sched.c 222.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
99
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
100
 */
101
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
102

I
Ingo Molnar 已提交
103 104 105
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
106 107 108
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
109
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
110 111 112
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
113

114 115 116 117 118
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

140 141
static inline int rt_policy(int policy)
{
142
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
143 144 145 146 147 148 149 150 151
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
152
/*
I
Ingo Molnar 已提交
153
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
154
 */
I
Ingo Molnar 已提交
155 156 157 158 159
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

160
struct rt_bandwidth {
I
Ingo Molnar 已提交
161 162 163 164 165
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
199 200
	spin_lock_init(&rt_b->rt_runtime_lock);

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

238 239 240 241 242 243
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

244
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
245

246 247
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
248 249
struct cfs_rq;

P
Peter Zijlstra 已提交
250 251
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
252
/* task group related information */
253
struct task_group {
254
#ifdef CONFIG_CGROUP_SCHED
255 256
	struct cgroup_subsys_state css;
#endif
257 258

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
259 260 261 262 263
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
264 265 266 267 268 269
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

270
	struct rt_bandwidth rt_bandwidth;
271
#endif
272

273
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
274
	struct list_head list;
P
Peter Zijlstra 已提交
275 276 277 278

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
279 280
};

D
Dhaval Giani 已提交
281
#ifdef CONFIG_USER_SCHED
282 283 284 285 286 287 288 289

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

290
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
291 292 293 294
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
295
#endif /* CONFIG_FAIR_GROUP_SCHED */
296 297 298 299

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
300 301
#endif /* CONFIG_RT_GROUP_SCHED */
#else /* !CONFIG_FAIR_GROUP_SCHED */
302
#define root_task_group init_task_group
303
#endif /* CONFIG_FAIR_GROUP_SCHED */
P
Peter Zijlstra 已提交
304

305
/* task_group_lock serializes add/remove of task groups and also changes to
306 307
 * a task group's cpu shares.
 */
308
static DEFINE_SPINLOCK(task_group_lock);
309

310 311 312
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
313
#else /* !CONFIG_USER_SCHED */
314
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
315
#endif /* CONFIG_USER_SCHED */
316

317
/*
318 319 320 321
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
322 323 324
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
325
#define MIN_SHARES	2
326
#define MAX_SHARES	(1UL << 18)
327

328 329 330
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
331
/* Default task group.
I
Ingo Molnar 已提交
332
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
333
 */
334
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
335 336

/* return group to which a task belongs */
337
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
338
{
339
	struct task_group *tg;
340

341
#ifdef CONFIG_USER_SCHED
342
	tg = p->user->tg;
343
#elif defined(CONFIG_CGROUP_SCHED)
344 345
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
346
#else
I
Ingo Molnar 已提交
347
	tg = &init_task_group;
348
#endif
349
	return tg;
S
Srivatsa Vaddagiri 已提交
350 351 352
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
353
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
354
{
355
#ifdef CONFIG_FAIR_GROUP_SCHED
356 357
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
358
#endif
P
Peter Zijlstra 已提交
359

360
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
361 362
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
363
#endif
S
Srivatsa Vaddagiri 已提交
364 365 366 367
}

#else

P
Peter Zijlstra 已提交
368
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
369 370 371 372
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
373

374
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
375

I
Ingo Molnar 已提交
376 377 378 379 380 381
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
382
	u64 min_vruntime;
383
	u64 pair_start;
I
Ingo Molnar 已提交
384 385 386

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
387 388 389 390 391 392

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
393 394
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
395
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
396 397 398

	unsigned long nr_spread_over;

399
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
400 401
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
402 403
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
404 405 406 407 408 409
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
410 411
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
412 413 414

#ifdef CONFIG_SMP
	/*
415
	 * the part of load.weight contributed by tasks
416
	 */
417
	unsigned long task_weight;
418

419 420 421 422 423 424 425
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
426

427 428 429 430
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
431 432 433 434 435

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
436
#endif
I
Ingo Molnar 已提交
437 438
#endif
};
L
Linus Torvalds 已提交
439

I
Ingo Molnar 已提交
440 441 442
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
443
	unsigned long rt_nr_running;
444
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
445 446
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
447
#ifdef CONFIG_SMP
448
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
449
	int overloaded;
P
Peter Zijlstra 已提交
450
#endif
P
Peter Zijlstra 已提交
451
	int rt_throttled;
P
Peter Zijlstra 已提交
452
	u64 rt_time;
P
Peter Zijlstra 已提交
453
	u64 rt_runtime;
I
Ingo Molnar 已提交
454
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
455
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
456

457
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
458 459
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
460 461 462 463 464
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
465 466
};

G
Gregory Haskins 已提交
467 468 469 470
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
471 472
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
473 474 475 476 477 478 479 480
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
481

I
Ingo Molnar 已提交
482
	/*
483 484 485 486
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
487
	atomic_t rto_count;
488 489 490
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
491 492
};

493 494 495 496
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
497 498 499 500
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
501 502 503 504 505 506 507
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
508
struct rq {
509 510
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
511 512 513 514 515 516

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
517 518
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
519
	unsigned char idle_at_tick;
520
#ifdef CONFIG_NO_HZ
521
	unsigned long last_tick_seen;
522 523
	unsigned char in_nohz_recently;
#endif
524 525
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
526 527 528 529
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
530 531
	struct rt_rq rt;

I
Ingo Molnar 已提交
532
#ifdef CONFIG_FAIR_GROUP_SCHED
533 534
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
535 536
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
537
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
538 539 540 541 542 543 544 545 546 547
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

548
	struct task_struct *curr, *idle;
549
	unsigned long next_balance;
L
Linus Torvalds 已提交
550
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
551

552
	u64 clock;
I
Ingo Molnar 已提交
553

L
Linus Torvalds 已提交
554 555 556
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
557
	struct root_domain *rd;
L
Linus Torvalds 已提交
558 559 560 561 562
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
563 564
	/* cpu of this runqueue: */
	int cpu;
565
	int online;
L
Linus Torvalds 已提交
566

567
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
568

569
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
570 571 572
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
573
#ifdef CONFIG_SCHED_HRTICK
574 575 576 577
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
578 579 580
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
581 582 583 584 585
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
586 587 588 589
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
590 591

	/* schedule() stats */
592 593 594
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
595 596

	/* try_to_wake_up() stats */
597 598
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
599 600

	/* BKL stats */
601
	unsigned int bkl_count;
L
Linus Torvalds 已提交
602 603 604
#endif
};

605
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
606

I
Ingo Molnar 已提交
607 608 609 610 611
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

612 613 614 615 616 617 618 619 620
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
621 622
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
623
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
624 625 626 627
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
628 629
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
630 631 632 633 634 635

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

636 637 638 639 640
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
641 642 643 644 645 646 647 648 649
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
668 669 670
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
671 672 673 674

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
675
enum {
P
Peter Zijlstra 已提交
676
#include "sched_features.h"
I
Ingo Molnar 已提交
677 678
};

P
Peter Zijlstra 已提交
679 680 681 682 683
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
684
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
685 686 687 688 689 690 691 692 693
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

694
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
695 696 697 698 699 700
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

701
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
729
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
759
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
802

803 804 805 806 807 808
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
809 810
/*
 * ratelimit for updating the group shares.
811
 * default: 0.25ms
P
Peter Zijlstra 已提交
812
 */
813
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
814

P
Peter Zijlstra 已提交
815
/*
P
Peter Zijlstra 已提交
816
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
817 818
 * default: 1s
 */
P
Peter Zijlstra 已提交
819
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
820

821 822
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
823 824 825 826 827
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
828

829 830 831 832 833 834 835
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
836
	if (sysctl_sched_rt_runtime < 0)
837 838 839 840
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
841

L
Linus Torvalds 已提交
842
#ifndef prepare_arch_switch
843 844 845 846 847 848
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

849 850 851 852 853
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

854
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
855
static inline int task_running(struct rq *rq, struct task_struct *p)
856
{
857
	return task_current(rq, p);
858 859
}

860
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
861 862 863
{
}

864
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
865
{
866 867 868 869
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
870 871 872 873 874 875 876
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

877 878 879 880
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
881
static inline int task_running(struct rq *rq, struct task_struct *p)
882 883 884 885
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
886
	return task_current(rq, p);
887 888 889
#endif
}

890
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

907
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
908 909 910 911 912 913 914 915 916 917 918 919
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
920
#endif
921 922
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
923

924 925 926 927
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
928
static inline struct rq *__task_rq_lock(struct task_struct *p)
929 930
	__acquires(rq->lock)
{
931 932 933 934 935
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
936 937 938 939
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
940 941
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
942
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
943 944
 * explicitly disabling preemption.
 */
945
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
946 947
	__acquires(rq->lock)
{
948
	struct rq *rq;
L
Linus Torvalds 已提交
949

950 951 952 953 954 955
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
956 957 958 959
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
960
static void __task_rq_unlock(struct rq *rq)
961 962 963 964 965
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

966
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
967 968 969 970 971 972
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
973
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
974
 */
A
Alexey Dobriyan 已提交
975
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
976 977
	__acquires(rq->lock)
{
978
	struct rq *rq;
L
Linus Torvalds 已提交
979 980 981 982 983 984 985 986

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1008
	if (!cpu_active(cpu_of(rq)))
1009
		return 0;
P
Peter Zijlstra 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1030
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1031 1032 1033 1034 1035 1036
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1037
#ifdef CONFIG_SMP
1038 1039 1040 1041
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1042
{
1043
	struct rq *rq = arg;
1044

1045 1046 1047 1048
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1049 1050
}

1051 1052 1053 1054 1055 1056
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1057
{
1058 1059
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1060

1061 1062 1063 1064 1065 1066 1067 1068
	timer->expires = time;

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1083
		hrtick_clear(cpu_rq(cpu));
1084 1085 1086 1087 1088 1089
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1090
static __init void init_hrtick(void)
1091 1092 1093
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1104

1105
static void init_hrtick(void)
P
Peter Zijlstra 已提交
1106 1107
{
}
1108
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1109

1110
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1111
{
1112 1113
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1114

1115 1116 1117 1118
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1119

1120 1121 1122
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
P
Peter Zijlstra 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1133 1134 1135
static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1136 1137
#endif

I
Ingo Molnar 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1151
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1152 1153 1154 1155 1156
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1157
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1158 1159
		return;

1160
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1223
#endif /* CONFIG_NO_HZ */
1224

1225
#else /* !CONFIG_SMP */
1226
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1227 1228
{
	assert_spin_locked(&task_rq(p)->lock);
1229
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1230
}
1231
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1232

1233 1234 1235 1236 1237 1238 1239 1240
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1241 1242 1243
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1244
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1245

1246 1247 1248
/*
 * delta *= weight / lw
 */
1249
static unsigned long
1250 1251 1252 1253 1254
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1255 1256 1257 1258 1259 1260 1261
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1262 1263 1264 1265 1266

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1267
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1268
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1269 1270
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1271
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1272

1273
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1274 1275
}

1276
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1277 1278
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1279
	lw->inv_weight = 0;
1280 1281
}

1282
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1283 1284
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1285
	lw->inv_weight = 0;
1286 1287
}

1288 1289 1290 1291
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1292
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1293 1294 1295 1296
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1308 1309 1310
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1311 1312
 */
static const int prio_to_weight[40] = {
1313 1314 1315 1316 1317 1318 1319 1320
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1321 1322
};

1323 1324 1325 1326 1327 1328 1329
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1330
static const u32 prio_to_wmult[40] = {
1331 1332 1333 1334 1335 1336 1337 1338
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1339
};
1340

I
Ingo Molnar 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1366

1367 1368 1369 1370 1371 1372
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1383 1384 1385 1386
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1387

1388 1389 1390 1391 1392 1393 1394 1395 1396
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (rq->nr_running)
		rq->avg_load_per_task = rq->load.weight / rq->nr_running;

	return rq->avg_load_per_task;
}
1397 1398

#ifdef CONFIG_FAIR_GROUP_SCHED
1399

1400
typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1401 1402 1403 1404 1405

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
1406 1407
static void
walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1408 1409 1410 1411 1412 1413
{
	struct task_group *parent, *child;

	rcu_read_lock();
	parent = &root_task_group;
down:
1414
	(*down)(parent, cpu, sd);
1415 1416 1417 1418 1419 1420 1421
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
1422
	(*up)(parent, cpu, sd);
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
	rcu_read_unlock();
}

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1437
__update_group_shares_cpu(struct task_group *tg, int cpu,
1438
			  unsigned long sd_shares, unsigned long sd_rq_weight)
1439
{
1440 1441 1442 1443
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1444
	if (!tg->se[cpu])
1445 1446
		return;

1447
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1459 1460 1461
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1462 1463 1464 1465 1466 1467
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1468
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1469 1470 1471 1472

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
1473
	tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1474
	tg->cfs_rq[cpu]->rq_weight = rq_weight;
1475 1476 1477 1478 1479 1480

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;

1481
	__set_se_shares(tg->se[cpu], shares);
1482
}
1483 1484

/*
1485 1486 1487
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1488 1489
 */
static void
1490
tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1491
{
1492 1493 1494
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
	int i;
1495

1496 1497 1498
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1499 1500
	}

1501 1502 1503 1504 1505
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1506

P
Peter Zijlstra 已提交
1507 1508 1509
	if (!rq_weight)
		rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;

1510 1511 1512 1513 1514
	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
1515
		__update_group_shares_cpu(tg, i, shares, rq_weight);
1516 1517 1518 1519 1520
		spin_unlock_irqrestore(&rq->lock, flags);
	}
}

/*
1521 1522 1523
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1524
 */
1525
static void
1526
tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1527
{
1528
	unsigned long load;
1529

1530 1531 1532 1533 1534 1535 1536
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1537

1538
	tg->cfs_rq[cpu]->h_load = load;
1539 1540
}

1541 1542
static void
tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1543 1544 1545
{
}

