info_recorder", &phi::DisableOpInfoRecorder);
2452

2453
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2454 2455 2456 2457
  m.def("set_cublas_switch", phi::SetAllowTF32Cublas);
  m.def("get_cublas_switch", phi::AllowTF32Cublas);
  m.def("set_cudnn_switch", phi::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", phi::AllowTF32Cudnn);
2458
#endif  // PADDLE_WITH_CUDA
2459 2460 2461 2462 2463 2464 2465 2466
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2467

J
jianghaicheng 已提交
2468 2469
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2470 2471 2472
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2473 2474 2475 2476 2477 2478 2479
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2480
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2481 2482
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2483
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2494 2495 2496 2497
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2520 2521
                         option.get_type(),
                         option_name));
2522 2523 2524 2525 2526 2527 2528
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2529 2530
                         option_name,
                         option.first.cast<std::string>(),
2531 2532
                         option.second.cast<std::uint64_t>());
                   }
2533 2534 2535 2536 2537 2538
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2539 2540 2541 2542 2543 2544 2545 2546 2547
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2584 2585
                           option.second.get_type(),
                           option_key));
2586
                     }
2587 2588
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2589 2590 2591 2592 2593 2594
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2595 2596
                     element.second.get_type(),
                     option_name));
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2627 2628
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2629 2630 2631
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2632 2633
#endif

2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
  m.def("get_low_precision_op_list", [] {
    py::dict op_list;
    auto list_op = phi::KernelFactory::Instance().GetLowPrecisionKernelList();
    for (auto iter = list_op.begin(); iter != list_op.end(); iter++) {
      auto op_name = (iter->first).c_str();
      auto counts = iter->second;
      op_list[op_name] = std::to_string(counts.fp16_called_) + "," +
                         std::to_string(counts.bf16_called_) + "," +
                         std::to_string(counts.fp32_called_) + "," +
                         std::to_string(counts.other_called_);
    }
    return op_list;
  });

  m.def("clear_low_precision_op_list",
        [] { phi::KernelFactory::Instance().ClearLowPrecisionKernelList(); });

2651 2652 2653 2654 2655 2656 2657 2658
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2659
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2660 2661 2662 2663 2664 2665 2666 2667 2668
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
2669
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2670 2671 2672 2673 2674 2675 2676
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2677 2678
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2679

2680 2681
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2682

2683 2684
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2685
  // Add the api for nan op debug
2686 2687 2688 2689
  m.def("set_nan_inf_stack_limit",
        &paddle::framework::details::SetNanInfStackLimit);

  // Add the api for nan op debug
2690 2691
  m.def("set_nan_inf_debug_path",
        &paddle::framework::details::SetNanInfDebugPath);
2692

2693 2694 2695 2696 2697 2698 2699 2700
  // Add check op lost
  m.def("set_checked_op_list",
        [](const std::string &op_list) { egr::SetCheckOpList(op_list); });

  // Add skipped op list
  m.def("set_skipped_op_list",
        [](const std::string &op_list) { egr::SetSkipOpList(op_list); });

2701 2702 2703 2704 2705 2706
  m.def("check_numerics",
        [](const std::string &op_name, const paddle::Tensor &tensor) {
          VLOG(4) << "Check tensor whether has nan or inf.";
          egr::CheckTensorHasNanOrInf(op_name, tensor);
        });

D
dongdaxiang 已提交
2707
  BindFleetWrapper(&m);
2708
  BindIO(&m);
2709 2710 2711
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2712

T
Thunderbrook 已提交
2713
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2714
  BindHeterWrapper(&m);
2715
  BindMetrics(&m);
T
Thunderbrook 已提交
2716
#endif
T
Thunderbrook 已提交
2717
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2718
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2719 2720 2721
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2722
#endif
2723
  BindGlooWrapper(&m);
H
hutuxian 已提交
2724
  BindBoxHelper(&m);
H
hutuxian 已提交
2725 2726 2727
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2728
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2729
  BindNCCLWrapper(&m);
2730 2731 2732
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2733
#endif
F
flame 已提交
2734 2735
  BindGraph(&m);
  BindNode(&m);
2736
  BindPass(&m);
F
flame 已提交
2737
  BindInferenceApi(&m);
2738
  BindCompatible(&m);
2739
  BindDataset(&m);
Y
yaoxuefeng 已提交
2740
  BindGenerator(&m);
2741
#ifndef PADDLE_NO_PYTHON
2742 2743
  BindDistributed(&m);
#endif
Y
Yanghello 已提交
2744 2745 2746
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2747

T
tangwei12 已提交
2748
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2749 2750
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2751
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2752 2753
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2754 2755 2756 2757 2758
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2759 2760 2761 2762
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2763
#ifdef PADDLE_WITH_HETERPS
2764 2765
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2766 2767 2768
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2769
#endif
X
Xinger 已提交
2770
#if defined(PADDLE_WITH_RPC)
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
L
Luo Tao 已提交
2783
}
2784
}  // namespace pybind
2785
}  // namespace paddle