1546
static void update_shares(struct sched_domain *sd)
1547
{
P
Peter Zijlstra 已提交
1548 1549 1550 1551 1552 1553 1554
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
		walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
	}
1555 1556
}

1557 1558 1559 1560 1561 1562 1563
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

1564
static void update_h_load(int cpu)
1565
{
1566
	walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1567 1568 1569 1570
}

#else

1571
static inline void update_shares(struct sched_domain *sd)
1572 1573 1574
{
}

1575 1576 1577 1578
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1579 1580 1581 1582
#endif

#endif

V
Vegard Nossum 已提交
1583
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1584 1585
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1586
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1587 1588 1589
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1590
#endif
1591

I
Ingo Molnar 已提交
1592 1593
#include "sched_stats.h"
#include "sched_idletask.c"
1594 1595
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1596 1597 1598 1599 1600
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1601 1602
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1603

1604
static void inc_nr_running(struct rq *rq)
1605 1606 1607 1608
{
	rq->nr_running++;
}

1609
static void dec_nr_running(struct rq *rq)
1610 1611 1612 1613
{
	rq->nr_running--;
}

1614 1615 1616
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1617 1618 1619 1620
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1621

I
Ingo Molnar 已提交
1622 1623 1624 1625 1626 1627 1628 1629
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1630

I
Ingo Molnar 已提交
1631 1632
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1633 1634
}

1635 1636 1637 1638 1639 1640
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1641
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1642
{
I
Ingo Molnar 已提交
1643
	sched_info_queued(p);
1644
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1645
	p->se.on_rq = 1;
1646 1647
}

1648
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1649
{
1650 1651 1652 1653 1654 1655
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1656
	sched_info_dequeued(p);
1657
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1658
	p->se.on_rq = 0;
1659 1660
}

1661
/*
I
Ingo Molnar 已提交
1662
 * __normal_prio - return the priority that is based on the static prio
1663 1664 1665
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1666
	return p->static_prio;
1667 1668
}

1669 1670 1671 1672 1673 1674 1675
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1676
static inline int normal_prio(struct task_struct *p)
1677 1678 1679
{
	int prio;

1680
	if (task_has_rt_policy(p))
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1694
static int effective_prio(struct task_struct *p)
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1707
/*
I
Ingo Molnar 已提交
1708
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1709
 */
I
Ingo Molnar 已提交
1710
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1711
{
1712
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1713
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1714

1715
	enqueue_task(rq, p, wakeup);
1716
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1717 1718 1719 1720 1721
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1722
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1723
{
1724
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1725 1726
		rq->nr_uninterruptible++;

1727
	dequeue_task(rq, p, sleep);
1728
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1729 1730 1731 1732 1733 1734
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1735
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1736 1737 1738 1739
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1740 1741
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1742
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1743
#ifdef CONFIG_SMP
1744 1745 1746 1747 1748 1749
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1750 1751
	task_thread_info(p)->cpu = cpu;
#endif
1752 1753
}

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1766
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1767

1768 1769 1770 1771 1772 1773
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1774 1775 1776
/*
 * Is this task likely cache-hot:
 */
1777
static int
1778 1779 1780 1781
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1782 1783 1784
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1785
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1786 1787
		return 1;

1788 1789 1790
	if (p->sched_class != &fair_sched_class)
		return 0;

1791 1792 1793 1794 1795
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1796 1797 1798 1799 1800 1801
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1802
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1803
{
I
Ingo Molnar 已提交
1804 1805
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1806 1807
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1808
	u64 clock_offset;
I
Ingo Molnar 已提交
1809 1810

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1811 1812 1813 1814

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1815 1816 1817 1818
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1819 1820 1821 1822 1823
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1824
#endif
1825 1826
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1827 1828

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1829 1830
}

1831
struct migration_req {
L
Linus Torvalds 已提交
1832 1833
	struct list_head list;

1834
	struct task_struct *task;
L
Linus Torvalds 已提交
1835 1836 1837
	int dest_cpu;

	struct completion done;
1838
};
L
Linus Torvalds 已提交
1839 1840 1841 1842 1843

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1844
static int
1845
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1846
{
1847
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1848 1849 1850 1851 1852

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1853
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1854 1855 1856 1857 1858 1859 1860 1861
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1862

L
Linus Torvalds 已提交
1863 1864 1865 1866 1867 1868
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1869 1870 1871 1872 1873 1874 1875
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1876 1877 1878 1879 1880 1881
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1882
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1883 1884
{
	unsigned long flags;
I
Ingo Molnar 已提交
1885
	int running, on_rq;
R
Roland McGrath 已提交
1886
	unsigned long ncsw;
1887
	struct rq *rq;
L
Linus Torvalds 已提交
1888

1889 1890 1891 1892 1893 1894 1895 1896
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1897

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1909 1910 1911
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1912
			cpu_relax();
R
Roland McGrath 已提交
1913
		}
1914

1915 1916 1917 1918 1919 1920 1921 1922
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
1923 1924 1925 1926 1927 1928
		ncsw = 0;
		if (!match_state || p->state == match_state) {
			ncsw = p->nivcsw + p->nvcsw;
			if (unlikely(!ncsw))
				ncsw = 1;
		}
1929
		task_rq_unlock(rq, &flags);
1930

R
Roland McGrath 已提交
1931 1932 1933 1934 1935 1936
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1947

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1961

1962 1963 1964 1965 1966 1967 1968
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1969 1970

	return ncsw;
L
Linus Torvalds 已提交
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1986
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1998 1999
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2000 2001 2002 2003
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2004
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2005
{
2006
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2007
	unsigned long total = weighted_cpuload(cpu);
2008

2009
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2010
		return total;
2011

I
Ingo Molnar 已提交
2012
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2013 2014 2015
}

/*
2016 2017
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2018
 */
A
Alexey Dobriyan 已提交
2019
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2020
{
2021
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2022
	unsigned long total = weighted_cpuload(cpu);
2023

2024
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2025
		return total;
2026

I
Ingo Molnar 已提交
2027
	return max(rq->cpu_load[type-1], total);
2028 2029
}

N
Nick Piggin 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2047 2048
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2049
			continue;
2050

N
Nick Piggin 已提交
2051 2052 2053 2054 2055
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2056
		for_each_cpu_mask_nr(i, group->cpumask) {
N
Nick Piggin 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2067 2068
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2069 2070 2071 2072 2073 2074 2075 2076

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2077
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2078 2079 2080 2081 2082 2083 2084

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2085
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2086
 */
I
Ingo Molnar 已提交
2087
static int
2088 2089
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2090 2091 2092 2093 2094
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2095
	/* Traverse only the allowed CPUs */
2096
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2097

2098
	for_each_cpu_mask_nr(i, *tmp) {
2099
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2125

2126
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2127 2128 2129
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2130 2131
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2132 2133
		if (tmp->flags & flag)
			sd = tmp;
2134
	}
N
Nick Piggin 已提交
2135

2136 2137 2138
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2139
	while (sd) {
2140
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2141
		struct sched_group *group;
2142 2143 2144 2145 2146 2147
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2148 2149 2150

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2151 2152 2153 2154
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2155

2156
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2157 2158 2159 2160 2161
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2162

2163
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2195
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2196
{
2197
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2198 2199
	unsigned long flags;
	long old_state;
2200
	struct rq *rq;
L
Linus Torvalds 已提交
2201

2202 2203 2204
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				update_shares(sd);
				break;
			}
		}
	}
#endif

2221
	smp_wmb();
L
Linus Torvalds 已提交
2222 2223 2224 2225 2226
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2227
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2228 2229 2230
		goto out_running;

	cpu = task_cpu(p);
2231
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2232 2233 2234 2235 2236 2237
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2238 2239 2240
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2241 2242 2243 2244 2245 2246
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2247
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2248 2249 2250 2251 2252 2253
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2267
#endif /* CONFIG_SCHEDSTATS */
2268

L
Linus Torvalds 已提交
2269 2270
out_activate:
#endif /* CONFIG_SMP */
2271 2272 2273 2274 2275 2276 2277 2278 2279
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2280
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2281
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2282 2283 2284
	success = 1;

out_running:
M
Mathieu Desnoyers 已提交
2285 2286 2287
	trace_mark(kernel_sched_wakeup,
		"pid %d state %ld ## rq %p task %p rq->curr %p",
		p->pid, p->state, rq, p, rq->curr);
I
Ingo Molnar 已提交
2288 2289
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2290
	p->state = TASK_RUNNING;
2291 2292 2293 2294
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2295
out:
2296 2297
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2298 2299 2300 2301 2302
	task_rq_unlock(rq, &flags);

	return success;
}

2303
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2304
{
2305
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2306 2307 2308
}
EXPORT_SYMBOL(wake_up_process);

2309
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2310 2311 2312 2313 2314 2315 2316
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2317 2318 2319 2320 2321 2322 2323
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2324
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2325 2326
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2327 2328 2329

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2330 2331 2332 2333 2334 2335
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2336
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2337
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2338
#endif
N
Nick Piggin 已提交
2339

P
Peter Zijlstra 已提交
2340
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2341
	p->se.on_rq = 0;
2342
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2343

2344 2345 2346 2347
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2348 2349 2350 2351 2352 2353 2354
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2369
	set_task_cpu(p, cpu);
2370 2371 2372 2373 2374

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2375 2376
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2377

2378
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2379
	if (likely(sched_info_on()))
2380
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2381
#endif
2382
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2383 2384
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2385
#ifdef CONFIG_PREEMPT
2386
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2387
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2388
#endif
N
Nick Piggin 已提交
2389
	put_cpu();
L
Linus Torvalds 已提交
2390 2391 2392 2393 2394 2395 2396 2397 2398
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2399
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2400 2401
{
	unsigned long flags;
I
Ingo Molnar 已提交
2402
	struct rq *rq;
L
Linus Torvalds 已提交
2403 2404

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2405
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2406
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2407 2408 2409

	p->prio = effective_prio(p);

2410
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2411
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2412 2413
	} else {
		/*
I
Ingo Molnar 已提交
2414 2415
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2416
		 */
2417
		p->sched_class->task_new(rq, p);
2418
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2419
	}
M
Mathieu Desnoyers 已提交
2420 2421 2422
	trace_mark(kernel_sched_wakeup_new,
		"pid %d state %ld ## rq %p task %p rq->curr %p",
		p->pid, p->state, rq, p, rq->curr);
I
Ingo Molnar 已提交
2423
	check_preempt_curr(rq, p);
2424 2425 2426 2427
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2428
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2429 2430
}

2431 2432 2433
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2434 2435
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2436 2437 2438 2439 2440 2441 2442 2443 2444
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2445
 * @notifier: notifier struct to unregister
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2475
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2487
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2488

2489 2490 2491
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2492
 * @prev: the current task that is being switched out
2493 2494 2495 2496 2497 2498 2499 2500 2501
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2502 2503 2504
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2505
{
2506
	fire_sched_out_preempt_notifiers(prev, next);
2507 2508 2509 2510
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2511 2512
/**
 * finish_task_switch - clean up after a task-switch
2513
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2514 2515
 * @prev: the thread we just switched away from.
 *
2516 2517 2518 2519
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2520 2521
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2522
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2523 2524 2525
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2526
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2527 2528 2529
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2530
	long prev_state;
L
Linus Torvalds 已提交
2531 2532 2533 2534 2535

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2536
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2537 2538
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2539
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2540 2541 2542 2543 2544
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2545
	prev_state = prev->state;
2546 2547
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2548 2549 2550 2551
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2552

2553
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2554 2555
	if (mm)
		mmdrop(mm);
2556
	if (unlikely(prev_state == TASK_DEAD)) {
2557 2558 2559
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2560
		 */
2561
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2562
		put_task_struct(prev);
2563
	}
L
Linus Torvalds 已提交
2564 2565 2566 2567 2568 2569
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2570
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2571 2572
	__releases(rq->lock)
{
2573 2574
	struct rq *rq = this_rq();

2575 2576 2577 2578 2579
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2580
	if (current->set_child_tid)
2581
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2582 2583 2584 2585 2586 2587
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2588
static inline void
2589
context_switch(struct rq *rq, struct task_struct *prev,
2590
	       struct task_struct *next)
L
Linus Torvalds 已提交
2591
{
I
Ingo Molnar 已提交
2592
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2593

2594
	prepare_task_switch(rq, prev, next);
M
Mathieu Desnoyers 已提交
2595 2596 2597 2598 2599
	trace_mark(kernel_sched_schedule,
		"prev_pid %d next_pid %d prev_state %ld "
		"## rq %p prev %p next %p",
		prev->pid, next->pid, prev->state,
		rq, prev, next);
I
Ingo Molnar 已提交
2600 2601
	mm = next->mm;
	oldmm = prev->active_mm;
2602 2603 2604 2605 2606 2607 2608
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2609
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2610 2611 2612 2613 2614 2615
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2616
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2617 2618 2619
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2620 2621 2622 2623 2624 2625 2626
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2627
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2628
#endif
L
Linus Torvalds 已提交
2629 2630 2631 2632

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2633 2634 2635 2636 2637 2638 2639
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2663
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2678 2679
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2680

2681
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2682 2683 2684 2685 2686 2687 2688 2689 2690
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2691
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2692 2693 2694 2695 2696
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2712
/*
I
Ingo Molnar 已提交
2713 2714
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2715
 */
I
Ingo Molnar 已提交
2716
static void update_cpu_load(struct rq *this_rq)
2717
{
2718
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2731 2732 2733 2734 2735 2736 2737
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2738 2739
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2740 2741
}

I
Ingo Molnar 已提交
2742 2743
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2744 2745 2746 2747 2748 2749
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2750
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2751 2752 2753
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2754
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2755 2756 2757 2758
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2759
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2760
			spin_lock(&rq1->lock);
2761
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2762 2763
		} else {
			spin_lock(&rq2->lock);
2764
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2765 2766
		}
	}
2767 2768
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2769 2770 2771 2772 2773 2774 2775 2776
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2777
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2791
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2792 2793 2794 2795
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2796 2797
	int ret = 0;

2798 2799 2800 2801 2802
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2803
	if (unlikely(!spin_trylock(&busiest->lock))) {
2804
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2805 2806
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
2807
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
S
Steven Rostedt 已提交
2808
			ret = 1;
L
Linus Torvalds 已提交
2809
		} else
2810
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2811
	}
S
Steven Rostedt 已提交
2812
	return ret;
L
Linus Torvalds 已提交
2813 2814
}

2815 2816 2817 2818 2819 2820 2821
static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}

L
Linus Torvalds 已提交
2822 2823 2824
/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2825
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2826 2827
 * the cpu_allowed mask is restored.
 */
2828
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2829
{
2830
	struct migration_req req;
L
Linus Torvalds 已提交
2831
	unsigned long flags;
2832
	struct rq *rq;
L
Linus Torvalds 已提交
2833 2834 2835

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
2836
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2837 2838 2839 2840 2841 2842
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2843

L
Linus Torvalds 已提交
2844 2845 2846 2847 2848
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2849

L
Linus Torvalds 已提交
2850 2851 2852 2853 2854 2855 2856
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2857 2858
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2859 2860 2861 2862
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2863
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2864
	put_cpu();
N
Nick Piggin 已提交
2865 2866
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2867 2868 2869 2870 2871 2872
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2873 2874
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2875
{
2876
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2877
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2878
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2879 2880 2881 2882
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2883
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2884 2885 2886 2887 2888
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2889
static
2890
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2891
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2892
		     int *all_pinned)
L
Linus Torvalds 已提交
2893 2894 2895 2896 2897 2898 2899
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2900 2901
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2902
		return 0;
2903
	}
2904 2905
	*all_pinned = 0;

2906 2907
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2908
		return 0;
2909
	}
L
Linus Torvalds 已提交
2910

2911 2912 2913 2914 2915 2916
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2917 2918
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2919
#ifdef CONFIG_SCHEDSTATS
2920
		if (task_hot(p, rq->clock, sd)) {
2921
			schedstat_inc(sd, lb_hot_gained[idle]);
2922 2923
			schedstat_inc(p, se.nr_forced_migrations);
		}
2924 2925 2926 2927
#endif
		return 1;
	}

2928 2929
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2930
		return 0;
2931
	}
L
Linus Torvalds 已提交
2932 2933 2934
	return 1;
}

2935 2936 2937 2938 2939
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2940
{
2941
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2942 2943
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2944

2945
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2946 2947
		goto out;

2948 2949
	pinned = 1;

L
Linus Torvalds 已提交
2950
	/*
I
Ingo Molnar 已提交
2951
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2952
	 */
I
Ingo Molnar 已提交
2953 2954
	p = iterator->start(iterator->arg);
next:
2955
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2956
		goto out;
2957 2958

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2959 2960 2961
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2962 2963
	}

I
Ingo Molnar 已提交
2964
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2965
	pulled++;
I
Ingo Molnar 已提交
2966
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2967

2968
	/*
2969
	 * We only want to steal up to the prescribed amount of weighted load.
2970
	 */
2971
	if (rem_load_move > 0) {
2972 2973
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2974 2975
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2976 2977 2978
	}
out:
	/*
2979
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2980 2981 2982 2983
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2984 2985 2986

	if (all_pinned)
		*all_pinned = pinned;
2987 2988

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2989 2990
}

I
Ingo Molnar 已提交
2991
/*
P
Peter Williams 已提交
2992 2993 2994
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2995 2996 2997 2998
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2999
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3000 3001 3002
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3003
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3004
	unsigned long total_load_moved = 0;
3005
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3006 3007

	do {
P
Peter Williams 已提交
3008 3009
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3010
				max_load_move - total_load_moved,
3011
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3012
		class = class->next;
3013 3014 3015 3016

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3017
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3018

P
Peter Williams 已提交
3019 3020 3021
	return total_load_moved > 0;
}

3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3058
	const struct sched_class *class;
P
Peter Williams 已提交
3059 3060

	for (class = sched_class_highest; class; class = class->next)
3061
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3062 3063 3064
			return 1;

	return 0;
I
Ingo Molnar 已提交
3065 3066
}

L
Linus Torvalds 已提交
3067 3068
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3069 3070
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3071 3072 3073
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3074
		   unsigned long *imbalance, enum cpu_idle_type idle,
3075
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3076 3077 3078
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3079
	unsigned long max_pull;
3080 3081
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3082
	int load_idx, group_imb = 0;
3083 3084 3085 3086 3087 3088
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3089 3090

	max_load = this_load = total_load = total_pwr = 0;
3091 3092
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3093

I
Ingo Molnar 已提交
3094
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3095
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3096
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3097 3098 3099
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3100 3101

	do {
3102
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3103 3104
		int local_group;
		int i;
3105
		int __group_imb = 0;
3106
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3107
		unsigned long sum_nr_running, sum_weighted_load;
3108 3109
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3110 3111 3112

		local_group = cpu_isset(this_cpu, group->cpumask);

3113 3114 3115
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3116
		/* Tally up the load of all CPUs in the group */
3117
		sum_weighted_load = sum_nr_running = avg_load = 0;
3118 3119
		sum_avg_load_per_task = avg_load_per_task = 0;

3120 3121
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3122

3123
		for_each_cpu_mask_nr(i, group->cpumask) {
3124 3125 3126 3127 3128 3129
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3130

3131
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3132 3133
				*sd_idle = 0;

L
Linus Torvalds 已提交
3134
			/* Bias balancing toward cpus of our domain */
3135 3136 3137 3138 3139 3140
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3141
				load = target_load(i, load_idx);
3142
			} else {
N
Nick Piggin 已提交
3143
				load = source_load(i, load_idx);
3144 3145 3146 3147 3148
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3149 3150

			avg_load += load;
3151
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3152
			sum_weighted_load += weighted_cpuload(i);
3153 3154

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3155 3156
		}

3157 3158 3159
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3160 3161
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3162
		 */
3163 3164
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3165 3166 3167 3168
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3169
		total_load += avg_load;
3170
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3171 3172

		/* Adjust by relative CPU power of the group */
3173 3174
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3175

3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3190 3191
			__group_imb = 1;

3192
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3193

L
Linus Torvalds 已提交
3194 3195 3196
		if (local_group) {
			this_load = avg_load;
			this = group;
3197 3198 3199
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3200
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3201 3202
			max_load = avg_load;
			busiest = group;
3203 3204
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3205
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3206
		}
3207 3208 3209 3210 3211 3212

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3213 3214 3215
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3216 3217 3218 3219 3220 3221 3222 3223 3224

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3225
		/*
3226 3227
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3228 3229
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3230
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3231
			goto group_next;
3232

I
Ingo Molnar 已提交
3233
		/*
3234
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3235 3236 3237 3238 3239
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3240 3241
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3242 3243
			group_min = group;
			min_nr_running = sum_nr_running;
3244 3245
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3246
		}
3247

I
Ingo Molnar 已提交
3248
		/*
3249
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3261
		}
3262 3263
group_next:
#endif
L
Linus Torvalds 已提交
3264 3265 3266
		group = group->next;
	} while (group != sd->groups);

3267
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3268 3269 3270 3271 3272 3273 3274 3275
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3276
	busiest_load_per_task /= busiest_nr_running;
3277 3278 3279
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3280 3281 3282 3283 3284 3285 3286 3287
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3288
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3289 3290
	 * appear as very large values with unsigned longs.
	 */
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3303 3304

	/* Don't want to pull so many tasks that a group would go idle */
3305
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3306

L
Linus Torvalds 已提交
3307
	/* How much load to actually move to equalise the imbalance */
3308 3309
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3310 3311
			/ SCHED_LOAD_SCALE;

3312 3313 3314 3315 3316 3317
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3318
	if (*imbalance < busiest_load_per_task) {
3319
		unsigned long tmp, pwr_now, pwr_move;
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3330
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3331

3332
		if (max_load - this_load + 2*busiest_load_per_task >=
I
Ingo Molnar 已提交
3333
					busiest_load_per_task * imbn) {
3334
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3335 3336 3337 3338 3339 3340 3341 3342 3343
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3344 3345 3346 3347
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3348 3349 3350
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3351 3352
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3353
		if (max_load > tmp)
3354
			pwr_move += busiest->__cpu_power *
3355
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3356 3357

		/* Amount of load we'd add */
3358
		if (max_load * busiest->__cpu_power <
3359
				busiest_load_per_task * SCHED_LOAD_SCALE)
3360 3361
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3362
		else
3363 3364 3365 3366
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3367 3368 3369
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3370 3371
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3372 3373 3374 3375 3376
	}

	return busiest;

out_balanced:
3377
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3378
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3379
		goto ret;
L
Linus Torvalds 已提交
3380

3381 3382 3383 3384 3385
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3386
ret:
L
Linus Torvalds 已提交
3387 3388 3389 3390 3391 3392 3393
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3394
static struct rq *
I
Ingo Molnar 已提交
3395
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3396
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3397
{
3398
	struct rq *busiest = NULL, *rq;
3399
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3400 3401
	int i;

3402
	for_each_cpu_mask_nr(i, group->cpumask) {
I
Ingo Molnar 已提交
3403
		unsigned long wl;
3404 3405 3406 3407

		if (!cpu_isset(i, *cpus))
			continue;

3408
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3409
		wl = weighted_cpuload(i);
3410

I
Ingo Molnar 已提交
3411
		if (rq->nr_running == 1 && wl > imbalance)
3412
			continue;
L
Linus Torvalds 已提交
3413

I
Ingo Molnar 已提交
3414 3415
		if (wl > max_load) {
			max_load = wl;
3416
			busiest = rq;
L
Linus Torvalds 已提交
3417 3418 3419 3420 3421 3422
		}
	}

	return busiest;
}

3423 3424 3425 3426 3427 3428
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3429 3430 3431 3432
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3433
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3434
			struct sched_domain *sd, enum cpu_idle_type idle,
3435
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3436
{
P
Peter Williams 已提交
3437
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3438 3439
	struct sched_group *group;
	unsigned long imbalance;
3440
	struct rq *busiest;
3441
	unsigned long flags;
N
Nick Piggin 已提交
3442

3443 3444
	cpus_setall(*cpus);

3445 3446 3447
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3448
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3449
	 * portraying it as CPU_NOT_IDLE.
3450
	 */
I
Ingo Molnar 已提交
3451
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3452
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3453
		sd_idle = 1;
L
Linus Torvalds 已提交
3454

3455
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3456

3457
redo:
3458
	update_shares(sd);
3459
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3460
				   cpus, balance);
3461

3462
	if (*balance == 0)
3463 3464
		goto out_balanced;

L
Linus Torvalds 已提交
3465 3466 3467 3468 3469
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3470
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3471 3472 3473 3474 3475
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3476
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3477 3478 3479

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3480
	ld_moved = 0;
L
Linus Torvalds 已提交
3481 3482 3483 3484
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3485
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3486 3487
		 * correctly treated as an imbalance.
		 */
3488
		local_irq_save(flags);
N
Nick Piggin 已提交
3489
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3490
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3491
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3492
		double_rq_unlock(this_rq, busiest);
3493
		local_irq_restore(flags);
3494

3495 3496 3497
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3498
		if (ld_moved && this_cpu != smp_processor_id())
3499 3500
			resched_cpu(this_cpu);

3501
		/* All tasks on this runqueue were pinned by CPU affinity */
3502
		if (unlikely(all_pinned)) {
3503 3504
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3505
				goto redo;
3506
			goto out_balanced;
3507
		}
L
Linus Torvalds 已提交
3508
	}
3509

P
Peter Williams 已提交
3510
	if (!ld_moved) {
L
Linus Torvalds 已提交
3511 3512 3513 3514 3515
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3516
			spin_lock_irqsave(&busiest->lock, flags);
3517 3518 3519 3520 3521

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3522
				spin_unlock_irqrestore(&busiest->lock, flags);
3523 3524 3525 3526
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3527 3528 3529
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3530
				active_balance = 1;
L
Linus Torvalds 已提交
3531
			}
3532
			spin_unlock_irqrestore(&busiest->lock, flags);
3533
			if (active_balance)
L
Linus Torvalds 已提交
3534 3535 3536 3537 3538 3539
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3540
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3541
		}
3542
	} else
L
Linus Torvalds 已提交
3543 3544
		sd->nr_balance_failed = 0;

3545
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3546 3547
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3548 3549 3550 3551 3552 3553 3554 3555 3556
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3557 3558
	}

P
Peter Williams 已提交
3559
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3560
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3561 3562 3563
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3564 3565 3566 3567

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3568
	sd->nr_balance_failed = 0;
3569 3570

out_one_pinned:
L
Linus Torvalds 已提交
3571
	/* tune up the balancing interval */
3572 3573
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3574 3575
		sd->balance_interval *= 2;

3576
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3577
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3578 3579 3580 3581
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3582 3583
	if (ld_moved)
		update_shares(sd);
3584
	return ld_moved;
L
Linus Torvalds 已提交
3585 3586 3587 3588 3589 3590
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3591
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3592 3593
 * this_rq is locked.
 */
3594
static int
3595 3596
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3597 3598
{
	struct sched_group *group;
3599
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3600
	unsigned long imbalance;
P
Peter Williams 已提交
3601
	int ld_moved = 0;
N
Nick Piggin 已提交
3602
	int sd_idle = 0;
3603
	int all_pinned = 0;
3604 3605

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3606

3607 3608 3609 3610
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3611
	 * portraying it as CPU_NOT_IDLE.
3612 3613 3614
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3615
		sd_idle = 1;
L
Linus Torvalds 已提交
3616

3617
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3618
redo:
3619
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3620
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3621
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3622
	if (!group) {
I
Ingo Molnar 已提交
3623
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3624
		goto out_balanced;
L
Linus Torvalds 已提交
3625 3626
	}

3627
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3628
	if (!busiest) {
I
Ingo Molnar 已提交
3629
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3630
		goto out_balanced;
L
Linus Torvalds 已提交
3631 3632
	}

N
Nick Piggin 已提交
3633 3634
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3635
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3636

P
Peter Williams 已提交
3637
	ld_moved = 0;
3638 3639 3640
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3641 3642
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3643
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3644 3645
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3646
		double_unlock_balance(this_rq, busiest);
3647

3648
		if (unlikely(all_pinned)) {
3649 3650
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3651 3652
				goto redo;
		}
3653 3654
	}

P
Peter Williams 已提交
3655
	if (!ld_moved) {
I
Ingo Molnar 已提交
3656
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3657 3658
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3659 3660
			return -1;
	} else
3661
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3662

3663
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3664
	return ld_moved;
3665 3666

out_balanced:
I
Ingo Molnar 已提交
3667
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3668
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3669
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3670
		return -1;
3671
	sd->nr_balance_failed = 0;
3672

3673
	return 0;
L
Linus Torvalds 已提交
3674 3675 3676 3677 3678 3679
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3680
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3681 3682
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3683 3684
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3685
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3686 3687

	for_each_domain(this_cpu, sd) {
3688 3689 3690 3691 3692 3693
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3694
			/* If we've pulled tasks over stop searching: */
3695 3696
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3697 3698 3699 3700 3701 3702

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3703
	}
I
Ingo Molnar 已提交
3704
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3705 3706 3707 3708 3709
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3710
	}
L
Linus Torvalds 已提交
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3721
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3722
{
3723
	int target_cpu = busiest_rq->push_cpu;
3724 3725
	struct sched_domain *sd;
	struct rq *target_rq;
3726

3727
	/* Is there any task to move? */
3728 3729 3730 3731
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3732 3733

	/*
3734
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3735
	 * we need to fix it. Originally reported by
3736
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3737
	 */
3738
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3739

3740 3741
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3742 3743
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3744 3745

	/* Search for an sd spanning us and the target CPU. */
3746
	for_each_domain(target_cpu, sd) {
3747
		if ((sd->flags & SD_LOAD_BALANCE) &&
3748
		    cpu_isset(busiest_cpu, sd->span))
3749
				break;
3750
	}
3751

3752
	if (likely(sd)) {
3753
		schedstat_inc(sd, alb_count);
3754

P
Peter Williams 已提交
3755 3756
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3757 3758 3759 3760
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3761
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3762 3763
}

3764 3765 3766
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3767
	cpumask_t cpu_mask;
3768 3769 3770 3771 3772
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3773
/*
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3784
 *
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3804
		if (!cpu_active(cpu) &&
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3841 3842 3843 3844 3845
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3846
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3847
{
3848 3849
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3850 3851
	unsigned long interval;
	struct sched_domain *sd;
3852
	/* Earliest time when we have to do rebalance again */
3853
	unsigned long next_balance = jiffies + 60*HZ;
3854
	int update_next_balance = 0;
3855
	int need_serialize;
3856
	cpumask_t tmp;
L
Linus Torvalds 已提交
3857

3858
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3859 3860 3861 3862
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3863
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3864 3865 3866 3867 3868 3869
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3870 3871 3872
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3873
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3874

3875
		if (need_serialize) {
3876 3877 3878 3879
			if (!spin_trylock(&balancing))
				goto out;
		}

3880
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3881
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3882 3883
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3884 3885 3886
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3887
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3888
			}
3889
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3890
		}
3891
		if (need_serialize)
3892 3893
			spin_unlock(&balancing);
out:
3894
		if (time_after(next_balance, sd->last_balance + interval)) {
3895
			next_balance = sd->last_balance + interval;
3896 3897
			update_next_balance = 1;
		}
3898 3899 3900 3901 3902 3903 3904 3905

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3906
	}
3907 3908 3909 3910 3911 3912 3913 3914

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3915 3916 3917 3918 3919 3920 3921 3922 3923
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3924 3925 3926 3927
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3928

I
Ingo Molnar 已提交
3929
	rebalance_domains(this_cpu, idle);
3930 3931 3932 3933 3934 3935 3936

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3937 3938
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3939 3940 3941 3942
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3943
		cpu_clear(this_cpu, cpus);
3944
		for_each_cpu_mask_nr(balance_cpu, cpus) {
3945 3946 3947 3948 3949 3950 3951 3952
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3953
			rebalance_domains(balance_cpu, CPU_IDLE);
3954 3955

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3956 3957
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3970
static inline void trigger_load_balance(struct rq *rq, int cpu)
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

3997
			if (ilb < nr_cpu_ids)
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4022
}
I
Ingo Molnar 已提交
4023 4024 4025

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4026 4027 4028
/*
 * on UP we do not need to balance between CPUs:
 */
4029
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4030 4031
{
}
I
Ingo Molnar 已提交
4032

L
Linus Torvalds 已提交
4033 4034 4035 4036 4037 4038 4039
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4040 4041
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
4042
 */
4043
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
4044 4045
{
	unsigned long flags;
4046 4047
	u64 ns, delta_exec;
	struct rq *rq;
4048

4049 4050
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
4051
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
4052 4053
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4054 4055 4056 4057
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
4058

L
Linus Torvalds 已提交
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4080 4081
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4082 4083
}

4084 4085 4086 4087 4088
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4089
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4123
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4124 4125
	cputime64_t tmp;

4126 4127 4128 4129
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4130

L
Linus Torvalds 已提交
4131 4132 4133 4134 4135 4136 4137 4138
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4139
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4140
		cpustat->system = cputime64_add(cpustat->system, tmp);
4141
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4142 4143 4144 4145 4146 4147 4148
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4160 4161 4162 4163 4164 4165 4166 4167 4168
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4169
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4170 4171 4172 4173 4174 4175 4176

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4177
	} else
L
Linus Torvalds 已提交
4178 4179 4180
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4251
	struct task_struct *curr = rq->curr;
4252 4253

	sched_clock_tick();
I
Ingo Molnar 已提交
4254 4255

	spin_lock(&rq->lock);
4256
	update_rq_clock(rq);
4257
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4258
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4259
	spin_unlock(&rq->lock);
4260

4261
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4262 4263
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4264
#endif
L
Linus Torvalds 已提交
4265 4266
}

4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4279

4280
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4281
{
4282
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4283 4284 4285
	/*
	 * Underflow?
	 */
4286 4287
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4288
#endif
L
Linus Torvalds 已提交
4289
	preempt_count() += val;
4290
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4291 4292 4293
	/*
	 * Spinlock count overflowing soon?
	 */
4294 4295
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4296 4297 4298
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4299 4300 4301
}
EXPORT_SYMBOL(add_preempt_count);

4302
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4303
{
4304
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4305 4306 4307
	/*
	 * Underflow?
	 */
4308 4309
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4310 4311 4312
	/*
	 * Is the spinlock portion underflowing?
	 */
4313 4314 4315
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4316
#endif
4317

4318 4319
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4320 4321 4322 4323 4324 4325 4326
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4327
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4328
 */
I
Ingo Molnar 已提交
4329
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4330
{
4331 4332 4333 4334 4335
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4336
	debug_show_held_locks(prev);
4337
	print_modules();
I
Ingo Molnar 已提交
4338 4339
	if (irqs_disabled())
		print_irqtrace_events(prev);
4340 4341 4342 4343 4344

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4345
}
L
Linus Torvalds 已提交
4346

I
Ingo Molnar 已提交
4347 4348 4349 4350 4351
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4352
	/*
I
Ingo Molnar 已提交
4353
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4354 4355 4356
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4357
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4358 4359
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4360 4361
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4362
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4363 4364
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4365 4366
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4367 4368
	}
#endif
I
Ingo Molnar 已提交
4369 4370 4371 4372 4373 4374
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4375
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4376
{
4377
	const struct sched_class *class;
I
Ingo Molnar 已提交
4378
	struct task_struct *p;
L
Linus Torvalds 已提交
4379 4380

	/*
I
Ingo Molnar 已提交
4381 4382
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4383
	 */
I
Ingo Molnar 已提交
4384
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4385
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4386 4387
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4388 4389
	}

I
Ingo Molnar 已提交
4390 4391
	class = sched_class_highest;
	for ( ; ; ) {
4392
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4393 4394 4395 4396 4397 4398 4399 4400 4401
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4402

I
Ingo Molnar 已提交
4403 4404 4405 4406 4407 4408
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4409
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4410
	struct rq *rq;
4411
	int cpu;
I
Ingo Molnar 已提交
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4425

4426
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4427
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4428

4429 4430 4431 4432
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4433
	update_rq_clock(rq);
4434 4435
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4436 4437

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4438
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4439
			prev->state = TASK_RUNNING;
4440
		else
4441
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4442
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4443 4444
	}

4445 4446 4447 4448
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4449

I
Ingo Molnar 已提交
4450
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4451 4452
		idle_balance(cpu, rq);

4453
	prev->sched_class->put_prev_task(rq, prev);
4454
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4455 4456

	if (likely(prev != next)) {
4457 4458
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4459 4460 4461 4462
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4463
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4464 4465 4466 4467 4468 4469
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4470 4471 4472
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4473
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4474
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4475

L
Linus Torvalds 已提交
4476 4477 4478 4479 4480 4481 4482 4483
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4484
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4485
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4486 4487 4488 4489 4490
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4491

L
Linus Torvalds 已提交
4492 4493
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4494
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4495
	 */
N
Nick Piggin 已提交
4496
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4497 4498
		return;

4499 4500 4501 4502
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4503

4504 4505 4506 4507 4508 4509
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4510 4511 4512 4513
}
EXPORT_SYMBOL(preempt_schedule);

/*
4514
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4515 4516 4517 4518 4519 4520 4521
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4522

4523
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4524 4525
	BUG_ON(ti->preempt_count || !irqs_disabled());

4526 4527 4528 4529 4530 4531
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4532

4533 4534 4535 4536 4537 4538
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4539 4540 4541 4542
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4543 4544
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4545
{
4546
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4547 4548 4549 4550
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4551 4552
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4553 4554 4555
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4556
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4557 4558 4559 4560 4561
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4562
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4563

4564
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4565 4566
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4567
		if (curr->func(curr, mode, sync, key) &&
4568
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4569 4570 4571 4572 4573 4574 4575 4576 4577
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4578
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4579
 */
4580
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4581
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4594
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4595 4596 4597 4598 4599
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4600
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4612
void
I
Ingo Molnar 已提交
4613
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4630
void complete(struct completion *x)
L
Linus Torvalds 已提交
4631 4632 4633 4634 4635
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4636
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4637 4638 4639 4640
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4641
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4642 4643 4644 4645 4646
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4647
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4648 4649 4650 4651
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4652 4653
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4654 4655 4656 4657 4658 4659 4660
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4661 4662 4663 4664
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4665 4666
				timeout = -ERESTARTSYS;
				break;
4667 4668
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4669 4670 4671
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4672
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4673
		__remove_wait_queue(&x->wait, &wait);
4674 4675
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4676 4677
	}
	x->done--;
4678
	return timeout ?: 1;
L
Linus Torvalds 已提交
4679 4680
}

4681 4682
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4683 4684 4685 4686
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4687
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4688
	spin_unlock_irq(&x->wait.lock);
4689 4690
	return timeout;
}
L
Linus Torvalds 已提交
4691

4692
void __sched wait_for_completion(struct completion *x)
4693 4694
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4695
}
4696
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4697

4698
unsigned long __sched
4699
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4700
{
4701
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4702
}
4703
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4704

4705
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4706
{
4707 4708 4709 4710
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4711
}
4712
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4713

4714
unsigned long __sched
4715 4716
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4717
{
4718
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4719
}
4720
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4721

M
Matthew Wilcox 已提交
4722 4723 4724 4725 4726 4727 4728 4729 4730
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

4777 4778
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4779
{
I
Ingo Molnar 已提交
4780 4781 4782 4783
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4784

4785
	__set_current_state(state);
L
Linus Torvalds 已提交
4786

4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4801 4802 4803
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4804
long __sched
I
Ingo Molnar 已提交
4805
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4806
{
4807
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4808 4809 4810
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4811
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4812
{
4813
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4814 4815 4816
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4817
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4818
{
4819
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4820 4821 4822
}
EXPORT_SYMBOL(sleep_on_timeout);

4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4835
void rt_mutex_setprio(struct task_struct *p, int prio)
4836 4837
{
	unsigned long flags;
4838
	int oldprio, on_rq, running;
4839
	struct rq *rq;
4840
	const struct sched_class *prev_class = p->sched_class;
4841 4842 4843 4844

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4845
	update_rq_clock(rq);
4846

4847
	oldprio = p->prio;
I
Ingo Molnar 已提交
4848
	on_rq = p->se.on_rq;
4849
	running = task_current(rq, p);
4850
	if (on_rq)
4851
		dequeue_task(rq, p, 0);
4852 4853
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4854 4855 4856 4857 4858 4859

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4860 4861
	p->prio = prio;

4862 4863
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4864
	if (on_rq) {
4865
		enqueue_task(rq, p, 0);
4866 4867

		check_class_changed(rq, p, prev_class, oldprio, running);
4868 4869 4870 4871 4872 4873
	}
	task_rq_unlock(rq, &flags);
}

#endif

4874
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4875
{
I
Ingo Molnar 已提交
4876
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4877
	unsigned long flags;
4878
	struct rq *rq;
L
Linus Torvalds 已提交
4879 4880 4881 4882 4883 4884 4885 4886

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4887
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4888 4889 4890 4891
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4892
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4893
	 */
4894
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4895 4896 4897
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4898
	on_rq = p->se.on_rq;
4899
	if (on_rq)
4900
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4901 4902

	p->static_prio = NICE_TO_PRIO(nice);
4903
	set_load_weight(p);
4904 4905 4906
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4907

I
Ingo Molnar 已提交
4908
	if (on_rq) {
4909
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4910
		/*
4911 4912
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4913
		 */
4914
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4915 4916 4917 4918 4919 4920 4921
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4922 4923 4924 4925 4926
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4927
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4928
{
4929 4930
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4931

M
Matt Mackall 已提交
4932 4933 4934 4935
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4947
	long nice, retval;
L
Linus Torvalds 已提交
4948 4949 4950 4951 4952 4953

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4954 4955
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4956 4957 4958 4959 4960 4961 4962 4963 4964
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4965 4966 4967
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4986
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4987 4988 4989 4990 4991 4992 4993 4994
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4995
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4996 4997 4998
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4999
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5014
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5015 5016 5017 5018 5019 5020 5021 5022
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5023
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5024
{
5025
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5026 5027 5028
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5029 5030
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5031
{
I
Ingo Molnar 已提交
5032
	BUG_ON(p->se.on_rq);
5033

L
Linus Torvalds 已提交
5034
	p->policy = policy;
I
Ingo Molnar 已提交
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5047
	p->rt_priority = prio;
5048 5049 5050
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5051
	set_load_weight(p);
L
Linus Torvalds 已提交
5052 5053
}

5054 5055
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5056
{
5057
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5058
	unsigned long flags;
5059
	const struct sched_class *prev_class = p->sched_class;
5060
	struct rq *rq;
L
Linus Torvalds 已提交
5061

5062 5063
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5064 5065 5066 5067 5068
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5069 5070
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5071
		return -EINVAL;
L
Linus Torvalds 已提交
5072 5073
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5074 5075
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5076 5077
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5078
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5079
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5080
		return -EINVAL;
5081
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5082 5083
		return -EINVAL;

5084 5085 5086
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5087
	if (user && !capable(CAP_SYS_NICE)) {
5088
		if (rt_policy(policy)) {
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5105 5106 5107 5108 5109 5110
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5111

5112 5113 5114 5115 5116
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5117

5118
	if (user) {
5119
#ifdef CONFIG_RT_GROUP_SCHED
5120 5121 5122 5123 5124 5125
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
			return -EPERM;
5126 5127
#endif

5128 5129 5130 5131 5132
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5133 5134 5135 5136 5137
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5138 5139 5140 5141
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5142
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5143 5144 5145
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5146 5147
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5148 5149
		goto recheck;
	}
I
Ingo Molnar 已提交
5150
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5151
	on_rq = p->se.on_rq;
5152
	running = task_current(rq, p);
5153
	if (on_rq)
5154
		deactivate_task(rq, p, 0);
5155 5156
	if (running)
		p->sched_class->put_prev_task(rq, p);
5157

L
Linus Torvalds 已提交
5158
	oldprio = p->prio;
I
Ingo Molnar 已提交
5159
	__setscheduler(rq, p, policy, param->sched_priority);
5160

5161 5162
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5163 5164
	if (on_rq) {
		activate_task(rq, p, 0);
5165 5166

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5167
	}
5168 5169 5170
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5171 5172
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5173 5174
	return 0;
}
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5189 5190
EXPORT_SYMBOL_GPL(sched_setscheduler);

5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5208 5209
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5210 5211 5212
{
	struct sched_param lparam;
	struct task_struct *p;
5213
	int retval;
L
Linus Torvalds 已提交
5214 5215 5216 5217 5218

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5219 5220 5221

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5222
	p = find_process_by_pid(pid);
5223 5224 5225
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5226

L
Linus Torvalds 已提交
5227 5228 5229 5230 5231 5232 5233 5234 5235
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5236 5237
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5238
{
5239 5240 5241 5242
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5262
	struct task_struct *p;
5263
	int retval;
L
Linus Torvalds 已提交
5264 5265

	if (pid < 0)
5266
		return -EINVAL;
L
Linus Torvalds 已提交
5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5288
	struct task_struct *p;
5289
	int retval;
L
Linus Torvalds 已提交
5290 5291

	if (!param || pid < 0)
5292
		return -EINVAL;
L
Linus Torvalds 已提交
5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5319
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5320 5321
{
	cpumask_t cpus_allowed;
5322
	cpumask_t new_mask = *in_mask;
5323 5324
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5325

5326
	get_online_cpus();
L
Linus Torvalds 已提交
5327 5328 5329 5330 5331
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5332
		put_online_cpus();
L
Linus Torvalds 已提交
5333 5334 5335 5336 5337
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5338
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5339 5340 5341 5342 5343 5344 5345 5346 5347 5348
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5349 5350 5351 5352
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5353
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5354
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5355
 again:
5356
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5357

P
Paul Menage 已提交
5358
	if (!retval) {
5359
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5370 5371
out_unlock:
	put_task_struct(p);
5372
	put_online_cpus();
L
Linus Torvalds 已提交
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5403
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5404 5405 5406 5407
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5408
	struct task_struct *p;
L
Linus Torvalds 已提交
5409 5410
	int retval;

5411
	get_online_cpus();
L
Linus Torvalds 已提交
5412 5413 5414 5415 5416 5417 5418
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5419 5420 5421 5422
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5423
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5424 5425 5426

out_unlock:
	read_unlock(&tasklist_lock);
5427
	put_online_cpus();
L
Linus Torvalds 已提交
5428

5429
	return retval;
L
Linus Torvalds 已提交
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5460 5461
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5462 5463 5464
 */
asmlinkage long sys_sched_yield(void)
{
5465
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5466

5467
	schedstat_inc(rq, yld_count);
5468
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5469 5470 5471 5472 5473 5474

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5475
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5476 5477 5478 5479 5480 5481 5482 5483
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5484
static void __cond_resched(void)
L
Linus Torvalds 已提交
5485
{
5486 5487 5488
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5489 5490 5491 5492 5493
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5494 5495 5496 5497 5498 5499 5500
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5501
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5502
{
5503 5504
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5505 5506 5507 5508 5509
		__cond_resched();
		return 1;
	}
	return 0;
}
5510
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5511 5512 5513 5514 5515

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5516
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5517 5518 5519
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5520
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5521
{
N
Nick Piggin 已提交
5522
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5523 5524
	int ret = 0;

N
Nick Piggin 已提交
5525
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5526
		spin_unlock(lock);
N
Nick Piggin 已提交
5527 5528 5529 5530
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5531
		ret = 1;
L
Linus Torvalds 已提交
5532 5533
		spin_lock(lock);
	}
J
Jan Kara 已提交
5534
	return ret;
L
Linus Torvalds 已提交
5535 5536 5537 5538 5539 5540 5541
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5542
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5543
		local_bh_enable();
L
Linus Torvalds 已提交
5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5555
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5566
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5567 5568 5569 5570 5571 5572 5573
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5574
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5575

5576
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5577 5578 5579
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5580
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5581 5582 5583 5584 5585
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5586
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5587 5588
	long ret;

5589
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5590 5591 5592
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5593
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5614
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5615
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5639
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5640
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5657
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5658
	unsigned int time_slice;
5659
	int retval;
L
Linus Torvalds 已提交
5660 5661 5662
	struct timespec t;

	if (pid < 0)
5663
		return -EINVAL;
L
Linus Torvalds 已提交
5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5675 5676 5677 5678 5679 5680
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5681
		time_slice = DEF_TIMESLICE;
5682
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5683 5684 5685 5686 5687
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5688 5689
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5690 5691
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5692
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5693
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5694 5695
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5696

L
Linus Torvalds 已提交
5697 5698 5699 5700 5701
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5702
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5703

5704
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5705 5706
{
	unsigned long free = 0;
5707
	unsigned state;
L
Linus Torvalds 已提交
5708 5709

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5710
	printk(KERN_INFO "%-13.13s %c", p->comm,
5711
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5712
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5713
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5714
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5715
	else
I
Ingo Molnar 已提交
5716
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5717 5718
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5719
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5720
	else
I
Ingo Molnar 已提交
5721
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5722 5723 5724
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5725
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5726 5727
		while (!*n)
			n++;
5728
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5729 5730
	}
#endif
5731
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5732
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5733

5734
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5735 5736
}

I
Ingo Molnar 已提交
5737
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5738
{
5739
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5740

5741 5742 5743
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5744
#else
5745 5746
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5747 5748 5749 5750 5751 5752 5753 5754
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5755
		if (!state_filter || (p->state & state_filter))
5756
			sched_show_task(p);
L
Linus Torvalds 已提交
5757 5758
	} while_each_thread(g, p);

5759 5760
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5761 5762 5763
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5764
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5765 5766 5767 5768 5769
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5770 5771
}

I
Ingo Molnar 已提交
5772 5773
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5774
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5775 5776
}

5777 5778 5779 5780 5781 5782 5783 5784
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5785
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5786
{
5787
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5788 5789
	unsigned long flags;

I
Ingo Molnar 已提交
5790 5791 5792
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5793
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5794
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5795
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5796 5797 5798

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5799 5800 5801
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5802 5803 5804
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5805 5806 5807
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5808
	task_thread_info(idle)->preempt_count = 0;
5809
#endif
I
Ingo Molnar 已提交
5810 5811 5812 5813
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
5848 5849

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
5850 5851
}

L
Linus Torvalds 已提交
5852 5853 5854 5855
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5856
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5875
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5876 5877
 * call is not atomic; no spinlocks may be held.
 */
5878
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5879
{
5880
	struct migration_req req;
L
Linus Torvalds 已提交
5881
	unsigned long flags;
5882
	struct rq *rq;
5883
	int ret = 0;
L
Linus Torvalds 已提交
5884 5885

	rq = task_rq_lock(p, &flags);
5886
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5887 5888 5889 5890
		ret = -EINVAL;
		goto out;
	}

5891 5892 5893 5894 5895 5896
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5897
	if (p->sched_class->set_cpus_allowed)
5898
		p->sched_class->set_cpus_allowed(p, new_mask);
5899
	else {
5900 5901
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5902 5903
	}

L
Linus Torvalds 已提交
5904
	/* Can the task run on the task's current CPU? If so, we're done */
5905
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5906 5907
		goto out;

5908
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5909 5910 5911 5912 5913 5914 5915 5916 5917
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5918

L
Linus Torvalds 已提交
5919 5920
	return ret;
}
5921
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5922 5923

/*
I
Ingo Molnar 已提交
5924
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5925 5926 5927 5928 5929 5930
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5931 5932
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5933
 */
5934
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5935
{
5936
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5937
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5938

5939
	if (unlikely(!cpu_active(dest_cpu)))
5940
		return ret;
L
Linus Torvalds 已提交
5941 5942 5943 5944 5945 5946 5947

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5948
		goto done;
L
Linus Torvalds 已提交
5949 5950
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
L
Linus Torvalds 已提交
5951
		goto fail;
L
Linus Torvalds 已提交
5952

I
Ingo Molnar 已提交
5953
	on_rq = p->se.on_rq;
5954
	if (on_rq)
5955
		deactivate_task(rq_src, p, 0);
5956

L
Linus Torvalds 已提交
5957
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5958 5959 5960
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5961
	}
L
Linus Torvalds 已提交
5962
done:
5963
	ret = 1;
L
Linus Torvalds 已提交
5964
fail:
L
Linus Torvalds 已提交
5965
	double_rq_unlock(rq_src, rq_dest);
5966
	return ret;
L
Linus Torvalds 已提交
5967 5968 5969 5970 5971 5972 5973
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5974
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5975 5976
{
	int cpu = (long)data;
5977
	struct rq *rq;
L
Linus Torvalds 已提交
5978 5979 5980 5981 5982 5983

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5984
		struct migration_req *req;
L
Linus Torvalds 已提交
5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6007
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6008 6009
		list_del_init(head->next);

N
Nick Piggin 已提交
6010 6011 6012
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6042
/*
6043
 * Figure out where task on dead CPU should go, use force if necessary.
6044 6045
 * NOTE: interrupts should be disabled by the caller
 */
6046
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6047
{
6048
	unsigned long flags;
L
Linus Torvalds 已提交
6049
	cpumask_t mask;
6050 6051
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
6052

6053 6054 6055 6056 6057 6058 6059
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6060
		if (dest_cpu >= nr_cpu_ids)
6061 6062 6063
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6064
		if (dest_cpu >= nr_cpu_ids) {
6065 6066 6067
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6068 6069 6070 6071
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6072
			 * cpuset_cpus_allowed() will not block. It must be
6073 6074
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6075
			rq = task_rq_lock(p, &flags);
6076
			p->cpus_allowed = cpus_allowed;
6077 6078
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6079

6080 6081 6082 6083 6084
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6085
			if (p->mm && printk_ratelimit()) {
6086 6087
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6088 6089
					task_pid_nr(p), p->comm, dead_cpu);
			}
6090
		}
6091
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6092 6093 6094 6095 6096 6097 6098 6099 6100
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6101
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6102
{
6103
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6117
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6118

6119
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6120

6121 6122
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6123 6124
			continue;

6125 6126 6127
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6128

6129
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6130 6131
}

I
Ingo Molnar 已提交
6132 6133
/*
 * Schedules idle task to be the next runnable task on current CPU.
6134 6135
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6136 6137 6138
 */
void sched_idle_next(void)
{
6139
	int this_cpu = smp_processor_id();
6140
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6141 6142 6143 6144
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6145
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6146

6147 6148 6149
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6150 6151 6152
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6153
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6154

6155 6156
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6157 6158 6159 6160

	spin_unlock_irqrestore(&rq->lock, flags);
}

6161 6162
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6176
/* called under rq->lock with disabled interrupts */
6177
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6178
{
6179
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6180 6181

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6182
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6183 6184

	/* Cannot have done final schedule yet: would have vanished. */
6185
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6186

6187
	get_task_struct(p);
L
Linus Torvalds 已提交
6188 6189 6190

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6191
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6192 6193
	 * fine.
	 */
6194
	spin_unlock_irq(&rq->lock);
6195
	move_task_off_dead_cpu(dead_cpu, p);
6196
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6197

6198
	put_task_struct(p);
L
Linus Torvalds 已提交
6199 6200 6201 6202 6203
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6204
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6205
	struct task_struct *next;
6206

I
Ingo Molnar 已提交
6207 6208 6209
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6210
		update_rq_clock(rq);
6211
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6212 6213
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6214
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6215
		migrate_dead(dead_cpu, next);
6216

L
Linus Torvalds 已提交
6217 6218 6219 6220
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6221 6222 6223
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6224 6225
	{
		.procname	= "sched_domain",
6226
		.mode		= 0555,
6227
	},
I
Ingo Molnar 已提交
6228
	{0, },
6229 6230 6231
};

static struct ctl_table sd_ctl_root[] = {
6232
	{
6233
		.ctl_name	= CTL_KERN,
6234
		.procname	= "kernel",
6235
		.mode		= 0555,
6236 6237
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6238
	{0, },
6239 6240 6241 6242 6243
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6244
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6245 6246 6247 6248

	return entry;
}

6249 6250
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6251
	struct ctl_table *entry;
6252

6253 6254 6255
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6256
	 * will always be set. In the lowest directory the names are
6257 6258 6259
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6260 6261
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6262 6263 6264
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6265 6266 6267 6268 6269

	kfree(*tablep);
	*tablep = NULL;
}

6270
static void
6271
set_table_entry(struct ctl_table *entry,
6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6285
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6286

6287 6288 6289
	if (table == NULL)
		return NULL;

6290
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6291
		sizeof(long), 0644, proc_doulongvec_minmax);
6292
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6293
		sizeof(long), 0644, proc_doulongvec_minmax);
6294
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6295
		sizeof(int), 0644, proc_dointvec_minmax);
6296
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6297
		sizeof(int), 0644, proc_dointvec_minmax);
6298
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6299
		sizeof(int), 0644, proc_dointvec_minmax);
6300
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6301
		sizeof(int), 0644, proc_dointvec_minmax);
6302
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6303
		sizeof(int), 0644, proc_dointvec_minmax);
6304
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6305
		sizeof(int), 0644, proc_dointvec_minmax);
6306
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6307
		sizeof(int), 0644, proc_dointvec_minmax);
6308
	set_table_entry(&table[9], "cache_nice_tries",
6309 6310
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6311
	set_table_entry(&table[10], "flags", &sd->flags,
6312
		sizeof(int), 0644, proc_dointvec_minmax);
6313
	/* &table[11] is terminator */
6314 6315 6316 6317

	return table;
}

6318
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6319 6320 6321 6322 6323 6324 6325 6326 6327
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6328 6329
	if (table == NULL)
		return NULL;
6330 6331 6332 6333 6334

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6335
		entry->mode = 0555;
6336 6337 6338 6339 6340 6341 6342 6343
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6344
static void register_sched_domain_sysctl(void)
6345 6346 6347 6348 6349
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6350 6351 6352
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6353 6354 6355
	if (entry == NULL)
		return;

6356
	for_each_online_cpu(i) {
6357 6358
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6359
		entry->mode = 0555;
6360
		entry->child = sd_alloc_ctl_cpu_table(i);
6361
		entry++;
6362
	}
6363 6364

	WARN_ON(sd_sysctl_header);
6365 6366
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6367

6368
/* may be called multiple times per register */
6369 6370
static void unregister_sched_domain_sysctl(void)
{
6371 6372
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6373
	sd_sysctl_header = NULL;
6374 6375
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6376
}
6377
#else
6378 6379 6380 6381
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6382 6383 6384 6385
{
}
#endif

6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6416 6417 6418 6419
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6420 6421
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6422 6423
{
	struct task_struct *p;
6424
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6425
	unsigned long flags;
6426
	struct rq *rq;
L
Linus Torvalds 已提交
6427 6428

	switch (action) {
6429

L
Linus Torvalds 已提交
6430
	case CPU_UP_PREPARE:
6431
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6432
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6433 6434 6435 6436 6437
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6438
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6439 6440 6441
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6442

L
Linus Torvalds 已提交
6443
	case CPU_ONLINE:
6444
	case CPU_ONLINE_FROZEN:
6445
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6446
		wake_up_process(cpu_rq(cpu)->migration_thread);
6447 6448 6449 6450 6451 6452

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6453 6454

			set_rq_online(rq);
6455 6456
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6457
		break;
6458

L
Linus Torvalds 已提交
6459 6460
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6461
	case CPU_UP_CANCELED_FROZEN:
6462 6463
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6464
		/* Unbind it from offline cpu so it can run. Fall thru. */
6465 6466
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6467 6468 6469
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6470

L
Linus Torvalds 已提交
6471
	case CPU_DEAD:
6472
	case CPU_DEAD_FROZEN:
6473
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6474 6475 6476 6477 6478
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6479
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6480
		update_rq_clock(rq);
6481
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6482
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6483 6484
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6485
		migrate_dead_tasks(cpu);
6486
		spin_unlock_irq(&rq->lock);
6487
		cpuset_unlock();
L
Linus Torvalds 已提交
6488 6489 6490
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6491 6492 6493 6494 6495
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6496 6497
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6498 6499
			struct migration_req *req;

L
Linus Torvalds 已提交
6500
			req = list_entry(rq->migration_queue.next,
6501
					 struct migration_req, list);
L
Linus Torvalds 已提交
6502 6503 6504 6505 6506
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6507

6508 6509
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6510 6511 6512 6513 6514
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6515
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6516 6517 6518
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6519 6520 6521 6522 6523 6524 6525 6526
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6527
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6528 6529 6530 6531
	.notifier_call = migration_call,
	.priority = 10
};

6532
static int __init migration_init(void)
L
Linus Torvalds 已提交
6533 6534
{
	void *cpu = (void *)(long)smp_processor_id();
6535
	int err;
6536 6537

	/* Start one for the boot CPU: */
6538 6539
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6540 6541
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6542 6543

	return err;
L
Linus Torvalds 已提交
6544
}
6545
early_initcall(migration_init);
L
Linus Torvalds 已提交
6546 6547 6548
#endif

#ifdef CONFIG_SMP
6549

6550
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6551

6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6574 6575
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6576
{
I
Ingo Molnar 已提交
6577
	struct sched_group *group = sd->groups;
6578
	char str[256];
L
Linus Torvalds 已提交
6579

6580
	cpulist_scnprintf(str, sizeof(str), sd->span);
6581
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6582 6583 6584 6585 6586 6587 6588 6589 6590

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6591 6592
	}

6593 6594
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6595 6596 6597 6598 6599 6600 6601 6602 6603

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6604

I
Ingo Molnar 已提交
6605
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6606
	do {
I
Ingo Molnar 已提交
6607 6608 6609
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6610 6611 6612
			break;
		}

I
Ingo Molnar 已提交
6613 6614 6615 6616 6617 6618
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6619

I
Ingo Molnar 已提交
6620 6621 6622 6623 6624
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6625

6626
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6627 6628 6629 6630
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6631

6632
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6633

6634
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6635
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6636

I
Ingo Molnar 已提交
6637 6638 6639
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6640

6641
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6642
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6643

6644
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6645 6646 6647 6648
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6649

I
Ingo Molnar 已提交
6650 6651
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6652
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6653
	int level = 0;
L
Linus Torvalds 已提交
6654

I
Ingo Molnar 已提交
6655 6656 6657 6658
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6659

I
Ingo Molnar 已提交
6660 6661
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6662 6663 6664 6665 6666 6667
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6668
	for (;;) {
6669
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6670
			break;
L
Linus Torvalds 已提交
6671 6672
		level++;
		sd = sd->parent;
6673
		if (!sd)
I
Ingo Molnar 已提交
6674 6675
			break;
	}
6676
	kfree(groupmask);
L
Linus Torvalds 已提交
6677
}
6678
#else /* !CONFIG_SCHED_DEBUG */
6679
# define sched_domain_debug(sd, cpu) do { } while (0)
6680
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6681

6682
static int sd_degenerate(struct sched_domain *sd)
6683 6684 6685 6686 6687 6688 6689 6690
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6691 6692 6693
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6707 6708
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6727 6728 6729
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6730 6731 6732 6733 6734 6735 6736
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6737 6738 6739 6740 6741 6742 6743 6744 6745
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6746 6747
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6748

6749 6750
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6751 6752 6753 6754 6755 6756 6757
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6758
	cpu_set(rq->cpu, rd->span);
6759
	if (cpu_isset(rq->cpu, cpu_online_map))
6760
		set_rq_online(rq);
G
Gregory Haskins 已提交
6761 6762 6763 6764

	spin_unlock_irqrestore(&rq->lock, flags);
}

6765
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6766 6767 6768
{
	memset(rd, 0, sizeof(*rd));

6769 6770
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6771 6772

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6773 6774 6775 6776
}

static void init_defrootdomain(void)
{
6777
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6778 6779 6780
	atomic_set(&def_root_domain.refcount, 1);
}

6781
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6782 6783 6784 6785 6786 6787 6788
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6789
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6790 6791 6792 6793

	return rd;
}

L
Linus Torvalds 已提交
6794
/*
I
Ingo Molnar 已提交
6795
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6796 6797
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6798 6799
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6800
{
6801
	struct rq *rq = cpu_rq(cpu);
6802 6803 6804 6805 6806 6807 6808
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6809
		if (sd_parent_degenerate(tmp, parent)) {
6810
			tmp->parent = parent->parent;
6811 6812 6813
			if (parent->parent)
				parent->parent->child = tmp;
		}
6814 6815
	}

6816
	if (sd && sd_degenerate(sd)) {
6817
		sd = sd->parent;
6818 6819 6820
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6821 6822 6823

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6824
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6825
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6826 6827 6828
}

/* cpus with isolated domains */
6829
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6830 6831 6832 6833

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6834 6835
	static int __initdata ints[NR_CPUS];
	int i;
L
Linus Torvalds 已提交
6836 6837 6838 6839 6840 6841 6842 6843 6844

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6845
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6846 6847

/*
6848 6849 6850 6851
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6852 6853 6854 6855 6856
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6857
static void
6858
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6859
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6860 6861 6862
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6863 6864 6865 6866
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6867 6868
	cpus_clear(*covered);

6869
	for_each_cpu_mask_nr(i, *span) {
6870
		struct sched_group *sg;
6871
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6872 6873
		int j;

6874
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6875 6876
			continue;

6877
		cpus_clear(sg->cpumask);
6878
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6879

6880
		for_each_cpu_mask_nr(j, *span) {
6881
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6882 6883
				continue;

6884
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6896
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6897

6898
#ifdef CONFIG_NUMA
6899

6900 6901 6902 6903 6904
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6905
 * Find the next node to include in a given scheduling domain. Simply
6906 6907 6908 6909
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6910
static int find_next_best_node(int node, nodemask_t *used_nodes)
6911 6912 6913 6914 6915
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6916
	for (i = 0; i < nr_node_ids; i++) {
6917
		/* Start at @node */
6918
		n = (node + i) % nr_node_ids;
6919 6920 6921 6922 6923

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6924
		if (node_isset(n, *used_nodes))
6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6936
	node_set(best_node, *used_nodes);
6937 6938 6939 6940 6941 6942
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6943
 * @span: resulting cpumask
6944
 *
I
Ingo Molnar 已提交
6945
 * Given a node, construct a good cpumask for its sched_domain to span. It
6946 6947 6948
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6949
static void sched_domain_node_span(int node, cpumask_t *span)
6950
{
6951 6952
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6953
	int i;
6954

6955
	cpus_clear(*span);
6956
	nodes_clear(used_nodes);
6957

6958
	cpus_or(*span, *span, *nodemask);
6959
	node_set(node, used_nodes);
6960 6961

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6962
		int next_node = find_next_best_node(node, &used_nodes);
6963

6964
		node_to_cpumask_ptr_next(nodemask, next_node);
6965
		cpus_or(*span, *span, *nodemask);
6966 6967
	}
}
6968
#endif /* CONFIG_NUMA */
6969

6970
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6971

6972
/*
6973
 * SMT sched-domains:
6974
 */
L
Linus Torvalds 已提交
6975 6976
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6977
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6978

I
Ingo Molnar 已提交
6979
static int
6980 6981
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
6982
{
6983 6984
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6985 6986
	return cpu;
}
6987
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6988

6989 6990 6991
/*
 * multi-core sched-domains:
 */
6992 6993
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6994
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6995
#endif /* CONFIG_SCHED_MC */
6996 6997

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6998
static int
6999 7000
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
7001
{
7002
	int group;
7003 7004 7005 7006

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7007 7008 7009
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
7010 7011
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7012
static int
7013 7014
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
7015
{
7016 7017
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
7018 7019 7020 7021
	return cpu;
}
#endif

L
Linus Torvalds 已提交
7022
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7023
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7024

I
Ingo Molnar 已提交
7025
static int
7026 7027
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
7028
{
7029
	int group;
7030
#ifdef CONFIG_SCHED_MC
7031 7032 7033
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7034
#elif defined(CONFIG_SCHED_SMT)
7035 7036 7037
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
7038
#else
7039
	group = cpu;
L
Linus Torvalds 已提交
7040
#endif
7041 7042 7043
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
7044 7045 7046 7047
}

#ifdef CONFIG_NUMA
/*
7048 7049 7050
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7051
 */
7052
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7053
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7054

7055
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7056
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7057

7058
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7059
				 struct sched_group **sg, cpumask_t *nodemask)
7060
{
7061 7062
	int group;

7063 7064 7065
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7066 7067 7068 7069

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7070
}
7071

7072 7073 7074 7075 7076 7077 7078
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7079
	do {
7080
		for_each_cpu_mask_nr(j, sg->cpumask) {
7081
			struct sched_domain *sd;
7082

7083 7084 7085 7086 7087 7088 7089 7090
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7091

7092 7093 7094 7095
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7096
}
7097
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7098

7099
#ifdef CONFIG_NUMA
7100
/* Free memory allocated for various sched_group structures */
7101
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7102
{
7103
	int cpu, i;
7104

7105
	for_each_cpu_mask_nr(cpu, *cpu_map) {
7106 7107 7108 7109 7110 7111
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7112
		for (i = 0; i < nr_node_ids; i++) {
7113 7114
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7115 7116 7117
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7134
#else /* !CONFIG_NUMA */
7135
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7136 7137
{
}
7138
#endif /* CONFIG_NUMA */
7139

7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7166 7167
	sd->groups->__cpu_power = 0;

7168 7169 7170 7171 7172 7173 7174 7175 7176 7177
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7178
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7179 7180 7181 7182 7183 7184 7185 7186
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7187
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7188 7189 7190 7191
		group = group->next;
	} while (group != child->groups);
}

7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7203
	sd->level = SD_LV_##type;				\
7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7252 7253 7254 7255
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7256 7257 7258 7259 7260 7261
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7287
/*
7288 7289
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7290
 */
7291 7292
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7293 7294
{
	int i;
G
Gregory Haskins 已提交
7295
	struct root_domain *rd;
7296 7297
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7298 7299
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7300
	int sd_allnodes = 0;
7301 7302 7303 7304

	/*
	 * Allocate the per-node list of sched groups
	 */
7305
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7306
				    GFP_KERNEL);
7307 7308
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7309
		return -ENOMEM;
7310 7311
	}
#endif
L
Linus Torvalds 已提交
7312

7313
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7314 7315
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7316 7317 7318
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7319 7320 7321
		return -ENOMEM;
	}

7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7341
	/*
7342
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7343
	 */
7344
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7345
		struct sched_domain *sd = NULL, *p;
7346
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7347

7348 7349
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7350 7351

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7352
		if (cpus_weight(*cpu_map) >
7353
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7354
			sd = &per_cpu(allnodes_domains, i);
7355
			SD_INIT(sd, ALLNODES);
7356
			set_domain_attribute(sd, attr);
7357
			sd->span = *cpu_map;
7358
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7359
			p = sd;
7360
			sd_allnodes = 1;
7361 7362 7363
		} else
			p = NULL;

L
Linus Torvalds 已提交
7364
		sd = &per_cpu(node_domains, i);
7365
		SD_INIT(sd, NODE);
7366
		set_domain_attribute(sd, attr);
7367
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7368
		sd->parent = p;
7369 7370
		if (p)
			p->child = sd;
7371
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7372 7373 7374 7375
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7376
		SD_INIT(sd, CPU);
7377
		set_domain_attribute(sd, attr);
7378
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7379
		sd->parent = p;
7380 7381
		if (p)
			p->child = sd;
7382
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7383

7384 7385 7386
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7387
		SD_INIT(sd, MC);
7388
		set_domain_attribute(sd, attr);
7389 7390 7391
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7392
		p->child = sd;
7393
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7394 7395
#endif

L
Linus Torvalds 已提交
7396 7397 7398
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7399
		SD_INIT(sd, SIBLING);
7400
		set_domain_attribute(sd, attr);
7401
		sd->span = per_cpu(cpu_sibling_map, i);
7402
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7403
		sd->parent = p;
7404
		p->child = sd;
7405
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7406 7407 7408 7409 7410
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7411
	for_each_cpu_mask_nr(i, *cpu_map) {
7412 7413 7414 7415 7416 7417
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7418 7419
			continue;

I
Ingo Molnar 已提交
7420
		init_sched_build_groups(this_sibling_map, cpu_map,
7421 7422
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7423 7424 7425
	}
#endif

7426 7427
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7428
	for_each_cpu_mask_nr(i, *cpu_map) {
7429 7430 7431 7432 7433 7434
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7435
			continue;
7436

I
Ingo Molnar 已提交
7437
		init_sched_build_groups(this_core_map, cpu_map,
7438 7439
					&cpu_to_core_group,
					send_covered, tmpmask);
7440 7441 7442
	}
#endif

L
Linus Torvalds 已提交
7443
	/* Set up physical groups */
7444
	for (i = 0; i < nr_node_ids; i++) {
7445 7446
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7447

7448 7449 7450
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7451 7452
			continue;

7453 7454 7455
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7456 7457 7458 7459
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7460 7461 7462 7463 7464 7465 7466
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7467

7468
	for (i = 0; i < nr_node_ids; i++) {
7469 7470
		/* Set up node groups */
		struct sched_group *sg, *prev;
7471 7472 7473
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7474 7475
		int j;

7476 7477 7478 7479 7480
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7481
			sched_group_nodes[i] = NULL;
7482
			continue;
7483
		}
7484

7485
		sched_domain_node_span(i, domainspan);
7486
		cpus_and(*domainspan, *domainspan, *cpu_map);
7487

7488
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7489 7490 7491 7492 7493
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7494
		sched_group_nodes[i] = sg;
7495
		for_each_cpu_mask_nr(j, *nodemask) {
7496
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7497

7498 7499 7500
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7501
		sg->__cpu_power = 0;
7502
		sg->cpumask = *nodemask;
7503
		sg->next = sg;
7504
		cpus_or(*covered, *covered, *nodemask);
7505 7506
		prev = sg;

7507
		for (j = 0; j < nr_node_ids; j++) {
7508
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7509
			int n = (i + j) % nr_node_ids;
7510
			node_to_cpumask_ptr(pnodemask, n);
7511

7512 7513 7514 7515
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7516 7517
				break;

7518 7519
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7520 7521
				continue;

7522 7523
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7524 7525 7526
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7527
				goto error;
7528
			}
7529
			sg->__cpu_power = 0;
7530
			sg->cpumask = *tmpmask;
7531
			sg->next = prev->next;
7532
			cpus_or(*covered, *covered, *tmpmask);
7533 7534 7535 7536
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7537 7538 7539
#endif

	/* Calculate CPU power for physical packages and nodes */
7540
#ifdef CONFIG_SCHED_SMT
7541
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7542 7543
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7544
		init_sched_groups_power(i, sd);
7545
	}
L
Linus Torvalds 已提交
7546
#endif
7547
#ifdef CONFIG_SCHED_MC
7548
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7549 7550
		struct sched_domain *sd = &per_cpu(core_domains, i);

7551
		init_sched_groups_power(i, sd);
7552 7553
	}
#endif
7554

7555
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7556 7557
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7558
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7559 7560
	}

7561
#ifdef CONFIG_NUMA
7562
	for (i = 0; i < nr_node_ids; i++)
7563
		init_numa_sched_groups_power(sched_group_nodes[i]);
7564

7565 7566
	if (sd_allnodes) {
		struct sched_group *sg;
7567

7568 7569
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7570 7571
		init_numa_sched_groups_power(sg);
	}
7572 7573
#endif

L
Linus Torvalds 已提交
7574
	/* Attach the domains */
7575
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7576 7577 7578
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7579 7580
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7581 7582 7583
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7584
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7585
	}
7586

7587
	SCHED_CPUMASK_FREE((void *)allmasks);
7588 7589
	return 0;

7590
#ifdef CONFIG_NUMA
7591
error:
7592 7593
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7594
	return -ENOMEM;
7595
#endif
L
Linus Torvalds 已提交
7596
}
P
Paul Jackson 已提交
7597

7598 7599 7600 7601 7602
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7603 7604
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7605 7606
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7607 7608 7609 7610 7611 7612 7613 7614

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7615 7616 7617 7618
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7619
/*
I
Ingo Molnar 已提交
7620
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7621 7622
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7623
 */
7624
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7625
{
7626 7627
	int err;

7628
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7629 7630 7631 7632 7633
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7634
	dattr_cur = NULL;
7635
	err = build_sched_domains(doms_cur);
7636
	register_sched_domain_sysctl();
7637 7638

	return err;
7639 7640
}

7641 7642
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7643
{
7644
	free_sched_groups(cpu_map, tmpmask);
7645
}
L
Linus Torvalds 已提交
7646

7647 7648 7649 7650
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7651
static void detach_destroy_domains(const cpumask_t *cpu_map)
7652
{
7653
	cpumask_t tmpmask;
7654 7655
	int i;

7656 7657
	unregister_sched_domain_sysctl();

7658
	for_each_cpu_mask_nr(i, *cpu_map)
G
Gregory Haskins 已提交
7659
		cpu_attach_domain(NULL, &def_root_domain, i);
7660
	synchronize_sched();
7661
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7662 7663
}

7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7680 7681
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7682
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7683 7684 7685 7686
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7687 7688 7689
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7690 7691 7692
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7693 7694
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7695 7696
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
7697
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7698
 *
7699 7700 7701 7702
 * If doms_new==NULL it will be replaced with cpu_online_map.
 * ndoms_new==0 is a special case for destroying existing domains.
 * It will not create the default domain.
 *
P
Paul Jackson 已提交
7703 7704
 * Call with hotplug lock held
 */
7705 7706
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7707
{
7708
	int i, j, n;
P
Paul Jackson 已提交
7709

7710
	mutex_lock(&sched_domains_mutex);
7711

7712 7713 7714
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7715
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7716 7717 7718

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7719
		for (j = 0; j < n; j++) {
7720 7721
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7722 7723 7724 7725 7726 7727 7728 7729
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7730 7731 7732 7733 7734 7735 7736
	if (doms_new == NULL) {
		ndoms_cur = 0;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
		dattr_new = NULL;
	}

P
Paul Jackson 已提交
7737 7738 7739
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7740 7741
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7742 7743 7744
				goto match2;
		}
		/* no match - add a new doms_new */
7745 7746
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7747 7748 7749 7750 7751 7752 7753
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7754
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7755
	doms_cur = doms_new;
7756
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7757
	ndoms_cur = ndoms_new;
7758 7759

	register_sched_domain_sysctl();
7760

7761
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7762 7763
}

7764
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7765
int arch_reinit_sched_domains(void)
7766
{
7767
	get_online_cpus();
7768 7769 7770 7771

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7772
	rebuild_sched_domains();
7773
	put_online_cpus();
7774

7775
	return 0;
7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
7796 7797
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
7798 7799 7800
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7801
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7802
					    const char *buf, size_t count)
7803 7804 7805
{
	return sched_power_savings_store(buf, count, 0);
}
7806 7807 7808
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7809 7810 7811
#endif

#ifdef CONFIG_SCHED_SMT
7812 7813
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
7814 7815 7816
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7817
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7818
					     const char *buf, size_t count)
7819 7820 7821
{
	return sched_power_savings_store(buf, count, 1);
}
7822 7823
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7843
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7844

7845
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7846
/*
7847 7848
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7849 7850 7851
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7852 7853 7854 7855 7856 7857
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
7858
		partition_sched_domains(1, NULL, NULL);
7859 7860 7861 7862 7863 7864 7865 7866 7867 7868
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7869
{
P
Peter Zijlstra 已提交
7870 7871
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7872 7873
	switch (action) {
	case CPU_DOWN_PREPARE:
7874
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7875
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7876 7877 7878
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7879
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7880
	case CPU_ONLINE:
7881
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7882
		enable_runtime(cpu_rq(cpu));
7883 7884
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7885 7886 7887 7888 7889 7890 7891
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7892 7893
	cpumask_t non_isolated_cpus;

7894 7895 7896 7897 7898
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7899
	get_online_cpus();
7900
	mutex_lock(&sched_domains_mutex);
7901
	arch_init_sched_domains(&cpu_online_map);
7902
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7903 7904
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7905
	mutex_unlock(&sched_domains_mutex);
7906
	put_online_cpus();
7907 7908

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7909 7910
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7911 7912 7913 7914 7915
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7916
	init_hrtick();
7917 7918

	/* Move init over to a non-isolated CPU */
7919
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7920
		BUG();
I
Ingo Molnar 已提交
7921
	sched_init_granularity();
L
Linus Torvalds 已提交
7922 7923 7924 7925
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7926
	sched_init_granularity();
L
Linus Torvalds 已提交
7927 7928 7929 7930 7931 7932 7933 7934 7935 7936
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7937
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7938 7939
{
	cfs_rq->tasks_timeline = RB_ROOT;
7940
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7941 7942 7943
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7944
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7945 7946
}

P
Peter Zijlstra 已提交
7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7960
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7961 7962
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7963 7964 7965 7966 7967 7968 7969
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7970 7971
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7972

7973
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7974
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7975 7976
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7977 7978
}

P
Peter Zijlstra 已提交
7979
#ifdef CONFIG_FAIR_GROUP_SCHED
7980 7981 7982
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7983
{
7984
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7985 7986 7987 7988 7989 7990 7991
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7992 7993 7994 7995
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7996 7997 7998 7999 8000
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8001 8002
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8003
	se->load.inv_weight = 0;
8004
	se->parent = parent;
P
Peter Zijlstra 已提交
8005
}
8006
#endif
P
Peter Zijlstra 已提交
8007

8008
#ifdef CONFIG_RT_GROUP_SCHED
8009 8010 8011
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8012
{
8013 8014
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8015 8016 8017 8018
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8019
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8020 8021 8022 8023
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8024 8025 8026
	if (!rt_se)
		return;

8027 8028 8029 8030 8031
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8032
	rt_se->my_q = rt_rq;
8033
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8034 8035 8036 8037
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8038 8039
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8040
	int i, j;
8041 8042 8043 8044 8045 8046 8047
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8048 8049 8050
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8051 8052 8053 8054 8055 8056
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8057
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8058 8059 8060 8061 8062 8063 8064

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8065 8066 8067 8068 8069 8070 8071

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8072 8073
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8074 8075 8076 8077 8078
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8079 8080 8081 8082 8083 8084 8085 8086
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8087 8088
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8089
	}
I
Ingo Molnar 已提交
8090

G
Gregory Haskins 已提交
8091 8092 8093 8094
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8095 8096 8097 8098 8099 8100
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8101 8102 8103
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8104 8105
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8106

8107
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8108
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8109 8110 8111 8112 8113 8114
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8115 8116
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8117

8118
	for_each_possible_cpu(i) {
8119
		struct rq *rq;
L
Linus Torvalds 已提交
8120 8121 8122

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8123
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8124
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8125
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8126
#ifdef CONFIG_FAIR_GROUP_SCHED
8127
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8128
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8149
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8150
#elif defined CONFIG_USER_SCHED
8151 8152
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8164
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8165
				&per_cpu(init_cfs_rq, i),
8166 8167
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8168

8169
#endif
D
Dhaval Giani 已提交
8170 8171 8172
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8173
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8174
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8175
#ifdef CONFIG_CGROUP_SCHED
8176
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8177
#elif defined CONFIG_USER_SCHED
8178
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8179
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8180
				&per_cpu(init_rt_rq, i),
8181 8182
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8183
#endif
I
Ingo Molnar 已提交
8184
#endif
L
Linus Torvalds 已提交
8185

I
Ingo Molnar 已提交
8186 8187
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8188
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8189
		rq->sd = NULL;
G
Gregory Haskins 已提交
8190
		rq->rd = NULL;
L
Linus Torvalds 已提交
8191
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8192
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8193
		rq->push_cpu = 0;
8194
		rq->cpu = i;
8195
		rq->online = 0;
L
Linus Torvalds 已提交
8196 8197
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8198
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8199
#endif
P
Peter Zijlstra 已提交
8200
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8201 8202 8203
		atomic_set(&rq->nr_iowait, 0);
	}

8204
	set_load_weight(&init_task);
8205

8206 8207 8208 8209
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8210
#ifdef CONFIG_SMP
8211
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8212 8213
#endif

8214 8215 8216 8217
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8231 8232 8233 8234
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8235 8236

	scheduler_running = 1;
L
Linus Torvalds 已提交
8237 8238 8239 8240 8241
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8242
#ifdef in_atomic
L
Linus Torvalds 已提交
8243 8244 8245 8246 8247 8248 8249
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
8250
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
8251 8252 8253
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
8254
		debug_show_held_locks(current);
8255 8256
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
8257 8258 8259 8260 8261 8262 8263 8264
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8265 8266 8267
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8268

8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8280 8281
void normalize_rt_tasks(void)
{
8282
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8283
	unsigned long flags;
8284
	struct rq *rq;
L
Linus Torvalds 已提交
8285

8286
	read_lock_irqsave(&tasklist_lock, flags);
8287
	do_each_thread(g, p) {
8288 8289 8290 8291 8292 8293
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8294 8295
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8296 8297 8298
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8299
#endif
I
Ingo Molnar 已提交
8300 8301 8302 8303 8304 8305 8306 8307

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8308
			continue;
I
Ingo Molnar 已提交
8309
		}
L
Linus Torvalds 已提交
8310

8311
		spin_lock(&p->pi_lock);
8312
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8313

8314
		normalize_task(rq, p);
8315

8316
		__task_rq_unlock(rq);
8317
		spin_unlock(&p->pi_lock);
8318 8319
	} while_each_thread(g, p);

8320
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8321 8322 8323
}

#endif /* CONFIG_MAGIC_SYSRQ */
8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8342
struct task_struct *curr_task(int cpu)
8343 8344 8345 8346 8347 8348 8349 8350 8351 8352
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8353 8354
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8355 8356 8357 8358 8359 8360 8361
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8362
void set_curr_task(int cpu, struct task_struct *p)
8363 8364 8365 8366 8367
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8368

8369 8370
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8385 8386
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8387 8388
{
	struct cfs_rq *cfs_rq;
8389
	struct sched_entity *se, *parent_se;
8390
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8391 8392
	int i;

8393
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8394 8395
	if (!tg->cfs_rq)
		goto err;
8396
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8397 8398
	if (!tg->se)
		goto err;
8399 8400

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8401 8402

	for_each_possible_cpu(i) {
8403
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8404

P
Peter Zijlstra 已提交
8405 8406
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8407 8408 8409
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8410 8411
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8412 8413 8414
		if (!se)
			goto err;

8415 8416
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8435
#else /* !CONFG_FAIR_GROUP_SCHED */
8436 8437 8438 8439
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8440 8441
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8453
#endif /* CONFIG_FAIR_GROUP_SCHED */
8454 8455

#ifdef CONFIG_RT_GROUP_SCHED
8456 8457 8458 8459
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8460 8461
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8473 8474
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8475 8476
{
	struct rt_rq *rt_rq;
8477
	struct sched_rt_entity *rt_se, *parent_se;
8478 8479 8480
	struct rq *rq;
	int i;

8481
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8482 8483
	if (!tg->rt_rq)
		goto err;
8484
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8485 8486 8487
	if (!tg->rt_se)
		goto err;

8488 8489
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8490 8491 8492 8493

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8494 8495 8496 8497
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8498

P
Peter Zijlstra 已提交
8499 8500 8501 8502
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8503

8504 8505
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8506 8507
	}

8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8524
#else /* !CONFIG_RT_GROUP_SCHED */
8525 8526 8527 8528
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8529 8530
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8542
#endif /* CONFIG_RT_GROUP_SCHED */
8543

8544
#ifdef CONFIG_GROUP_SCHED
8545 8546 8547 8548 8549 8550 8551 8552
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8553
struct task_group *sched_create_group(struct task_group *parent)
8554 8555 8556 8557 8558 8559 8560 8561 8562
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8563
	if (!alloc_fair_sched_group(tg, parent))
8564 8565
		goto err;

8566
	if (!alloc_rt_sched_group(tg, parent))
8567 8568
		goto err;

8569
	spin_lock_irqsave(&task_group_lock, flags);
8570
	for_each_possible_cpu(i) {
8571 8572
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8573
	}
P
Peter Zijlstra 已提交
8574
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8575 8576 8577 8578 8579

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8580
	list_add_rcu(&tg->siblings, &parent->children);
8581
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8582

8583
	return tg;
S
Srivatsa Vaddagiri 已提交
8584 8585

err:
P
Peter Zijlstra 已提交
8586
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8587 8588 8589
	return ERR_PTR(-ENOMEM);
}

8590
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8591
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8592 8593
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8594
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8595 8596
}

8597
/* Destroy runqueue etc associated with a task group */
8598
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8599
{
8600
	unsigned long flags;
8601
	int i;
S
Srivatsa Vaddagiri 已提交
8602

8603
	spin_lock_irqsave(&task_group_lock, flags);
8604
	for_each_possible_cpu(i) {
8605 8606
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8607
	}
P
Peter Zijlstra 已提交
8608
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8609
	list_del_rcu(&tg->siblings);
8610
	spin_unlock_irqrestore(&task_group_lock, flags);
8611 8612

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8613
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8614 8615
}

8616
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8617 8618 8619
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8620 8621
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8622 8623 8624 8625 8626 8627 8628 8629 8630
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8631
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8632 8633
	on_rq = tsk->se.on_rq;

8634
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8635
		dequeue_task(rq, tsk, 0);
8636 8637
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8638

P
Peter Zijlstra 已提交
8639
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8640

P
Peter Zijlstra 已提交
8641 8642 8643 8644 8645
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8646 8647 8648
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8649
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8650 8651 8652

	task_rq_unlock(rq, &flags);
}
8653
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8654

8655
#ifdef CONFIG_FAIR_GROUP_SCHED
8656
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8657 8658 8659 8660 8661
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8662
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8663 8664 8665
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8666
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8667

8668
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8669
		enqueue_entity(cfs_rq, se, 0);
8670
}
8671

8672 8673 8674 8675 8676 8677 8678 8679 8680
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8681 8682
}

8683 8684
static DEFINE_MUTEX(shares_mutex);

8685
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8686 8687
{
	int i;
8688
	unsigned long flags;
8689

8690 8691 8692 8693 8694 8695
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8696 8697
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8698 8699
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8700

8701
	mutex_lock(&shares_mutex);
8702
	if (tg->shares == shares)
8703
		goto done;
S
Srivatsa Vaddagiri 已提交
8704

8705
	spin_lock_irqsave(&task_group_lock, flags);
8706 8707
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8708
	list_del_rcu(&tg->siblings);
8709
	spin_unlock_irqrestore(&task_group_lock, flags);
8710 8711 8712 8713 8714 8715 8716 8717

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8718
	tg->shares = shares;
8719 8720 8721 8722 8723
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8724
		set_se_shares(tg->se[i], shares);
8725
	}
S
Srivatsa Vaddagiri 已提交
8726

8727 8728 8729 8730
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8731
	spin_lock_irqsave(&task_group_lock, flags);
8732 8733
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8734
	list_add_rcu(&tg->siblings, &tg->parent->children);
8735
	spin_unlock_irqrestore(&task_group_lock, flags);
8736
done:
8737
	mutex_unlock(&shares_mutex);
8738
	return 0;
S
Srivatsa Vaddagiri 已提交
8739 8740
}

8741 8742 8743 8744
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8745
#endif
8746

8747
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8748
/*
P
Peter Zijlstra 已提交
8749
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8750
 */
P
Peter Zijlstra 已提交
8751 8752 8753 8754 8755 8756 8757
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8758
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8759 8760
}

8761 8762 8763
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
8764
	struct task_group *tgi, *parent = tg->parent;
8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

8788
	return total + to_ratio(period, runtime) <=
8789 8790 8791 8792
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8793
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8794 8795 8796
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8797
	unsigned long global_ratio =
8798
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8799 8800

	rcu_read_lock();
P
Peter Zijlstra 已提交
8801 8802 8803
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8804

8805 8806
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8807 8808
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8809

P
Peter Zijlstra 已提交
8810
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8811
}
8812
#endif
P
Peter Zijlstra 已提交
8813

8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8825 8826
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8827
{
P
Peter Zijlstra 已提交
8828
	int i, err = 0;
P
Peter Zijlstra 已提交
8829 8830

	mutex_lock(&rt_constraints_mutex);
8831
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8832
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8833 8834 8835
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8836 8837 8838 8839
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8840 8841

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8842 8843
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8844 8845 8846 8847 8848 8849 8850 8851 8852

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8853
 unlock:
8854
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8855 8856 8857
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8858 8859
}

8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8872 8873 8874 8875
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8876
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8877 8878
		return -1;

8879
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8880 8881 8882
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8883 8884 8885 8886 8887 8888 8889 8890

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8891 8892 8893
	if (rt_period == 0)
		return -EINVAL;

8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8908 8909
	struct task_group *tg = &root_task_group;
	u64 rt_runtime, rt_period;
8910 8911
	int ret = 0;

8912 8913 8914
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8915 8916 8917
	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8918
	mutex_lock(&rt_constraints_mutex);
8919
	if (!__rt_schedulable(tg, rt_period, rt_runtime))
8920 8921 8922 8923 8924
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8925
#else /* !CONFIG_RT_GROUP_SCHED */
8926 8927
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8928 8929 8930
	unsigned long flags;
	int i;

8931 8932 8933
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
8934 8935 8936 8937 8938 8939 8940 8941 8942 8943
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8944 8945
	return 0;
}
8946
#endif /* CONFIG_RT_GROUP_SCHED */
8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8977

8978
#ifdef CONFIG_CGROUP_SCHED
8979 8980

/* return corresponding task_group object of a cgroup */
8981
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8982
{
8983 8984
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8985 8986 8987
}

static struct cgroup_subsys_state *
8988
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8989
{
8990
	struct task_group *tg, *parent;
8991

8992
	if (!cgrp->parent) {
8993
		/* This is early initialization for the top cgroup */
8994
		init_task_group.css.cgroup = cgrp;
8995 8996 8997
		return &init_task_group.css;
	}

8998 8999
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9000 9001 9002 9003
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
9004
	tg->css.cgroup = cgrp;
9005 9006 9007 9008

	return &tg->css;
}

I
Ingo Molnar 已提交
9009 9010
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9011
{
9012
	struct task_group *tg = cgroup_tg(cgrp);
9013 9014 9015 9016

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9017 9018 9019
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9020
{
9021 9022
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9023
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9024 9025
		return -EINVAL;
#else
9026 9027 9028
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9029
#endif
9030 9031 9032 9033 9034

	return 0;
}

static void
9035
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9036 9037 9038 9039 9040
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9041
#ifdef CONFIG_FAIR_GROUP_SCHED
9042
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9043
				u64 shareval)
9044
{
9045
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9046 9047
}

9048
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9049
{
9050
	struct task_group *tg = cgroup_tg(cgrp);
9051 9052 9053

	return (u64) tg->shares;
}
9054
#endif /* CONFIG_FAIR_GROUP_SCHED */
9055

9056
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9057
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9058
				s64 val)
P
Peter Zijlstra 已提交
9059
{
9060
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9061 9062
}

9063
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9064
{
9065
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9066
}
9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9078
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9079

9080
static struct cftype cpu_files[] = {
9081
#ifdef CONFIG_FAIR_GROUP_SCHED
9082 9083
	{
		.name = "shares",
9084 9085
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9086
	},
9087 9088
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9089
	{
P
Peter Zijlstra 已提交
9090
		.name = "rt_runtime_us",
9091 9092
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9093
	},
9094 9095
	{
		.name = "rt_period_us",
9096 9097
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9098
	},
9099
#endif
9100 9101 9102 9103
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9104
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9105 9106 9107
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9108 9109 9110 9111 9112 9113 9114
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9115 9116 9117
	.early_init	= 1,
};

9118
#endif	/* CONFIG_CGROUP_SCHED */
9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9139
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9140
{
9141
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9154
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9171
static void
9172
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9173
{
9174
	struct cpuacct *ca = cgroup_ca(cgrp);
9175 9176 9177 9178 9179 9180

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9181
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9182
{
9183
	struct cpuacct *ca = cgroup_ca(cgrp);
9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9225 9226 9227
static struct cftype files[] = {
	{
		.name = "usage",
9228 9229
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9230 9231 9232
	},
};

9233
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9234
{
9235
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */