sched.c 224.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
99
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
100
 */
101
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
102

I
Ingo Molnar 已提交
103 104 105
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
106 107 108
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
109
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
110 111 112
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
113

114 115 116 117 118
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

140 141
static inline int rt_policy(int policy)
{
142
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
143 144 145 146 147 148 149 150 151
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
152
/*
I
Ingo Molnar 已提交
153
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
154
 */
I
Ingo Molnar 已提交
155 156 157 158 159
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

160
struct rt_bandwidth {
I
Ingo Molnar 已提交
161 162 163 164 165
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
199 200
	spin_lock_init(&rt_b->rt_runtime_lock);

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

238 239 240 241 242 243
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

244
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
245

246 247
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
248 249
struct cfs_rq;

P
Peter Zijlstra 已提交
250 251
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
252
/* task group related information */
253
struct task_group {
254
#ifdef CONFIG_CGROUP_SCHED
255 256
	struct cgroup_subsys_state css;
#endif
257 258

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
259 260 261 262 263
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
264 265 266 267 268 269
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

270
	struct rt_bandwidth rt_bandwidth;
271
#endif
272

273
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
274
	struct list_head list;
P
Peter Zijlstra 已提交
275 276 277 278

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
279 280
};

D
Dhaval Giani 已提交
281
#ifdef CONFIG_USER_SCHED
282 283 284 285 286 287 288 289

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

290
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
291 292 293 294
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
295
#endif /* CONFIG_FAIR_GROUP_SCHED */
296 297 298 299

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
300 301
#endif /* CONFIG_RT_GROUP_SCHED */
#else /* !CONFIG_FAIR_GROUP_SCHED */
302
#define root_task_group init_task_group
303
#endif /* CONFIG_FAIR_GROUP_SCHED */
P
Peter Zijlstra 已提交
304

305
/* task_group_lock serializes add/remove of task groups and also changes to
306 307
 * a task group's cpu shares.
 */
308
static DEFINE_SPINLOCK(task_group_lock);
309

310 311 312
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
313
#else /* !CONFIG_USER_SCHED */
314
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
315
#endif /* CONFIG_USER_SCHED */
316

317
/*
318 319 320 321
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
322 323 324
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
325
#define MIN_SHARES	2
326
#define MAX_SHARES	(1UL << 18)
327

328 329 330
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
331
/* Default task group.
I
Ingo Molnar 已提交
332
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
333
 */
334
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
335 336

/* return group to which a task belongs */
337
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
338
{
339
	struct task_group *tg;
340

341
#ifdef CONFIG_USER_SCHED
342
	tg = p->user->tg;
343
#elif defined(CONFIG_CGROUP_SCHED)
344 345
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
346
#else
I
Ingo Molnar 已提交
347
	tg = &init_task_group;
348
#endif
349
	return tg;
S
Srivatsa Vaddagiri 已提交
350 351 352
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
353
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
354
{
355
#ifdef CONFIG_FAIR_GROUP_SCHED
356 357
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
358
#endif
P
Peter Zijlstra 已提交
359

360
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
361 362
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
363
#endif
S
Srivatsa Vaddagiri 已提交
364 365 366 367
}

#else

P
Peter Zijlstra 已提交
368
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
369 370 371 372
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
373

374
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
375

I
Ingo Molnar 已提交
376 377 378 379 380 381
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
382
	u64 min_vruntime;
383
	u64 pair_start;
I
Ingo Molnar 已提交
384 385 386

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
387 388 389 390 391 392

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
393 394
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
395
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
396 397 398

	unsigned long nr_spread_over;

399
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
400 401
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
402 403
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
404 405 406 407 408 409
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
410 411
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
412 413 414

#ifdef CONFIG_SMP
	/*
415
	 * the part of load.weight contributed by tasks
416
	 */
417
	unsigned long task_weight;
418

419 420 421 422 423 424 425
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
426

427 428 429 430
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
431 432 433 434 435

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
436
#endif
I
Ingo Molnar 已提交
437 438
#endif
};
L
Linus Torvalds 已提交
439

I
Ingo Molnar 已提交
440 441 442
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
443
	unsigned long rt_nr_running;
444
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
445 446
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
447
#ifdef CONFIG_SMP
448
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
449
	int overloaded;
P
Peter Zijlstra 已提交
450
#endif
P
Peter Zijlstra 已提交
451
	int rt_throttled;
P
Peter Zijlstra 已提交
452
	u64 rt_time;
P
Peter Zijlstra 已提交
453
	u64 rt_runtime;
I
Ingo Molnar 已提交
454
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
455
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
456

457
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
458 459
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
460 461 462 463 464
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
465 466
};

G
Gregory Haskins 已提交
467 468 469 470
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
471 472
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
473 474 475 476 477 478 479 480
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
481

I
Ingo Molnar 已提交
482
	/*
483 484 485 486
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
487
	atomic_t rto_count;
488 489 490
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
491 492
};

493 494 495 496
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
497 498 499 500
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
501 502 503 504 505 506 507
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
508
struct rq {
509 510
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
511 512 513 514 515 516

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
517 518
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
519
	unsigned char idle_at_tick;
520
#ifdef CONFIG_NO_HZ
521
	unsigned long last_tick_seen;
522 523
	unsigned char in_nohz_recently;
#endif
524 525
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
526 527 528 529
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
530 531
	struct rt_rq rt;

I
Ingo Molnar 已提交
532
#ifdef CONFIG_FAIR_GROUP_SCHED
533 534
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
535 536
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
537
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
538 539 540 541 542 543 544 545 546 547
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

548
	struct task_struct *curr, *idle;
549
	unsigned long next_balance;
L
Linus Torvalds 已提交
550
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
551

552
	u64 clock;
I
Ingo Molnar 已提交
553

L
Linus Torvalds 已提交
554 555 556
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
557
	struct root_domain *rd;
L
Linus Torvalds 已提交
558 559 560 561 562
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
563 564
	/* cpu of this runqueue: */
	int cpu;
565
	int online;
L
Linus Torvalds 已提交
566

567
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
568

569
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
570 571 572
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
573
#ifdef CONFIG_SCHED_HRTICK
574 575 576 577
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
578 579 580
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
581 582 583 584 585
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
586 587 588 589
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
590 591

	/* schedule() stats */
592 593 594
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
595 596

	/* try_to_wake_up() stats */
597 598
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
599 600

	/* BKL stats */
601
	unsigned int bkl_count;
L
Linus Torvalds 已提交
602 603 604
#endif
};

605
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
606

607
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
608
{
609
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
610 611
}

612 613 614 615 616 617 618 619 620
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
621 622
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
623
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
624 625 626 627
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
628 629
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
630 631 632 633 634 635

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

636 637 638 639 640
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
641 642 643 644 645 646 647 648 649
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
668 669 670
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
671 672 673 674

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
675
enum {
P
Peter Zijlstra 已提交
676
#include "sched_features.h"
I
Ingo Molnar 已提交
677 678
};

P
Peter Zijlstra 已提交
679 680 681 682 683
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
684
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
685 686 687 688 689 690 691 692 693
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

694
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
695 696 697 698 699 700
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

701
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
729
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
759
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
802

803 804 805 806 807 808
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
809 810
/*
 * ratelimit for updating the group shares.
811
 * default: 0.25ms
P
Peter Zijlstra 已提交
812
 */
813
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
814

P
Peter Zijlstra 已提交
815
/*
P
Peter Zijlstra 已提交
816
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
817 818
 * default: 1s
 */
P
Peter Zijlstra 已提交
819
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
820

821 822
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
823 824 825 826 827
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
828

829 830 831 832 833 834 835
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
836
	if (sysctl_sched_rt_runtime < 0)
837 838 839 840
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
841

L
Linus Torvalds 已提交
842
#ifndef prepare_arch_switch
843 844 845 846 847 848
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

849 850 851 852 853
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

854
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
855
static inline int task_running(struct rq *rq, struct task_struct *p)
856
{
857
	return task_current(rq, p);
858 859
}

860
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
861 862 863
{
}

864
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
865
{
866 867 868 869
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
870 871 872 873 874 875 876
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

877 878 879 880
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
881
static inline int task_running(struct rq *rq, struct task_struct *p)
882 883 884 885
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
886
	return task_current(rq, p);
887 888 889
#endif
}

890
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

907
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
908 909 910 911 912 913 914 915 916 917 918 919
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
920
#endif
921 922
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
923

924 925 926 927
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
928
static inline struct rq *__task_rq_lock(struct task_struct *p)
929 930
	__acquires(rq->lock)
{
931 932 933 934 935
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
936 937 938 939
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
940 941
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
942
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
943 944
 * explicitly disabling preemption.
 */
945
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
946 947
	__acquires(rq->lock)
{
948
	struct rq *rq;
L
Linus Torvalds 已提交
949

950 951 952 953 954 955
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
956 957 958 959
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
960
static void __task_rq_unlock(struct rq *rq)
961 962 963 964 965
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

966
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
967 968 969 970 971 972
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
973
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
974
 */
A
Alexey Dobriyan 已提交
975
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
976 977
	__acquires(rq->lock)
{
978
	struct rq *rq;
L
Linus Torvalds 已提交
979 980 981 982 983 984 985 986

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1008
	if (!cpu_active(cpu_of(rq)))
1009
		return 0;
P
Peter Zijlstra 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1030
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1031 1032 1033 1034 1035 1036
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1037
#ifdef CONFIG_SMP
1038 1039 1040 1041
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1042
{
1043
	struct rq *rq = arg;
1044

1045 1046 1047 1048
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1049 1050
}

1051 1052 1053 1054 1055 1056
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1057
{
1058 1059
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1060

1061 1062 1063 1064 1065 1066 1067 1068
	timer->expires = time;

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1083
		hrtick_clear(cpu_rq(cpu));
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1104

A
Andrew Morton 已提交
1105
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1106 1107
{
}
1108
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1109

1110
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1111
{
1112 1113
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1114

1115 1116 1117 1118
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1119

1120 1121 1122
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
P
Peter Zijlstra 已提交
1123
}
A
Andrew Morton 已提交
1124
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1125 1126 1127 1128 1129 1130 1131 1132
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1133 1134 1135
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1136
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1137

I
Ingo Molnar 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1151
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1152 1153 1154 1155 1156
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1157
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1158 1159
		return;

1160
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1223
#endif /* CONFIG_NO_HZ */
1224

1225
#else /* !CONFIG_SMP */
1226
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1227 1228
{
	assert_spin_locked(&task_rq(p)->lock);
1229
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1230
}
1231
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1232

1233 1234 1235 1236 1237 1238 1239 1240
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1241 1242 1243
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1244
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1245

1246 1247 1248
/*
 * delta *= weight / lw
 */
1249
static unsigned long
1250 1251 1252 1253 1254
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1255 1256 1257 1258 1259 1260 1261
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1262 1263 1264 1265 1266

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1267
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1268
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1269 1270
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1271
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1272

1273
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1274 1275
}

1276
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1277 1278
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1279
	lw->inv_weight = 0;
1280 1281
}

1282
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1283 1284
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1285
	lw->inv_weight = 0;
1286 1287
}

1288 1289 1290 1291
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1292
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1293 1294 1295 1296
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1308 1309 1310
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1311 1312
 */
static const int prio_to_weight[40] = {
1313 1314 1315 1316 1317 1318 1319 1320
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1321 1322
};

1323 1324 1325 1326 1327 1328 1329
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1330
static const u32 prio_to_wmult[40] = {
1331 1332 1333 1334 1335 1336 1337 1338
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1339
};
1340

I
Ingo Molnar 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1366

1367 1368 1369 1370 1371 1372
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1383 1384 1385 1386
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1387

1388 1389 1390 1391 1392 1393 1394 1395 1396
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (rq->nr_running)
		rq->avg_load_per_task = rq->load.weight / rq->nr_running;

	return rq->avg_load_per_task;
}
1397 1398

#ifdef CONFIG_FAIR_GROUP_SCHED
1399

1400
typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1401 1402 1403 1404 1405

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
1406 1407
static void
walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1408 1409 1410 1411 1412 1413
{
	struct task_group *parent, *child;

	rcu_read_lock();
	parent = &root_task_group;
down:
1414
	(*down)(parent, cpu, sd);
1415 1416 1417 1418 1419 1420 1421
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
1422
	(*up)(parent, cpu, sd);
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
	rcu_read_unlock();
}

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1437
__update_group_shares_cpu(struct task_group *tg, int cpu,
1438
			  unsigned long sd_shares, unsigned long sd_rq_weight)
1439
{
1440 1441 1442 1443
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1444
	if (!tg->se[cpu])
1445 1446
		return;

1447
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1459 1460 1461
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1462 1463 1464 1465 1466 1467
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1468
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1469 1470 1471 1472

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
1473
	tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1474
	tg->cfs_rq[cpu]->rq_weight = rq_weight;
1475 1476 1477 1478 1479 1480

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;

1481
	__set_se_shares(tg->se[cpu], shares);
1482
}
1483 1484

/*
1485 1486 1487
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1488 1489
 */
static void
1490
tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1491
{
1492 1493 1494
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
	int i;
1495

1496 1497 1498
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1499 1500
	}

1501 1502 1503 1504 1505
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1506

P
Peter Zijlstra 已提交
1507 1508 1509
	if (!rq_weight)
		rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;

1510 1511 1512 1513 1514
	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
1515
		__update_group_shares_cpu(tg, i, shares, rq_weight);
1516 1517 1518 1519 1520
		spin_unlock_irqrestore(&rq->lock, flags);
	}
}

/*
1521 1522 1523
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1524
 */
1525
static void
1526
tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1527
{
1528
	unsigned long load;
1529

1530 1531 1532 1533 1534 1535 1536
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1537

1538
	tg->cfs_rq[cpu]->h_load = load;
1539 1540
}

1541 1542
static void
tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1543 1544 1545
{
}

1546
static void update_shares(struct sched_domain *sd)
1547
{
P
Peter Zijlstra 已提交
1548 1549 1550 1551 1552 1553 1554
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
		walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
	}
1555 1556
}

1557 1558 1559 1560 1561 1562 1563
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

1564
static void update_h_load(int cpu)
1565
{
1566
	walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1567 1568 1569 1570
}

#else

1571
static inline void update_shares(struct sched_domain *sd)
1572 1573 1574
{
}

1575 1576 1577 1578
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1579 1580 1581 1582
#endif

#endif

V
Vegard Nossum 已提交
1583
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1584 1585
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1586
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1587 1588 1589
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1590
#endif
1591

I
Ingo Molnar 已提交
1592 1593
#include "sched_stats.h"
#include "sched_idletask.c"
1594 1595
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1596 1597 1598 1599 1600
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1601 1602
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1603

1604
static void inc_nr_running(struct rq *rq)
1605 1606 1607 1608
{
	rq->nr_running++;
}

1609
static void dec_nr_running(struct rq *rq)
1610 1611 1612 1613
{
	rq->nr_running--;
}

1614 1615 1616
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1617 1618 1619 1620
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1621

I
Ingo Molnar 已提交
1622 1623 1624 1625 1626 1627 1628 1629
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1630

I
Ingo Molnar 已提交
1631 1632
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1633 1634
}

1635 1636 1637 1638 1639 1640
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1641
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1642
{
I
Ingo Molnar 已提交
1643
	sched_info_queued(p);
1644
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1645
	p->se.on_rq = 1;
1646 1647
}

1648
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1649
{
1650 1651 1652 1653 1654 1655
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1656
	sched_info_dequeued(p);
1657
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1658
	p->se.on_rq = 0;
1659 1660
}

1661
/*
I
Ingo Molnar 已提交
1662
 * __normal_prio - return the priority that is based on the static prio
1663 1664 1665
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1666
	return p->static_prio;
1667 1668
}

1669 1670 1671 1672 1673 1674 1675
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1676
static inline int normal_prio(struct task_struct *p)
1677 1678 1679
{
	int prio;

1680
	if (task_has_rt_policy(p))
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1694
static int effective_prio(struct task_struct *p)
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1707
/*
I
Ingo Molnar 已提交
1708
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1709
 */
I
Ingo Molnar 已提交
1710
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1711
{
1712
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1713
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1714

1715
	enqueue_task(rq, p, wakeup);
1716
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1717 1718 1719 1720 1721
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1722
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1723
{
1724
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1725 1726
		rq->nr_uninterruptible++;

1727
	dequeue_task(rq, p, sleep);
1728
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1729 1730 1731 1732 1733 1734
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1735
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1736 1737 1738 1739
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1740 1741
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1742
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1743
#ifdef CONFIG_SMP
1744 1745 1746 1747 1748 1749
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1750 1751
	task_thread_info(p)->cpu = cpu;
#endif
1752 1753
}

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1766
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1767

1768 1769 1770 1771 1772 1773
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1774 1775 1776
/*
 * Is this task likely cache-hot:
 */
1777
static int
1778 1779 1780 1781
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1782 1783 1784
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1785
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1786 1787
		return 1;

1788 1789 1790
	if (p->sched_class != &fair_sched_class)
		return 0;

1791 1792 1793 1794 1795
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1796 1797 1798 1799 1800 1801
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1802
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1803
{
I
Ingo Molnar 已提交
1804 1805
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1806 1807
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1808
	u64 clock_offset;
I
Ingo Molnar 已提交
1809 1810

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1811 1812 1813 1814

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1815 1816 1817 1818
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1819 1820 1821 1822 1823
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1824
#endif
1825 1826
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1827 1828

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1829 1830
}

1831
struct migration_req {
L
Linus Torvalds 已提交
1832 1833
	struct list_head list;

1834
	struct task_struct *task;
L
Linus Torvalds 已提交
1835 1836 1837
	int dest_cpu;

	struct completion done;
1838
};
L
Linus Torvalds 已提交
1839 1840 1841 1842 1843

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1844
static int
1845
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1846
{
1847
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1848 1849 1850 1851 1852

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1853
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1854 1855 1856 1857 1858 1859 1860 1861
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1862

L
Linus Torvalds 已提交
1863 1864 1865 1866 1867 1868
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1869 1870 1871 1872 1873 1874 1875
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1876 1877 1878 1879 1880 1881
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1882
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1883 1884
{
	unsigned long flags;
I
Ingo Molnar 已提交
1885
	int running, on_rq;
R
Roland McGrath 已提交
1886
	unsigned long ncsw;
1887
	struct rq *rq;
L
Linus Torvalds 已提交
1888

1889 1890 1891 1892 1893 1894 1895 1896
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1897

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1909 1910 1911
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1912
			cpu_relax();
R
Roland McGrath 已提交
1913
		}
1914

1915 1916 1917 1918 1919 1920 1921 1922
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
1923
		ncsw = 0;
1924
		if (!match_state || p->state == match_state)
1925
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1926
		task_rq_unlock(rq, &flags);
1927

R
Roland McGrath 已提交
1928 1929 1930 1931 1932 1933
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1944

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1958

1959 1960 1961 1962 1963 1964 1965
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1966 1967

	return ncsw;
L
Linus Torvalds 已提交
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1983
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1995 1996
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1997 1998 1999 2000
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2001
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2002
{
2003
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2004
	unsigned long total = weighted_cpuload(cpu);
2005

2006
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2007
		return total;
2008

I
Ingo Molnar 已提交
2009
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2010 2011 2012
}

/*
2013 2014
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2015
 */
A
Alexey Dobriyan 已提交
2016
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2017
{
2018
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2019
	unsigned long total = weighted_cpuload(cpu);
2020

2021
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2022
		return total;
2023

I
Ingo Molnar 已提交
2024
	return max(rq->cpu_load[type-1], total);
2025 2026
}

N
Nick Piggin 已提交
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2044 2045
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2046
			continue;
2047

N
Nick Piggin 已提交
2048 2049 2050 2051 2052
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2053
		for_each_cpu_mask_nr(i, group->cpumask) {
N
Nick Piggin 已提交
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2064 2065
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2066 2067 2068 2069 2070 2071 2072 2073

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2074
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2075 2076 2077 2078 2079 2080 2081

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2082
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2083
 */
I
Ingo Molnar 已提交
2084
static int
2085 2086
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2087 2088 2089 2090 2091
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2092
	/* Traverse only the allowed CPUs */
2093
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2094

2095
	for_each_cpu_mask_nr(i, *tmp) {
2096
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2122

2123
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2124 2125 2126
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2127 2128
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2129 2130
		if (tmp->flags & flag)
			sd = tmp;
2131
	}
N
Nick Piggin 已提交
2132

2133 2134 2135
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2136
	while (sd) {
2137
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2138
		struct sched_group *group;
2139 2140 2141 2142 2143 2144
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2145 2146 2147

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2148 2149 2150 2151
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2152

2153
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2154 2155 2156 2157 2158
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2159

2160
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2192
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2193
{
2194
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2195 2196
	unsigned long flags;
	long old_state;
2197
	struct rq *rq;
L
Linus Torvalds 已提交
2198

2199 2200 2201
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				update_shares(sd);
				break;
			}
		}
	}
#endif

2218
	smp_wmb();
L
Linus Torvalds 已提交
2219 2220 2221 2222 2223
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2224
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2225 2226 2227
		goto out_running;

	cpu = task_cpu(p);
2228
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2229 2230 2231 2232 2233 2234
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2235 2236 2237
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2238 2239 2240 2241 2242 2243
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2244
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2245 2246 2247 2248 2249 2250
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2264
#endif /* CONFIG_SCHEDSTATS */
2265

L
Linus Torvalds 已提交
2266 2267
out_activate:
#endif /* CONFIG_SMP */
2268 2269 2270 2271 2272 2273 2274 2275 2276
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2277
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2278
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2279 2280 2281
	success = 1;

out_running:
M
Mathieu Desnoyers 已提交
2282 2283 2284
	trace_mark(kernel_sched_wakeup,
		"pid %d state %ld ## rq %p task %p rq->curr %p",
		p->pid, p->state, rq, p, rq->curr);
2285
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2286

L
Linus Torvalds 已提交
2287
	p->state = TASK_RUNNING;
2288 2289 2290 2291
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2292
out:
2293 2294
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2295 2296 2297 2298 2299
	task_rq_unlock(rq, &flags);

	return success;
}

2300
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2301
{
2302
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2303 2304 2305
}
EXPORT_SYMBOL(wake_up_process);

2306
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2307 2308 2309 2310 2311 2312 2313
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2314 2315 2316 2317 2318 2319 2320
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2321
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2322 2323
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2324 2325 2326

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2327 2328 2329 2330 2331 2332
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2333
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2334
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2335
#endif
N
Nick Piggin 已提交
2336

P
Peter Zijlstra 已提交
2337
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2338
	p->se.on_rq = 0;
2339
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2340

2341 2342 2343 2344
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2345 2346 2347 2348 2349 2350 2351
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2366
	set_task_cpu(p, cpu);
2367 2368 2369 2370 2371

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2372 2373
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2374

2375
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2376
	if (likely(sched_info_on()))
2377
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2378
#endif
2379
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2380 2381
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2382
#ifdef CONFIG_PREEMPT
2383
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2384
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2385
#endif
N
Nick Piggin 已提交
2386
	put_cpu();
L
Linus Torvalds 已提交
2387 2388 2389 2390 2391 2392 2393 2394 2395
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2396
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2397 2398
{
	unsigned long flags;
I
Ingo Molnar 已提交
2399
	struct rq *rq;
L
Linus Torvalds 已提交
2400 2401

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2402
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2403
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2404 2405 2406

	p->prio = effective_prio(p);

2407
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2408
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2409 2410
	} else {
		/*
I
Ingo Molnar 已提交
2411 2412
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2413
		 */
2414
		p->sched_class->task_new(rq, p);
2415
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2416
	}
M
Mathieu Desnoyers 已提交
2417 2418 2419
	trace_mark(kernel_sched_wakeup_new,
		"pid %d state %ld ## rq %p task %p rq->curr %p",
		p->pid, p->state, rq, p, rq->curr);
2420
	check_preempt_curr(rq, p, 0);
2421 2422 2423 2424
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2425
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2426 2427
}

2428 2429 2430
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2431 2432
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2433 2434 2435 2436 2437 2438 2439 2440 2441
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2442
 * @notifier: notifier struct to unregister
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2472
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2484
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2485

2486 2487 2488
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2489
 * @prev: the current task that is being switched out
2490 2491 2492 2493 2494 2495 2496 2497 2498
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2499 2500 2501
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2502
{
2503
	fire_sched_out_preempt_notifiers(prev, next);
2504 2505 2506 2507
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2508 2509
/**
 * finish_task_switch - clean up after a task-switch
2510
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2511 2512
 * @prev: the thread we just switched away from.
 *
2513 2514 2515 2516
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2517 2518
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2519
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2520 2521 2522
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2523
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2524 2525 2526
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2527
	long prev_state;
L
Linus Torvalds 已提交
2528 2529 2530 2531 2532

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2533
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2534 2535
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2536
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2537 2538 2539 2540 2541
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2542
	prev_state = prev->state;
2543 2544
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2545 2546 2547 2548
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2549

2550
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2551 2552
	if (mm)
		mmdrop(mm);
2553
	if (unlikely(prev_state == TASK_DEAD)) {
2554 2555 2556
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2557
		 */
2558
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2559
		put_task_struct(prev);
2560
	}
L
Linus Torvalds 已提交
2561 2562 2563 2564 2565 2566
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2567
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2568 2569
	__releases(rq->lock)
{
2570 2571
	struct rq *rq = this_rq();

2572 2573 2574 2575 2576
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2577
	if (current->set_child_tid)
2578
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2579 2580 2581 2582 2583 2584
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2585
static inline void
2586
context_switch(struct rq *rq, struct task_struct *prev,
2587
	       struct task_struct *next)
L
Linus Torvalds 已提交
2588
{
I
Ingo Molnar 已提交
2589
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2590

2591
	prepare_task_switch(rq, prev, next);
M
Mathieu Desnoyers 已提交
2592 2593 2594 2595 2596
	trace_mark(kernel_sched_schedule,
		"prev_pid %d next_pid %d prev_state %ld "
		"## rq %p prev %p next %p",
		prev->pid, next->pid, prev->state,
		rq, prev, next);
I
Ingo Molnar 已提交
2597 2598
	mm = next->mm;
	oldmm = prev->active_mm;
2599 2600 2601 2602 2603 2604 2605
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2606
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2607 2608 2609 2610 2611 2612
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2613
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2614 2615 2616
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2617 2618 2619 2620 2621 2622 2623
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2624
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2625
#endif
L
Linus Torvalds 已提交
2626 2627 2628 2629

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2630 2631 2632 2633 2634 2635 2636
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2660
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2675 2676
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2677

2678
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2679 2680 2681 2682 2683 2684 2685 2686 2687
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2688
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2689 2690 2691 2692 2693
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2709
/*
I
Ingo Molnar 已提交
2710 2711
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2712
 */
I
Ingo Molnar 已提交
2713
static void update_cpu_load(struct rq *this_rq)
2714
{
2715
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2728 2729 2730 2731 2732 2733 2734
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2735 2736
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2737 2738
}

I
Ingo Molnar 已提交
2739 2740
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2741 2742 2743 2744 2745 2746
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2747
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2748 2749 2750
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2751
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2752 2753 2754 2755
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2756
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2757
			spin_lock(&rq1->lock);
2758
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2759 2760
		} else {
			spin_lock(&rq2->lock);
2761
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2762 2763
		}
	}
2764 2765
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2766 2767 2768 2769 2770 2771 2772 2773
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2774
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2788
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2789 2790 2791 2792
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2793 2794
	int ret = 0;

2795 2796 2797 2798 2799
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2800
	if (unlikely(!spin_trylock(&busiest->lock))) {
2801
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2802 2803
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
2804
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
S
Steven Rostedt 已提交
2805
			ret = 1;
L
Linus Torvalds 已提交
2806
		} else
2807
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2808
	}
S
Steven Rostedt 已提交
2809
	return ret;
L
Linus Torvalds 已提交
2810 2811
}

2812 2813 2814 2815 2816 2817 2818
static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}

L
Linus Torvalds 已提交
2819 2820 2821
/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2822
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2823 2824
 * the cpu_allowed mask is restored.
 */
2825
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2826
{
2827
	struct migration_req req;
L
Linus Torvalds 已提交
2828
	unsigned long flags;
2829
	struct rq *rq;
L
Linus Torvalds 已提交
2830 2831 2832

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
2833
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2834 2835 2836 2837 2838 2839
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2840

L
Linus Torvalds 已提交
2841 2842 2843 2844 2845
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2846

L
Linus Torvalds 已提交
2847 2848 2849 2850 2851 2852 2853
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2854 2855
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2856 2857 2858 2859
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2860
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2861
	put_cpu();
N
Nick Piggin 已提交
2862 2863
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2864 2865 2866 2867 2868 2869
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2870 2871
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2872
{
2873
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2874
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2875
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2876 2877 2878 2879
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2880
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2881 2882 2883 2884 2885
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2886
static
2887
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2888
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2889
		     int *all_pinned)
L
Linus Torvalds 已提交
2890 2891 2892 2893 2894 2895 2896
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2897 2898
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2899
		return 0;
2900
	}
2901 2902
	*all_pinned = 0;

2903 2904
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2905
		return 0;
2906
	}
L
Linus Torvalds 已提交
2907

2908 2909 2910 2911 2912 2913
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2914 2915
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2916
#ifdef CONFIG_SCHEDSTATS
2917
		if (task_hot(p, rq->clock, sd)) {
2918
			schedstat_inc(sd, lb_hot_gained[idle]);
2919 2920
			schedstat_inc(p, se.nr_forced_migrations);
		}
2921 2922 2923 2924
#endif
		return 1;
	}

2925 2926
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2927
		return 0;
2928
	}
L
Linus Torvalds 已提交
2929 2930 2931
	return 1;
}

2932 2933 2934 2935 2936
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2937
{
2938
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2939 2940
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2941

2942
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2943 2944
		goto out;

2945 2946
	pinned = 1;

L
Linus Torvalds 已提交
2947
	/*
I
Ingo Molnar 已提交
2948
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2949
	 */
I
Ingo Molnar 已提交
2950 2951
	p = iterator->start(iterator->arg);
next:
2952
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2953
		goto out;
2954 2955

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2956 2957 2958
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2959 2960
	}

I
Ingo Molnar 已提交
2961
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2962
	pulled++;
I
Ingo Molnar 已提交
2963
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2964

2965
	/*
2966
	 * We only want to steal up to the prescribed amount of weighted load.
2967
	 */
2968
	if (rem_load_move > 0) {
2969 2970
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2971 2972
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2973 2974 2975
	}
out:
	/*
2976
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2977 2978 2979 2980
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2981 2982 2983

	if (all_pinned)
		*all_pinned = pinned;
2984 2985

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2986 2987
}

I
Ingo Molnar 已提交
2988
/*
P
Peter Williams 已提交
2989 2990 2991
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2992 2993 2994 2995
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2996
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2997 2998 2999
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3000
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3001
	unsigned long total_load_moved = 0;
3002
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3003 3004

	do {
P
Peter Williams 已提交
3005 3006
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3007
				max_load_move - total_load_moved,
3008
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3009
		class = class->next;
3010 3011 3012 3013

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3014
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3015

P
Peter Williams 已提交
3016 3017 3018
	return total_load_moved > 0;
}

3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3055
	const struct sched_class *class;
P
Peter Williams 已提交
3056 3057

	for (class = sched_class_highest; class; class = class->next)
3058
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3059 3060 3061
			return 1;

	return 0;
I
Ingo Molnar 已提交
3062 3063
}

L
Linus Torvalds 已提交
3064 3065
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3066 3067
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3068 3069 3070
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3071
		   unsigned long *imbalance, enum cpu_idle_type idle,
3072
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3073 3074 3075
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3076
	unsigned long max_pull;
3077 3078
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3079
	int load_idx, group_imb = 0;
3080 3081 3082 3083 3084 3085
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3086 3087

	max_load = this_load = total_load = total_pwr = 0;
3088 3089
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3090

I
Ingo Molnar 已提交
3091
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3092
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3093
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3094 3095 3096
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3097 3098

	do {
3099
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3100 3101
		int local_group;
		int i;
3102
		int __group_imb = 0;
3103
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3104
		unsigned long sum_nr_running, sum_weighted_load;
3105 3106
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3107 3108 3109

		local_group = cpu_isset(this_cpu, group->cpumask);

3110 3111 3112
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3113
		/* Tally up the load of all CPUs in the group */
3114
		sum_weighted_load = sum_nr_running = avg_load = 0;
3115 3116
		sum_avg_load_per_task = avg_load_per_task = 0;

3117 3118
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3119

3120
		for_each_cpu_mask_nr(i, group->cpumask) {
3121 3122 3123 3124 3125 3126
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3127

3128
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3129 3130
				*sd_idle = 0;

L
Linus Torvalds 已提交
3131
			/* Bias balancing toward cpus of our domain */
3132 3133 3134 3135 3136 3137
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3138
				load = target_load(i, load_idx);
3139
			} else {
N
Nick Piggin 已提交
3140
				load = source_load(i, load_idx);
3141 3142 3143 3144 3145
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3146 3147

			avg_load += load;
3148
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3149
			sum_weighted_load += weighted_cpuload(i);
3150 3151

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3152 3153
		}

3154 3155 3156
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3157 3158
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3159
		 */
3160 3161
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3162 3163 3164 3165
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3166
		total_load += avg_load;
3167
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3168 3169

		/* Adjust by relative CPU power of the group */
3170 3171
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3172

3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3187 3188
			__group_imb = 1;

3189
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3190

L
Linus Torvalds 已提交
3191 3192 3193
		if (local_group) {
			this_load = avg_load;
			this = group;
3194 3195 3196
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3197
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3198 3199
			max_load = avg_load;
			busiest = group;
3200 3201
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3202
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3203
		}
3204 3205 3206 3207 3208 3209

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3210 3211 3212
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3213 3214 3215 3216 3217 3218 3219 3220 3221

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3222
		/*
3223 3224
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3225 3226
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3227
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3228
			goto group_next;
3229

I
Ingo Molnar 已提交
3230
		/*
3231
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3232 3233 3234 3235 3236
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3237 3238
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3239 3240
			group_min = group;
			min_nr_running = sum_nr_running;
3241 3242
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3243
		}
3244

I
Ingo Molnar 已提交
3245
		/*
3246
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3258
		}
3259 3260
group_next:
#endif
L
Linus Torvalds 已提交
3261 3262 3263
		group = group->next;
	} while (group != sd->groups);

3264
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3265 3266 3267 3268 3269 3270 3271 3272
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3273
	busiest_load_per_task /= busiest_nr_running;
3274 3275 3276
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3277 3278 3279 3280 3281 3282 3283 3284
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3285
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3286 3287
	 * appear as very large values with unsigned longs.
	 */
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3300 3301

	/* Don't want to pull so many tasks that a group would go idle */
3302
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3303

L
Linus Torvalds 已提交
3304
	/* How much load to actually move to equalise the imbalance */
3305 3306
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3307 3308
			/ SCHED_LOAD_SCALE;

3309 3310 3311 3312 3313 3314
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3315
	if (*imbalance < busiest_load_per_task) {
3316
		unsigned long tmp, pwr_now, pwr_move;
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3327
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3328

3329
		if (max_load - this_load + 2*busiest_load_per_task >=
I
Ingo Molnar 已提交
3330
					busiest_load_per_task * imbn) {
3331
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3332 3333 3334 3335 3336 3337 3338 3339 3340
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3341 3342 3343 3344
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3345 3346 3347
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3348 3349
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3350
		if (max_load > tmp)
3351
			pwr_move += busiest->__cpu_power *
3352
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3353 3354

		/* Amount of load we'd add */
3355
		if (max_load * busiest->__cpu_power <
3356
				busiest_load_per_task * SCHED_LOAD_SCALE)
3357 3358
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3359
		else
3360 3361 3362 3363
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3364 3365 3366
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3367 3368
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3369 3370 3371 3372 3373
	}

	return busiest;

out_balanced:
3374
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3375
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3376
		goto ret;
L
Linus Torvalds 已提交
3377

3378 3379 3380 3381 3382
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3383
ret:
L
Linus Torvalds 已提交
3384 3385 3386 3387 3388 3389 3390
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3391
static struct rq *
I
Ingo Molnar 已提交
3392
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3393
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3394
{
3395
	struct rq *busiest = NULL, *rq;
3396
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3397 3398
	int i;

3399
	for_each_cpu_mask_nr(i, group->cpumask) {
I
Ingo Molnar 已提交
3400
		unsigned long wl;
3401 3402 3403 3404

		if (!cpu_isset(i, *cpus))
			continue;

3405
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3406
		wl = weighted_cpuload(i);
3407

I
Ingo Molnar 已提交
3408
		if (rq->nr_running == 1 && wl > imbalance)
3409
			continue;
L
Linus Torvalds 已提交
3410

I
Ingo Molnar 已提交
3411 3412
		if (wl > max_load) {
			max_load = wl;
3413
			busiest = rq;
L
Linus Torvalds 已提交
3414 3415 3416 3417 3418 3419
		}
	}

	return busiest;
}

3420 3421 3422 3423 3424 3425
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3426 3427 3428 3429
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3430
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3431
			struct sched_domain *sd, enum cpu_idle_type idle,
3432
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3433
{
P
Peter Williams 已提交
3434
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3435 3436
	struct sched_group *group;
	unsigned long imbalance;
3437
	struct rq *busiest;
3438
	unsigned long flags;
N
Nick Piggin 已提交
3439

3440 3441
	cpus_setall(*cpus);

3442 3443 3444
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3445
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3446
	 * portraying it as CPU_NOT_IDLE.
3447
	 */
I
Ingo Molnar 已提交
3448
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3449
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3450
		sd_idle = 1;
L
Linus Torvalds 已提交
3451

3452
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3453

3454
redo:
3455
	update_shares(sd);
3456
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3457
				   cpus, balance);
3458

3459
	if (*balance == 0)
3460 3461
		goto out_balanced;

L
Linus Torvalds 已提交
3462 3463 3464 3465 3466
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3467
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3468 3469 3470 3471 3472
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3473
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3474 3475 3476

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3477
	ld_moved = 0;
L
Linus Torvalds 已提交
3478 3479 3480 3481
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3482
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3483 3484
		 * correctly treated as an imbalance.
		 */
3485
		local_irq_save(flags);
N
Nick Piggin 已提交
3486
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3487
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3488
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3489
		double_rq_unlock(this_rq, busiest);
3490
		local_irq_restore(flags);
3491

3492 3493 3494
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3495
		if (ld_moved && this_cpu != smp_processor_id())
3496 3497
			resched_cpu(this_cpu);

3498
		/* All tasks on this runqueue were pinned by CPU affinity */
3499
		if (unlikely(all_pinned)) {
3500 3501
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3502
				goto redo;
3503
			goto out_balanced;
3504
		}
L
Linus Torvalds 已提交
3505
	}
3506

P
Peter Williams 已提交
3507
	if (!ld_moved) {
L
Linus Torvalds 已提交
3508 3509 3510 3511 3512
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3513
			spin_lock_irqsave(&busiest->lock, flags);
3514 3515 3516 3517 3518

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3519
				spin_unlock_irqrestore(&busiest->lock, flags);
3520 3521 3522 3523
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3524 3525 3526
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3527
				active_balance = 1;
L
Linus Torvalds 已提交
3528
			}
3529
			spin_unlock_irqrestore(&busiest->lock, flags);
3530
			if (active_balance)
L
Linus Torvalds 已提交
3531 3532 3533 3534 3535 3536
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3537
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3538
		}
3539
	} else
L
Linus Torvalds 已提交
3540 3541
		sd->nr_balance_failed = 0;

3542
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3543 3544
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3545 3546 3547 3548 3549 3550 3551 3552 3553
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3554 3555
	}

P
Peter Williams 已提交
3556
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3557
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3558 3559 3560
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3561 3562 3563 3564

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3565
	sd->nr_balance_failed = 0;
3566 3567

out_one_pinned:
L
Linus Torvalds 已提交
3568
	/* tune up the balancing interval */
3569 3570
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3571 3572
		sd->balance_interval *= 2;

3573
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3574
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3575 3576 3577 3578
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3579 3580
	if (ld_moved)
		update_shares(sd);
3581
	return ld_moved;
L
Linus Torvalds 已提交
3582 3583 3584 3585 3586 3587
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3588
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3589 3590
 * this_rq is locked.
 */
3591
static int
3592 3593
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3594 3595
{
	struct sched_group *group;
3596
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3597
	unsigned long imbalance;
P
Peter Williams 已提交
3598
	int ld_moved = 0;
N
Nick Piggin 已提交
3599
	int sd_idle = 0;
3600
	int all_pinned = 0;
3601 3602

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3603

3604 3605 3606 3607
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3608
	 * portraying it as CPU_NOT_IDLE.
3609 3610 3611
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3612
		sd_idle = 1;
L
Linus Torvalds 已提交
3613

3614
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3615
redo:
3616
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3617
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3618
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3619
	if (!group) {
I
Ingo Molnar 已提交
3620
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3621
		goto out_balanced;
L
Linus Torvalds 已提交
3622 3623
	}

3624
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3625
	if (!busiest) {
I
Ingo Molnar 已提交
3626
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3627
		goto out_balanced;
L
Linus Torvalds 已提交
3628 3629
	}

N
Nick Piggin 已提交
3630 3631
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3632
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3633

P
Peter Williams 已提交
3634
	ld_moved = 0;
3635 3636 3637
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3638 3639
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3640
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3641 3642
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3643
		double_unlock_balance(this_rq, busiest);
3644

3645
		if (unlikely(all_pinned)) {
3646 3647
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3648 3649
				goto redo;
		}
3650 3651
	}

P
Peter Williams 已提交
3652
	if (!ld_moved) {
I
Ingo Molnar 已提交
3653
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3654 3655
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3656 3657
			return -1;
	} else
3658
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3659

3660
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3661
	return ld_moved;
3662 3663

out_balanced:
I
Ingo Molnar 已提交
3664
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3665
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3666
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3667
		return -1;
3668
	sd->nr_balance_failed = 0;
3669

3670
	return 0;
L
Linus Torvalds 已提交
3671 3672 3673 3674 3675 3676
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3677
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3678 3679
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3680 3681
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3682
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3683 3684

	for_each_domain(this_cpu, sd) {
3685 3686 3687 3688 3689 3690
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3691
			/* If we've pulled tasks over stop searching: */
3692 3693
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3694 3695 3696 3697 3698 3699

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3700
	}
I
Ingo Molnar 已提交
3701
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3702 3703 3704 3705 3706
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3707
	}
L
Linus Torvalds 已提交
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3718
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3719
{
3720
	int target_cpu = busiest_rq->push_cpu;
3721 3722
	struct sched_domain *sd;
	struct rq *target_rq;
3723

3724
	/* Is there any task to move? */
3725 3726 3727 3728
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3729 3730

	/*
3731
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3732
	 * we need to fix it. Originally reported by
3733
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3734
	 */
3735
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3736

3737 3738
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3739 3740
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3741 3742

	/* Search for an sd spanning us and the target CPU. */
3743
	for_each_domain(target_cpu, sd) {
3744
		if ((sd->flags & SD_LOAD_BALANCE) &&
3745
		    cpu_isset(busiest_cpu, sd->span))
3746
				break;
3747
	}
3748

3749
	if (likely(sd)) {
3750
		schedstat_inc(sd, alb_count);
3751

P
Peter Williams 已提交
3752 3753
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3754 3755 3756 3757
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3758
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3759 3760
}

3761 3762 3763
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3764
	cpumask_t cpu_mask;
3765 3766 3767 3768 3769
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3770
/*
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3781
 *
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3801
		if (!cpu_active(cpu) &&
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3838 3839 3840 3841 3842
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3843
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3844
{
3845 3846
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3847 3848
	unsigned long interval;
	struct sched_domain *sd;
3849
	/* Earliest time when we have to do rebalance again */
3850
	unsigned long next_balance = jiffies + 60*HZ;
3851
	int update_next_balance = 0;
3852
	int need_serialize;
3853
	cpumask_t tmp;
L
Linus Torvalds 已提交
3854

3855
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3856 3857 3858 3859
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3860
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3861 3862 3863 3864 3865 3866
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3867 3868 3869
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3870
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3871

3872
		if (need_serialize) {
3873 3874 3875 3876
			if (!spin_trylock(&balancing))
				goto out;
		}

3877
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3878
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3879 3880
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3881 3882 3883
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3884
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3885
			}
3886
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3887
		}
3888
		if (need_serialize)
3889 3890
			spin_unlock(&balancing);
out:
3891
		if (time_after(next_balance, sd->last_balance + interval)) {
3892
			next_balance = sd->last_balance + interval;
3893 3894
			update_next_balance = 1;
		}
3895 3896 3897 3898 3899 3900 3901 3902

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3903
	}
3904 3905 3906 3907 3908 3909 3910 3911

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3912 3913 3914 3915 3916 3917 3918 3919 3920
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3921 3922 3923 3924
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3925

I
Ingo Molnar 已提交
3926
	rebalance_domains(this_cpu, idle);
3927 3928 3929 3930 3931 3932 3933

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3934 3935
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3936 3937 3938 3939
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3940
		cpu_clear(this_cpu, cpus);
3941
		for_each_cpu_mask_nr(balance_cpu, cpus) {
3942 3943 3944 3945 3946 3947 3948 3949
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3950
			rebalance_domains(balance_cpu, CPU_IDLE);
3951 3952

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3953 3954
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3967
static inline void trigger_load_balance(struct rq *rq, int cpu)
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

3994
			if (ilb < nr_cpu_ids)
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4019
}
I
Ingo Molnar 已提交
4020 4021 4022

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4023 4024 4025
/*
 * on UP we do not need to balance between CPUs:
 */
4026
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4027 4028
{
}
I
Ingo Molnar 已提交
4029

L
Linus Torvalds 已提交
4030 4031 4032 4033 4034 4035 4036
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4037 4038
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
4039
 */
4040
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
4041 4042
{
	unsigned long flags;
4043 4044
	u64 ns, delta_exec;
	struct rq *rq;
4045

4046 4047
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
4048
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
4049 4050
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4051 4052 4053 4054
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
4055

L
Linus Torvalds 已提交
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4077 4078
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4079 4080
}

4081 4082 4083 4084 4085
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4086
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4120
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4121 4122
	cputime64_t tmp;

4123 4124 4125 4126
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4127

L
Linus Torvalds 已提交
4128 4129 4130 4131 4132 4133 4134 4135
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4136
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4137
		cpustat->system = cputime64_add(cpustat->system, tmp);
4138
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4139 4140 4141 4142 4143 4144 4145
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4157 4158 4159 4160 4161 4162 4163 4164 4165
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4166
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4167 4168 4169 4170 4171 4172 4173

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4174
	} else
L
Linus Torvalds 已提交
4175 4176 4177
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4248
	struct task_struct *curr = rq->curr;
4249 4250

	sched_clock_tick();
I
Ingo Molnar 已提交
4251 4252

	spin_lock(&rq->lock);
4253
	update_rq_clock(rq);
4254
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4255
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4256
	spin_unlock(&rq->lock);
4257

4258
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4259 4260
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4261
#endif
L
Linus Torvalds 已提交
4262 4263
}

4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4276

4277
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4278
{
4279
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4280 4281 4282
	/*
	 * Underflow?
	 */
4283 4284
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4285
#endif
L
Linus Torvalds 已提交
4286
	preempt_count() += val;
4287
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4288 4289 4290
	/*
	 * Spinlock count overflowing soon?
	 */
4291 4292
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4293 4294 4295
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4296 4297 4298
}
EXPORT_SYMBOL(add_preempt_count);

4299
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4300
{
4301
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4302 4303 4304
	/*
	 * Underflow?
	 */
4305 4306
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4307 4308 4309
	/*
	 * Is the spinlock portion underflowing?
	 */
4310 4311 4312
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4313
#endif
4314

4315 4316
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4317 4318 4319 4320 4321 4322 4323
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4324
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4325
 */
I
Ingo Molnar 已提交
4326
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4327
{
4328 4329 4330 4331 4332
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4333
	debug_show_held_locks(prev);
4334
	print_modules();
I
Ingo Molnar 已提交
4335 4336
	if (irqs_disabled())
		print_irqtrace_events(prev);
4337 4338 4339 4340 4341

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4342
}
L
Linus Torvalds 已提交
4343

I
Ingo Molnar 已提交
4344 4345 4346 4347 4348
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4349
	/*
I
Ingo Molnar 已提交
4350
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4351 4352 4353
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4354
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4355 4356
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4357 4358
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4359
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4360 4361
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4362 4363
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4364 4365
	}
#endif
I
Ingo Molnar 已提交
4366 4367 4368 4369 4370 4371
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4372
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4373
{
4374
	const struct sched_class *class;
I
Ingo Molnar 已提交
4375
	struct task_struct *p;
L
Linus Torvalds 已提交
4376 4377

	/*
I
Ingo Molnar 已提交
4378 4379
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4380
	 */
I
Ingo Molnar 已提交
4381
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4382
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4383 4384
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4385 4386
	}

I
Ingo Molnar 已提交
4387 4388
	class = sched_class_highest;
	for ( ; ; ) {
4389
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4390 4391 4392 4393 4394 4395 4396 4397 4398
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4399

I
Ingo Molnar 已提交
4400 4401 4402 4403 4404 4405
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4406
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4407
	struct rq *rq;
4408
	int cpu;
I
Ingo Molnar 已提交
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4422

4423
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4424
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4425

4426 4427 4428 4429
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4430
	update_rq_clock(rq);
4431 4432
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4433 4434

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4435
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4436
			prev->state = TASK_RUNNING;
4437
		else
4438
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4439
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4440 4441
	}

4442 4443 4444 4445
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4446

I
Ingo Molnar 已提交
4447
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4448 4449
		idle_balance(cpu, rq);

4450
	prev->sched_class->put_prev_task(rq, prev);
4451
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4452 4453

	if (likely(prev != next)) {
4454 4455
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4456 4457 4458 4459
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4460
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4461 4462 4463 4464 4465 4466
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4467 4468 4469
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4470
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4471
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4472

L
Linus Torvalds 已提交
4473 4474 4475 4476 4477 4478 4479 4480
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4481
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4482
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4483 4484 4485 4486 4487
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4488

L
Linus Torvalds 已提交
4489 4490
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4491
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4492
	 */
N
Nick Piggin 已提交
4493
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4494 4495
		return;

4496 4497 4498 4499
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4500

4501 4502 4503 4504 4505 4506
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4507 4508 4509 4510
}
EXPORT_SYMBOL(preempt_schedule);

/*
4511
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4512 4513 4514 4515 4516 4517 4518
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4519

4520
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4521 4522
	BUG_ON(ti->preempt_count || !irqs_disabled());

4523 4524 4525 4526 4527 4528
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4529

4530 4531 4532 4533 4534 4535
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4536 4537 4538 4539
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4540 4541
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4542
{
4543
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4544 4545 4546 4547
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4548 4549
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4550 4551 4552
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4553
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4554 4555 4556 4557 4558
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4559
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4560

4561
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4562 4563
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4564
		if (curr->func(curr, mode, sync, key) &&
4565
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4566 4567 4568 4569 4570 4571 4572 4573 4574
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4575
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4576
 */
4577
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4578
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4591
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4592 4593 4594 4595 4596
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4597
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4609
void
I
Ingo Molnar 已提交
4610
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4627 4628 4629 4630 4631 4632 4633 4634 4635
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
4636
void complete(struct completion *x)
L
Linus Torvalds 已提交
4637 4638 4639 4640 4641
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4642
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4643 4644 4645 4646
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4647 4648 4649 4650 4651 4652
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
4653
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4654 4655 4656 4657 4658
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4659
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4660 4661 4662 4663
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4664 4665
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4666 4667 4668 4669 4670 4671 4672
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4673
			if (signal_pending_state(state, current)) {
4674 4675
				timeout = -ERESTARTSYS;
				break;
4676 4677
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4678 4679 4680
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4681
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4682
		__remove_wait_queue(&x->wait, &wait);
4683 4684
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4685 4686
	}
	x->done--;
4687
	return timeout ?: 1;
L
Linus Torvalds 已提交
4688 4689
}

4690 4691
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4692 4693 4694 4695
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4696
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4697
	spin_unlock_irq(&x->wait.lock);
4698 4699
	return timeout;
}
L
Linus Torvalds 已提交
4700

4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4711
void __sched wait_for_completion(struct completion *x)
4712 4713
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4714
}
4715
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4716

4717 4718 4719 4720 4721 4722 4723 4724 4725
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4726
unsigned long __sched
4727
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4728
{
4729
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4730
}
4731
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4732

4733 4734 4735 4736 4737 4738 4739
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4740
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4741
{
4742 4743 4744 4745
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4746
}
4747
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4748

4749 4750 4751 4752 4753 4754 4755 4756
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4757
unsigned long __sched
4758 4759
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4760
{
4761
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4762
}
4763
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4764

4765 4766 4767 4768 4769 4770 4771
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4772 4773 4774 4775 4776 4777 4778 4779 4780
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

4827 4828
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4829
{
I
Ingo Molnar 已提交
4830 4831 4832 4833
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4834

4835
	__set_current_state(state);
L
Linus Torvalds 已提交
4836

4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4851 4852 4853
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4854
long __sched
I
Ingo Molnar 已提交
4855
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4856
{
4857
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4858 4859 4860
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4861
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4862
{
4863
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4864 4865 4866
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4867
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4868
{
4869
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4870 4871 4872
}
EXPORT_SYMBOL(sleep_on_timeout);

4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4885
void rt_mutex_setprio(struct task_struct *p, int prio)
4886 4887
{
	unsigned long flags;
4888
	int oldprio, on_rq, running;
4889
	struct rq *rq;
4890
	const struct sched_class *prev_class = p->sched_class;
4891 4892 4893 4894

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4895
	update_rq_clock(rq);
4896

4897
	oldprio = p->prio;
I
Ingo Molnar 已提交
4898
	on_rq = p->se.on_rq;
4899
	running = task_current(rq, p);
4900
	if (on_rq)
4901
		dequeue_task(rq, p, 0);
4902 4903
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4904 4905 4906 4907 4908 4909

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4910 4911
	p->prio = prio;

4912 4913
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4914
	if (on_rq) {
4915
		enqueue_task(rq, p, 0);
4916 4917

		check_class_changed(rq, p, prev_class, oldprio, running);
4918 4919 4920 4921 4922 4923
	}
	task_rq_unlock(rq, &flags);
}

#endif

4924
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4925
{
I
Ingo Molnar 已提交
4926
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4927
	unsigned long flags;
4928
	struct rq *rq;
L
Linus Torvalds 已提交
4929 4930 4931 4932 4933 4934 4935 4936

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4937
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4938 4939 4940 4941
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4942
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4943
	 */
4944
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4945 4946 4947
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4948
	on_rq = p->se.on_rq;
4949
	if (on_rq)
4950
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4951 4952

	p->static_prio = NICE_TO_PRIO(nice);
4953
	set_load_weight(p);
4954 4955 4956
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4957

I
Ingo Molnar 已提交
4958
	if (on_rq) {
4959
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4960
		/*
4961 4962
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4963
		 */
4964
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4965 4966 4967 4968 4969 4970 4971
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4972 4973 4974 4975 4976
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4977
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4978
{
4979 4980
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4981

M
Matt Mackall 已提交
4982 4983 4984 4985
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4997
	long nice, retval;
L
Linus Torvalds 已提交
4998 4999 5000 5001 5002 5003

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5004 5005
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5006 5007 5008 5009 5010 5011 5012 5013 5014
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5015 5016 5017
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5036
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5037 5038 5039 5040 5041 5042 5043 5044
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5045
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5046 5047 5048
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5049
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5064
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5065 5066 5067 5068 5069 5070 5071 5072
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5073
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5074
{
5075
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5076 5077 5078
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5079 5080
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5081
{
I
Ingo Molnar 已提交
5082
	BUG_ON(p->se.on_rq);
5083

L
Linus Torvalds 已提交
5084
	p->policy = policy;
I
Ingo Molnar 已提交
5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5097
	p->rt_priority = prio;
5098 5099 5100
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5101
	set_load_weight(p);
L
Linus Torvalds 已提交
5102 5103
}

5104 5105
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5106
{
5107
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5108
	unsigned long flags;
5109
	const struct sched_class *prev_class = p->sched_class;
5110
	struct rq *rq;
L
Linus Torvalds 已提交
5111

5112 5113
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5114 5115 5116 5117 5118
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5119 5120
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5121
		return -EINVAL;
L
Linus Torvalds 已提交
5122 5123
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5124 5125
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5126 5127
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5128
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5129
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5130
		return -EINVAL;
5131
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5132 5133
		return -EINVAL;

5134 5135 5136
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5137
	if (user && !capable(CAP_SYS_NICE)) {
5138
		if (rt_policy(policy)) {
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5155 5156 5157 5158 5159 5160
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5161

5162 5163 5164 5165 5166
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5167

5168
	if (user) {
5169
#ifdef CONFIG_RT_GROUP_SCHED
5170 5171 5172 5173 5174 5175
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
			return -EPERM;
5176 5177
#endif

5178 5179 5180 5181 5182
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5183 5184 5185 5186 5187
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5188 5189 5190 5191
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5192
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5193 5194 5195
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5196 5197
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5198 5199
		goto recheck;
	}
I
Ingo Molnar 已提交
5200
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5201
	on_rq = p->se.on_rq;
5202
	running = task_current(rq, p);
5203
	if (on_rq)
5204
		deactivate_task(rq, p, 0);
5205 5206
	if (running)
		p->sched_class->put_prev_task(rq, p);
5207

L
Linus Torvalds 已提交
5208
	oldprio = p->prio;
I
Ingo Molnar 已提交
5209
	__setscheduler(rq, p, policy, param->sched_priority);
5210

5211 5212
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5213 5214
	if (on_rq) {
		activate_task(rq, p, 0);
5215 5216

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5217
	}
5218 5219 5220
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5221 5222
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5223 5224
	return 0;
}
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5239 5240
EXPORT_SYMBOL_GPL(sched_setscheduler);

5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5258 5259
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5260 5261 5262
{
	struct sched_param lparam;
	struct task_struct *p;
5263
	int retval;
L
Linus Torvalds 已提交
5264 5265 5266 5267 5268

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5269 5270 5271

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5272
	p = find_process_by_pid(pid);
5273 5274 5275
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5276

L
Linus Torvalds 已提交
5277 5278 5279 5280 5281 5282 5283 5284 5285
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5286 5287
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5288
{
5289 5290 5291 5292
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5312
	struct task_struct *p;
5313
	int retval;
L
Linus Torvalds 已提交
5314 5315

	if (pid < 0)
5316
		return -EINVAL;
L
Linus Torvalds 已提交
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5338
	struct task_struct *p;
5339
	int retval;
L
Linus Torvalds 已提交
5340 5341

	if (!param || pid < 0)
5342
		return -EINVAL;
L
Linus Torvalds 已提交
5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5369
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5370 5371
{
	cpumask_t cpus_allowed;
5372
	cpumask_t new_mask = *in_mask;
5373 5374
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5375

5376
	get_online_cpus();
L
Linus Torvalds 已提交
5377 5378 5379 5380 5381
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5382
		put_online_cpus();
L
Linus Torvalds 已提交
5383 5384 5385 5386 5387
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5388
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5389 5390 5391 5392 5393 5394 5395 5396 5397 5398
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5399 5400 5401 5402
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5403
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5404
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5405
 again:
5406
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5407

P
Paul Menage 已提交
5408
	if (!retval) {
5409
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5410 5411 5412 5413 5414 5415 5416 5417 5418 5419
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5420 5421
out_unlock:
	put_task_struct(p);
5422
	put_online_cpus();
L
Linus Torvalds 已提交
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5453
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5454 5455 5456 5457
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5458
	struct task_struct *p;
L
Linus Torvalds 已提交
5459 5460
	int retval;

5461
	get_online_cpus();
L
Linus Torvalds 已提交
5462 5463 5464 5465 5466 5467 5468
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5469 5470 5471 5472
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5473
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5474 5475 5476

out_unlock:
	read_unlock(&tasklist_lock);
5477
	put_online_cpus();
L
Linus Torvalds 已提交
5478

5479
	return retval;
L
Linus Torvalds 已提交
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5510 5511
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5512 5513 5514
 */
asmlinkage long sys_sched_yield(void)
{
5515
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5516

5517
	schedstat_inc(rq, yld_count);
5518
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5519 5520 5521 5522 5523 5524

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5525
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5526 5527 5528 5529 5530 5531 5532 5533
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5534
static void __cond_resched(void)
L
Linus Torvalds 已提交
5535
{
5536 5537 5538
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5539 5540 5541 5542 5543
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5544 5545 5546 5547 5548 5549 5550
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5551
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5552
{
5553 5554
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5555 5556 5557 5558 5559
		__cond_resched();
		return 1;
	}
	return 0;
}
5560
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5561 5562 5563 5564 5565

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5566
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5567 5568 5569
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5570
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5571
{
N
Nick Piggin 已提交
5572
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5573 5574
	int ret = 0;

N
Nick Piggin 已提交
5575
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5576
		spin_unlock(lock);
N
Nick Piggin 已提交
5577 5578 5579 5580
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5581
		ret = 1;
L
Linus Torvalds 已提交
5582 5583
		spin_lock(lock);
	}
J
Jan Kara 已提交
5584
	return ret;
L
Linus Torvalds 已提交
5585 5586 5587 5588 5589 5590 5591
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5592
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5593
		local_bh_enable();
L
Linus Torvalds 已提交
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5605
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5616
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5617 5618 5619 5620 5621 5622 5623
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5624
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5625

5626
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5627 5628 5629
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5630
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5631 5632 5633 5634 5635
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5636
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5637 5638
	long ret;

5639
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5640 5641 5642
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5643
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5664
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5665
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5689
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5690
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5707
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5708
	unsigned int time_slice;
5709
	int retval;
L
Linus Torvalds 已提交
5710 5711 5712
	struct timespec t;

	if (pid < 0)
5713
		return -EINVAL;
L
Linus Torvalds 已提交
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5725 5726 5727 5728 5729 5730
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5731
		time_slice = DEF_TIMESLICE;
5732
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5733 5734 5735 5736 5737
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5738 5739
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5740 5741
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5742
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5743
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5744 5745
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5746

L
Linus Torvalds 已提交
5747 5748 5749 5750 5751
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5752
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5753

5754
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5755 5756
{
	unsigned long free = 0;
5757
	unsigned state;
L
Linus Torvalds 已提交
5758 5759

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5760
	printk(KERN_INFO "%-13.13s %c", p->comm,
5761
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5762
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5763
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5764
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5765
	else
I
Ingo Molnar 已提交
5766
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5767 5768
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5769
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5770
	else
I
Ingo Molnar 已提交
5771
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5772 5773 5774
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5775
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5776 5777
		while (!*n)
			n++;
5778
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5779 5780
	}
#endif
5781
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5782
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5783

5784
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5785 5786
}

I
Ingo Molnar 已提交
5787
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5788
{
5789
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5790

5791 5792 5793
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5794
#else
5795 5796
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5797 5798 5799 5800 5801 5802 5803 5804
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5805
		if (!state_filter || (p->state & state_filter))
5806
			sched_show_task(p);
L
Linus Torvalds 已提交
5807 5808
	} while_each_thread(g, p);

5809 5810
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5811 5812 5813
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5814
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5815 5816 5817 5818 5819
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5820 5821
}

I
Ingo Molnar 已提交
5822 5823
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5824
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5825 5826
}

5827 5828 5829 5830 5831 5832 5833 5834
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5835
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5836
{
5837
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5838 5839
	unsigned long flags;

I
Ingo Molnar 已提交
5840 5841 5842
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5843
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5844
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5845
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5846 5847 5848

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5849 5850 5851
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5852 5853 5854
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5855 5856 5857
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5858
	task_thread_info(idle)->preempt_count = 0;
5859
#endif
I
Ingo Molnar 已提交
5860 5861 5862 5863
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
5898 5899

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
5900 5901
}

L
Linus Torvalds 已提交
5902 5903 5904 5905
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5906
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5925
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5926 5927
 * call is not atomic; no spinlocks may be held.
 */
5928
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5929
{
5930
	struct migration_req req;
L
Linus Torvalds 已提交
5931
	unsigned long flags;
5932
	struct rq *rq;
5933
	int ret = 0;
L
Linus Torvalds 已提交
5934 5935

	rq = task_rq_lock(p, &flags);
5936
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5937 5938 5939 5940
		ret = -EINVAL;
		goto out;
	}

5941 5942 5943 5944 5945 5946
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5947
	if (p->sched_class->set_cpus_allowed)
5948
		p->sched_class->set_cpus_allowed(p, new_mask);
5949
	else {
5950 5951
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5952 5953
	}

L
Linus Torvalds 已提交
5954
	/* Can the task run on the task's current CPU? If so, we're done */
5955
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5956 5957
		goto out;

5958
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5959 5960 5961 5962 5963 5964 5965 5966 5967
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5968

L
Linus Torvalds 已提交
5969 5970
	return ret;
}
5971
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5972 5973

/*
I
Ingo Molnar 已提交
5974
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5975 5976 5977 5978 5979 5980
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5981 5982
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5983
 */
5984
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5985
{
5986
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5987
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5988

5989
	if (unlikely(!cpu_active(dest_cpu)))
5990
		return ret;
L
Linus Torvalds 已提交
5991 5992 5993 5994 5995 5996 5997

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5998
		goto done;
L
Linus Torvalds 已提交
5999 6000
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
L
Linus Torvalds 已提交
6001
		goto fail;
L
Linus Torvalds 已提交
6002

I
Ingo Molnar 已提交
6003
	on_rq = p->se.on_rq;
6004
	if (on_rq)
6005
		deactivate_task(rq_src, p, 0);
6006

L
Linus Torvalds 已提交
6007
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6008 6009
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6010
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6011
	}
L
Linus Torvalds 已提交
6012
done:
6013
	ret = 1;
L
Linus Torvalds 已提交
6014
fail:
L
Linus Torvalds 已提交
6015
	double_rq_unlock(rq_src, rq_dest);
6016
	return ret;
L
Linus Torvalds 已提交
6017 6018 6019 6020 6021 6022 6023
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6024
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6025 6026
{
	int cpu = (long)data;
6027
	struct rq *rq;
L
Linus Torvalds 已提交
6028 6029 6030 6031 6032 6033

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6034
		struct migration_req *req;
L
Linus Torvalds 已提交
6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6057
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6058 6059
		list_del_init(head->next);

N
Nick Piggin 已提交
6060 6061 6062
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6092
/*
6093
 * Figure out where task on dead CPU should go, use force if necessary.
6094 6095
 * NOTE: interrupts should be disabled by the caller
 */
6096
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6097
{
6098
	unsigned long flags;
L
Linus Torvalds 已提交
6099
	cpumask_t mask;
6100 6101
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
6102

6103 6104 6105 6106 6107 6108 6109
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6110
		if (dest_cpu >= nr_cpu_ids)
6111 6112 6113
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6114
		if (dest_cpu >= nr_cpu_ids) {
6115 6116 6117
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6118 6119 6120 6121
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6122
			 * cpuset_cpus_allowed() will not block. It must be
6123 6124
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6125
			rq = task_rq_lock(p, &flags);
6126
			p->cpus_allowed = cpus_allowed;
6127 6128
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6129

6130 6131 6132 6133 6134
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6135
			if (p->mm && printk_ratelimit()) {
6136 6137
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6138 6139
					task_pid_nr(p), p->comm, dead_cpu);
			}
6140
		}
6141
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6142 6143 6144 6145 6146 6147 6148 6149 6150
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6151
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6152
{
6153
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6167
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6168

6169
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6170

6171 6172
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6173 6174
			continue;

6175 6176 6177
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6178

6179
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6180 6181
}

I
Ingo Molnar 已提交
6182 6183
/*
 * Schedules idle task to be the next runnable task on current CPU.
6184 6185
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6186 6187 6188
 */
void sched_idle_next(void)
{
6189
	int this_cpu = smp_processor_id();
6190
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6191 6192 6193 6194
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6195
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6196

6197 6198 6199
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6200 6201 6202
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6203
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6204

6205 6206
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6207 6208 6209 6210

	spin_unlock_irqrestore(&rq->lock, flags);
}

6211 6212
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6226
/* called under rq->lock with disabled interrupts */
6227
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6228
{
6229
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6230 6231

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6232
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6233 6234

	/* Cannot have done final schedule yet: would have vanished. */
6235
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6236

6237
	get_task_struct(p);
L
Linus Torvalds 已提交
6238 6239 6240

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6241
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6242 6243
	 * fine.
	 */
6244
	spin_unlock_irq(&rq->lock);
6245
	move_task_off_dead_cpu(dead_cpu, p);
6246
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6247

6248
	put_task_struct(p);
L
Linus Torvalds 已提交
6249 6250 6251 6252 6253
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6254
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6255
	struct task_struct *next;
6256

I
Ingo Molnar 已提交
6257 6258 6259
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6260
		update_rq_clock(rq);
6261
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6262 6263
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6264
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6265
		migrate_dead(dead_cpu, next);
6266

L
Linus Torvalds 已提交
6267 6268 6269 6270
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6271 6272 6273
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6274 6275
	{
		.procname	= "sched_domain",
6276
		.mode		= 0555,
6277
	},
I
Ingo Molnar 已提交
6278
	{0, },
6279 6280 6281
};

static struct ctl_table sd_ctl_root[] = {
6282
	{
6283
		.ctl_name	= CTL_KERN,
6284
		.procname	= "kernel",
6285
		.mode		= 0555,
6286 6287
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6288
	{0, },
6289 6290 6291 6292 6293
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6294
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6295 6296 6297 6298

	return entry;
}

6299 6300
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6301
	struct ctl_table *entry;
6302

6303 6304 6305
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6306
	 * will always be set. In the lowest directory the names are
6307 6308 6309
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6310 6311
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6312 6313 6314
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6315 6316 6317 6318 6319

	kfree(*tablep);
	*tablep = NULL;
}

6320
static void
6321
set_table_entry(struct ctl_table *entry,
6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6335
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6336

6337 6338 6339
	if (table == NULL)
		return NULL;

6340
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6341
		sizeof(long), 0644, proc_doulongvec_minmax);
6342
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6343
		sizeof(long), 0644, proc_doulongvec_minmax);
6344
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6345
		sizeof(int), 0644, proc_dointvec_minmax);
6346
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6347
		sizeof(int), 0644, proc_dointvec_minmax);
6348
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6349
		sizeof(int), 0644, proc_dointvec_minmax);
6350
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6351
		sizeof(int), 0644, proc_dointvec_minmax);
6352
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6353
		sizeof(int), 0644, proc_dointvec_minmax);
6354
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6355
		sizeof(int), 0644, proc_dointvec_minmax);
6356
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6357
		sizeof(int), 0644, proc_dointvec_minmax);
6358
	set_table_entry(&table[9], "cache_nice_tries",
6359 6360
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6361
	set_table_entry(&table[10], "flags", &sd->flags,
6362
		sizeof(int), 0644, proc_dointvec_minmax);
6363
	/* &table[11] is terminator */
6364 6365 6366 6367

	return table;
}

6368
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6369 6370 6371 6372 6373 6374 6375 6376 6377
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6378 6379
	if (table == NULL)
		return NULL;
6380 6381 6382 6383 6384

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6385
		entry->mode = 0555;
6386 6387 6388 6389 6390 6391 6392 6393
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6394
static void register_sched_domain_sysctl(void)
6395 6396 6397 6398 6399
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6400 6401 6402
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6403 6404 6405
	if (entry == NULL)
		return;

6406
	for_each_online_cpu(i) {
6407 6408
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6409
		entry->mode = 0555;
6410
		entry->child = sd_alloc_ctl_cpu_table(i);
6411
		entry++;
6412
	}
6413 6414

	WARN_ON(sd_sysctl_header);
6415 6416
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6417

6418
/* may be called multiple times per register */
6419 6420
static void unregister_sched_domain_sysctl(void)
{
6421 6422
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6423
	sd_sysctl_header = NULL;
6424 6425
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6426
}
6427
#else
6428 6429 6430 6431
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6432 6433 6434 6435
{
}
#endif

6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6466 6467 6468 6469
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6470 6471
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6472 6473
{
	struct task_struct *p;
6474
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6475
	unsigned long flags;
6476
	struct rq *rq;
L
Linus Torvalds 已提交
6477 6478

	switch (action) {
6479

L
Linus Torvalds 已提交
6480
	case CPU_UP_PREPARE:
6481
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6482
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6483 6484 6485 6486 6487
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6488
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6489 6490 6491
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6492

L
Linus Torvalds 已提交
6493
	case CPU_ONLINE:
6494
	case CPU_ONLINE_FROZEN:
6495
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6496
		wake_up_process(cpu_rq(cpu)->migration_thread);
6497 6498 6499 6500 6501 6502

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6503 6504

			set_rq_online(rq);
6505 6506
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6507
		break;
6508

L
Linus Torvalds 已提交
6509 6510
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6511
	case CPU_UP_CANCELED_FROZEN:
6512 6513
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6514
		/* Unbind it from offline cpu so it can run. Fall thru. */
6515 6516
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6517 6518 6519
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6520

L
Linus Torvalds 已提交
6521
	case CPU_DEAD:
6522
	case CPU_DEAD_FROZEN:
6523
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6524 6525 6526 6527 6528
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6529
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6530
		update_rq_clock(rq);
6531
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6532
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6533 6534
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6535
		migrate_dead_tasks(cpu);
6536
		spin_unlock_irq(&rq->lock);
6537
		cpuset_unlock();
L
Linus Torvalds 已提交
6538 6539 6540
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6541 6542 6543 6544 6545
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6546 6547
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6548 6549
			struct migration_req *req;

L
Linus Torvalds 已提交
6550
			req = list_entry(rq->migration_queue.next,
6551
					 struct migration_req, list);
L
Linus Torvalds 已提交
6552 6553 6554 6555 6556
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6557

6558 6559
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6560 6561 6562 6563 6564
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6565
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6566 6567 6568
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6569 6570 6571 6572 6573 6574 6575 6576
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6577
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6578 6579 6580 6581
	.notifier_call = migration_call,
	.priority = 10
};

6582
static int __init migration_init(void)
L
Linus Torvalds 已提交
6583 6584
{
	void *cpu = (void *)(long)smp_processor_id();
6585
	int err;
6586 6587

	/* Start one for the boot CPU: */
6588 6589
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6590 6591
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6592 6593

	return err;
L
Linus Torvalds 已提交
6594
}
6595
early_initcall(migration_init);
L
Linus Torvalds 已提交
6596 6597 6598
#endif

#ifdef CONFIG_SMP
6599

6600
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6601

6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6624 6625
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6626
{
I
Ingo Molnar 已提交
6627
	struct sched_group *group = sd->groups;
6628
	char str[256];
L
Linus Torvalds 已提交
6629

6630
	cpulist_scnprintf(str, sizeof(str), sd->span);
6631
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6632 6633 6634 6635 6636 6637 6638 6639 6640

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6641 6642
	}

6643 6644
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6645 6646 6647 6648 6649 6650 6651 6652 6653

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6654

I
Ingo Molnar 已提交
6655
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6656
	do {
I
Ingo Molnar 已提交
6657 6658 6659
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6660 6661 6662
			break;
		}

I
Ingo Molnar 已提交
6663 6664 6665 6666 6667 6668
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6669

I
Ingo Molnar 已提交
6670 6671 6672 6673 6674
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6675

6676
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6677 6678 6679 6680
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6681

6682
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6683

6684
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6685
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6686

I
Ingo Molnar 已提交
6687 6688 6689
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6690

6691
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6692
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6693

6694
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6695 6696 6697 6698
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6699

I
Ingo Molnar 已提交
6700 6701
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6702
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6703
	int level = 0;
L
Linus Torvalds 已提交
6704

I
Ingo Molnar 已提交
6705 6706 6707 6708
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6709

I
Ingo Molnar 已提交
6710 6711
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6712 6713 6714 6715 6716 6717
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6718
	for (;;) {
6719
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6720
			break;
L
Linus Torvalds 已提交
6721 6722
		level++;
		sd = sd->parent;
6723
		if (!sd)
I
Ingo Molnar 已提交
6724 6725
			break;
	}
6726
	kfree(groupmask);
L
Linus Torvalds 已提交
6727
}
6728
#else /* !CONFIG_SCHED_DEBUG */
6729
# define sched_domain_debug(sd, cpu) do { } while (0)
6730
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6731

6732
static int sd_degenerate(struct sched_domain *sd)
6733 6734 6735 6736 6737 6738 6739 6740
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6741 6742 6743
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6757 6758
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6777 6778 6779
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6780 6781 6782 6783 6784 6785 6786
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6787 6788 6789 6790 6791 6792 6793 6794 6795
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6796 6797
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6798

6799 6800
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6801 6802 6803 6804 6805 6806 6807
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6808
	cpu_set(rq->cpu, rd->span);
6809
	if (cpu_isset(rq->cpu, cpu_online_map))
6810
		set_rq_online(rq);
G
Gregory Haskins 已提交
6811 6812 6813 6814

	spin_unlock_irqrestore(&rq->lock, flags);
}

6815
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6816 6817 6818
{
	memset(rd, 0, sizeof(*rd));

6819 6820
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6821 6822

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6823 6824 6825 6826
}

static void init_defrootdomain(void)
{
6827
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6828 6829 6830
	atomic_set(&def_root_domain.refcount, 1);
}

6831
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6832 6833 6834 6835 6836 6837 6838
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6839
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6840 6841 6842 6843

	return rd;
}

L
Linus Torvalds 已提交
6844
/*
I
Ingo Molnar 已提交
6845
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6846 6847
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6848 6849
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6850
{
6851
	struct rq *rq = cpu_rq(cpu);
6852 6853 6854 6855 6856 6857 6858
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6859
		if (sd_parent_degenerate(tmp, parent)) {
6860
			tmp->parent = parent->parent;
6861 6862 6863
			if (parent->parent)
				parent->parent->child = tmp;
		}
6864 6865
	}

6866
	if (sd && sd_degenerate(sd)) {
6867
		sd = sd->parent;
6868 6869 6870
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6871 6872 6873

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6874
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6875
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6876 6877 6878
}

/* cpus with isolated domains */
6879
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6880 6881 6882 6883

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6884 6885
	static int __initdata ints[NR_CPUS];
	int i;
L
Linus Torvalds 已提交
6886 6887 6888 6889 6890 6891 6892 6893 6894

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6895
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6896 6897

/*
6898 6899 6900 6901
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6902 6903 6904 6905 6906
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6907
static void
6908
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6909
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6910 6911 6912
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6913 6914 6915 6916
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6917 6918
	cpus_clear(*covered);

6919
	for_each_cpu_mask_nr(i, *span) {
6920
		struct sched_group *sg;
6921
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6922 6923
		int j;

6924
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6925 6926
			continue;

6927
		cpus_clear(sg->cpumask);
6928
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6929

6930
		for_each_cpu_mask_nr(j, *span) {
6931
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6932 6933
				continue;

6934
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6946
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6947

6948
#ifdef CONFIG_NUMA
6949

6950 6951 6952 6953 6954
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6955
 * Find the next node to include in a given scheduling domain. Simply
6956 6957 6958 6959
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6960
static int find_next_best_node(int node, nodemask_t *used_nodes)
6961 6962 6963 6964 6965
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6966
	for (i = 0; i < nr_node_ids; i++) {
6967
		/* Start at @node */
6968
		n = (node + i) % nr_node_ids;
6969 6970 6971 6972 6973

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6974
		if (node_isset(n, *used_nodes))
6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6986
	node_set(best_node, *used_nodes);
6987 6988 6989 6990 6991 6992
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6993
 * @span: resulting cpumask
6994
 *
I
Ingo Molnar 已提交
6995
 * Given a node, construct a good cpumask for its sched_domain to span. It
6996 6997 6998
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6999
static void sched_domain_node_span(int node, cpumask_t *span)
7000
{
7001 7002
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
7003
	int i;
7004

7005
	cpus_clear(*span);
7006
	nodes_clear(used_nodes);
7007

7008
	cpus_or(*span, *span, *nodemask);
7009
	node_set(node, used_nodes);
7010 7011

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7012
		int next_node = find_next_best_node(node, &used_nodes);
7013

7014
		node_to_cpumask_ptr_next(nodemask, next_node);
7015
		cpus_or(*span, *span, *nodemask);
7016 7017
	}
}
7018
#endif /* CONFIG_NUMA */
7019

7020
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7021

7022
/*
7023
 * SMT sched-domains:
7024
 */
L
Linus Torvalds 已提交
7025 7026
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7027
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7028

I
Ingo Molnar 已提交
7029
static int
7030 7031
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
7032
{
7033 7034
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
7035 7036
	return cpu;
}
7037
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7038

7039 7040 7041
/*
 * multi-core sched-domains:
 */
7042 7043
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
7044
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7045
#endif /* CONFIG_SCHED_MC */
7046 7047

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7048
static int
7049 7050
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
7051
{
7052
	int group;
7053 7054 7055 7056

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7057 7058 7059
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
7060 7061
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7062
static int
7063 7064
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
7065
{
7066 7067
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
7068 7069 7070 7071
	return cpu;
}
#endif

L
Linus Torvalds 已提交
7072
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7073
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7074

I
Ingo Molnar 已提交
7075
static int
7076 7077
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
7078
{
7079
	int group;
7080
#ifdef CONFIG_SCHED_MC
7081 7082 7083
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7084
#elif defined(CONFIG_SCHED_SMT)
7085 7086 7087
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
7088
#else
7089
	group = cpu;
L
Linus Torvalds 已提交
7090
#endif
7091 7092 7093
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
7094 7095 7096 7097
}

#ifdef CONFIG_NUMA
/*
7098 7099 7100
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7101
 */
7102
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7103
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7104

7105
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7106
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7107

7108
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7109
				 struct sched_group **sg, cpumask_t *nodemask)
7110
{
7111 7112
	int group;

7113 7114 7115
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7116 7117 7118 7119

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7120
}
7121

7122 7123 7124 7125 7126 7127 7128
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7129
	do {
7130
		for_each_cpu_mask_nr(j, sg->cpumask) {
7131
			struct sched_domain *sd;
7132

7133 7134 7135 7136 7137 7138 7139 7140
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7141

7142 7143 7144 7145
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7146
}
7147
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7148

7149
#ifdef CONFIG_NUMA
7150
/* Free memory allocated for various sched_group structures */
7151
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7152
{
7153
	int cpu, i;
7154

7155
	for_each_cpu_mask_nr(cpu, *cpu_map) {
7156 7157 7158 7159 7160 7161
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7162
		for (i = 0; i < nr_node_ids; i++) {
7163 7164
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7165 7166 7167
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7184
#else /* !CONFIG_NUMA */
7185
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7186 7187
{
}
7188
#endif /* CONFIG_NUMA */
7189

7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7216 7217
	sd->groups->__cpu_power = 0;

7218 7219 7220 7221 7222 7223 7224 7225 7226 7227
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7228
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7229 7230 7231 7232 7233 7234 7235 7236
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7237
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7238 7239 7240 7241
		group = group->next;
	} while (group != child->groups);
}

7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7253
	sd->level = SD_LV_##type;				\
7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7302 7303 7304 7305
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7306 7307 7308 7309 7310 7311
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7337
/*
7338 7339
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7340
 */
7341 7342
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7343 7344
{
	int i;
G
Gregory Haskins 已提交
7345
	struct root_domain *rd;
7346 7347
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7348 7349
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7350
	int sd_allnodes = 0;
7351 7352 7353 7354

	/*
	 * Allocate the per-node list of sched groups
	 */
7355
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7356
				    GFP_KERNEL);
7357 7358
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7359
		return -ENOMEM;
7360 7361
	}
#endif
L
Linus Torvalds 已提交
7362

7363
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7364 7365
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7366 7367 7368
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7369 7370 7371
		return -ENOMEM;
	}

7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7391
	/*
7392
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7393
	 */
7394
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7395
		struct sched_domain *sd = NULL, *p;
7396
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7397

7398 7399
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7400 7401

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7402
		if (cpus_weight(*cpu_map) >
7403
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7404
			sd = &per_cpu(allnodes_domains, i);
7405
			SD_INIT(sd, ALLNODES);
7406
			set_domain_attribute(sd, attr);
7407
			sd->span = *cpu_map;
7408
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7409
			p = sd;
7410
			sd_allnodes = 1;
7411 7412 7413
		} else
			p = NULL;

L
Linus Torvalds 已提交
7414
		sd = &per_cpu(node_domains, i);
7415
		SD_INIT(sd, NODE);
7416
		set_domain_attribute(sd, attr);
7417
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7418
		sd->parent = p;
7419 7420
		if (p)
			p->child = sd;
7421
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7422 7423 7424 7425
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7426
		SD_INIT(sd, CPU);
7427
		set_domain_attribute(sd, attr);
7428
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7429
		sd->parent = p;
7430 7431
		if (p)
			p->child = sd;
7432
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7433

7434 7435 7436
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7437
		SD_INIT(sd, MC);
7438
		set_domain_attribute(sd, attr);
7439 7440 7441
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7442
		p->child = sd;
7443
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7444 7445
#endif

L
Linus Torvalds 已提交
7446 7447 7448
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7449
		SD_INIT(sd, SIBLING);
7450
		set_domain_attribute(sd, attr);
7451
		sd->span = per_cpu(cpu_sibling_map, i);
7452
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7453
		sd->parent = p;
7454
		p->child = sd;
7455
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7456 7457 7458 7459 7460
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7461
	for_each_cpu_mask_nr(i, *cpu_map) {
7462 7463 7464 7465 7466 7467
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7468 7469
			continue;

I
Ingo Molnar 已提交
7470
		init_sched_build_groups(this_sibling_map, cpu_map,
7471 7472
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7473 7474 7475
	}
#endif

7476 7477
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7478
	for_each_cpu_mask_nr(i, *cpu_map) {
7479 7480 7481 7482 7483 7484
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7485
			continue;
7486

I
Ingo Molnar 已提交
7487
		init_sched_build_groups(this_core_map, cpu_map,
7488 7489
					&cpu_to_core_group,
					send_covered, tmpmask);
7490 7491 7492
	}
#endif

L
Linus Torvalds 已提交
7493
	/* Set up physical groups */
7494
	for (i = 0; i < nr_node_ids; i++) {
7495 7496
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7497

7498 7499 7500
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7501 7502
			continue;

7503 7504 7505
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7506 7507 7508 7509
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7510 7511 7512 7513 7514 7515 7516
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7517

7518
	for (i = 0; i < nr_node_ids; i++) {
7519 7520
		/* Set up node groups */
		struct sched_group *sg, *prev;
7521 7522 7523
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7524 7525
		int j;

7526 7527 7528 7529 7530
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7531
			sched_group_nodes[i] = NULL;
7532
			continue;
7533
		}
7534

7535
		sched_domain_node_span(i, domainspan);
7536
		cpus_and(*domainspan, *domainspan, *cpu_map);
7537

7538
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7539 7540 7541 7542 7543
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7544
		sched_group_nodes[i] = sg;
7545
		for_each_cpu_mask_nr(j, *nodemask) {
7546
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7547

7548 7549 7550
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7551
		sg->__cpu_power = 0;
7552
		sg->cpumask = *nodemask;
7553
		sg->next = sg;
7554
		cpus_or(*covered, *covered, *nodemask);
7555 7556
		prev = sg;

7557
		for (j = 0; j < nr_node_ids; j++) {
7558
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7559
			int n = (i + j) % nr_node_ids;
7560
			node_to_cpumask_ptr(pnodemask, n);
7561

7562 7563 7564 7565
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7566 7567
				break;

7568 7569
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7570 7571
				continue;

7572 7573
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7574 7575 7576
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7577
				goto error;
7578
			}
7579
			sg->__cpu_power = 0;
7580
			sg->cpumask = *tmpmask;
7581
			sg->next = prev->next;
7582
			cpus_or(*covered, *covered, *tmpmask);
7583 7584 7585 7586
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7587 7588 7589
#endif

	/* Calculate CPU power for physical packages and nodes */
7590
#ifdef CONFIG_SCHED_SMT
7591
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7592 7593
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7594
		init_sched_groups_power(i, sd);
7595
	}
L
Linus Torvalds 已提交
7596
#endif
7597
#ifdef CONFIG_SCHED_MC
7598
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7599 7600
		struct sched_domain *sd = &per_cpu(core_domains, i);

7601
		init_sched_groups_power(i, sd);
7602 7603
	}
#endif
7604

7605
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7606 7607
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7608
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7609 7610
	}

7611
#ifdef CONFIG_NUMA
7612
	for (i = 0; i < nr_node_ids; i++)
7613
		init_numa_sched_groups_power(sched_group_nodes[i]);
7614

7615 7616
	if (sd_allnodes) {
		struct sched_group *sg;
7617

7618 7619
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7620 7621
		init_numa_sched_groups_power(sg);
	}
7622 7623
#endif

L
Linus Torvalds 已提交
7624
	/* Attach the domains */
7625
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7626 7627 7628
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7629 7630
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7631 7632 7633
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7634
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7635
	}
7636

7637
	SCHED_CPUMASK_FREE((void *)allmasks);
7638 7639
	return 0;

7640
#ifdef CONFIG_NUMA
7641
error:
7642 7643
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7644
	return -ENOMEM;
7645
#endif
L
Linus Torvalds 已提交
7646
}
P
Paul Jackson 已提交
7647

7648 7649 7650 7651 7652
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7653 7654
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7655 7656
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7657 7658 7659 7660 7661 7662 7663 7664

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7665 7666 7667 7668
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7669
/*
I
Ingo Molnar 已提交
7670
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7671 7672
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7673
 */
7674
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7675
{
7676 7677
	int err;

7678
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7679 7680 7681 7682 7683
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7684
	dattr_cur = NULL;
7685
	err = build_sched_domains(doms_cur);
7686
	register_sched_domain_sysctl();
7687 7688

	return err;
7689 7690
}

7691 7692
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7693
{
7694
	free_sched_groups(cpu_map, tmpmask);
7695
}
L
Linus Torvalds 已提交
7696

7697 7698 7699 7700
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7701
static void detach_destroy_domains(const cpumask_t *cpu_map)
7702
{
7703
	cpumask_t tmpmask;
7704 7705
	int i;

7706 7707
	unregister_sched_domain_sysctl();

7708
	for_each_cpu_mask_nr(i, *cpu_map)
G
Gregory Haskins 已提交
7709
		cpu_attach_domain(NULL, &def_root_domain, i);
7710
	synchronize_sched();
7711
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7712 7713
}

7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7730 7731
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7732
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7733 7734 7735 7736
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7737 7738 7739
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7740 7741 7742
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7743 7744
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7745 7746
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
7747
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7748
 *
7749 7750 7751 7752
 * If doms_new==NULL it will be replaced with cpu_online_map.
 * ndoms_new==0 is a special case for destroying existing domains.
 * It will not create the default domain.
 *
P
Paul Jackson 已提交
7753 7754
 * Call with hotplug lock held
 */
7755 7756
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7757
{
7758
	int i, j, n;
P
Paul Jackson 已提交
7759

7760
	mutex_lock(&sched_domains_mutex);
7761

7762 7763 7764
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7765
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7766 7767 7768

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7769
		for (j = 0; j < n; j++) {
7770 7771
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7772 7773 7774 7775 7776 7777 7778 7779
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7780 7781 7782 7783 7784 7785 7786
	if (doms_new == NULL) {
		ndoms_cur = 0;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
		dattr_new = NULL;
	}

P
Paul Jackson 已提交
7787 7788 7789
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7790 7791
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7792 7793 7794
				goto match2;
		}
		/* no match - add a new doms_new */
7795 7796
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7797 7798 7799 7800 7801 7802 7803
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7804
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7805
	doms_cur = doms_new;
7806
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7807
	ndoms_cur = ndoms_new;
7808 7809

	register_sched_domain_sysctl();
7810

7811
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7812 7813
}

7814
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7815
int arch_reinit_sched_domains(void)
7816
{
7817
	get_online_cpus();
7818 7819 7820 7821

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7822
	rebuild_sched_domains();
7823
	put_online_cpus();
7824

7825
	return 0;
7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
7846 7847
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
7848 7849 7850
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7851
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7852
					    const char *buf, size_t count)
7853 7854 7855
{
	return sched_power_savings_store(buf, count, 0);
}
7856 7857 7858
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7859 7860 7861
#endif

#ifdef CONFIG_SCHED_SMT
7862 7863
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
7864 7865 7866
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7867
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7868
					     const char *buf, size_t count)
7869 7870 7871
{
	return sched_power_savings_store(buf, count, 1);
}
7872 7873
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7893
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7894

7895
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7896
/*
7897 7898
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7899 7900 7901
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7902 7903 7904 7905 7906 7907
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
7908
		partition_sched_domains(1, NULL, NULL);
7909 7910 7911 7912 7913 7914 7915 7916 7917 7918
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7919
{
P
Peter Zijlstra 已提交
7920 7921
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7922 7923
	switch (action) {
	case CPU_DOWN_PREPARE:
7924
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7925
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7926 7927 7928
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7929
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7930
	case CPU_ONLINE:
7931
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7932
		enable_runtime(cpu_rq(cpu));
7933 7934
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7935 7936 7937 7938 7939 7940 7941
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7942 7943
	cpumask_t non_isolated_cpus;

7944 7945 7946 7947 7948
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7949
	get_online_cpus();
7950
	mutex_lock(&sched_domains_mutex);
7951
	arch_init_sched_domains(&cpu_online_map);
7952
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7953 7954
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7955
	mutex_unlock(&sched_domains_mutex);
7956
	put_online_cpus();
7957 7958

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7959 7960
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7961 7962 7963 7964 7965
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7966
	init_hrtick();
7967 7968

	/* Move init over to a non-isolated CPU */
7969
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7970
		BUG();
I
Ingo Molnar 已提交
7971
	sched_init_granularity();
L
Linus Torvalds 已提交
7972 7973 7974 7975
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7976
	sched_init_granularity();
L
Linus Torvalds 已提交
7977 7978 7979 7980 7981 7982 7983 7984 7985 7986
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7987
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7988 7989
{
	cfs_rq->tasks_timeline = RB_ROOT;
7990
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7991 7992 7993
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7994
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7995 7996
}

P
Peter Zijlstra 已提交
7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8010
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8011 8012
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
8013 8014 8015 8016 8017 8018 8019
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8020 8021
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8022

8023
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8024
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8025 8026
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8027 8028
}

P
Peter Zijlstra 已提交
8029
#ifdef CONFIG_FAIR_GROUP_SCHED
8030 8031 8032
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8033
{
8034
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8035 8036 8037 8038 8039 8040 8041
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8042 8043 8044 8045
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8046 8047 8048 8049 8050
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8051 8052
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8053
	se->load.inv_weight = 0;
8054
	se->parent = parent;
P
Peter Zijlstra 已提交
8055
}
8056
#endif
P
Peter Zijlstra 已提交
8057

8058
#ifdef CONFIG_RT_GROUP_SCHED
8059 8060 8061
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8062
{
8063 8064
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8065 8066 8067 8068
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8069
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8070 8071 8072 8073
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8074 8075 8076
	if (!rt_se)
		return;

8077 8078 8079 8080 8081
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8082
	rt_se->my_q = rt_rq;
8083
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8084 8085 8086 8087
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8088 8089
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8090
	int i, j;
8091 8092 8093 8094 8095 8096 8097
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8098 8099 8100
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8101 8102 8103 8104 8105 8106
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8107
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8108 8109 8110 8111 8112 8113 8114

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8115 8116 8117 8118 8119 8120 8121

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8122 8123
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8124 8125 8126 8127 8128
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8129 8130 8131 8132 8133 8134 8135 8136
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8137 8138
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8139
	}
I
Ingo Molnar 已提交
8140

G
Gregory Haskins 已提交
8141 8142 8143 8144
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8145 8146 8147 8148 8149 8150
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8151 8152 8153
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8154 8155
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8156

8157
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8158
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8159 8160 8161 8162 8163 8164
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8165 8166
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8167

8168
	for_each_possible_cpu(i) {
8169
		struct rq *rq;
L
Linus Torvalds 已提交
8170 8171 8172

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8173
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8174
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8175
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8176
#ifdef CONFIG_FAIR_GROUP_SCHED
8177
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8178
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8199
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8200
#elif defined CONFIG_USER_SCHED
8201 8202
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8214
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8215
				&per_cpu(init_cfs_rq, i),
8216 8217
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8218

8219
#endif
D
Dhaval Giani 已提交
8220 8221 8222
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8223
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8224
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8225
#ifdef CONFIG_CGROUP_SCHED
8226
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8227
#elif defined CONFIG_USER_SCHED
8228
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8229
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8230
				&per_cpu(init_rt_rq, i),
8231 8232
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8233
#endif
I
Ingo Molnar 已提交
8234
#endif
L
Linus Torvalds 已提交
8235

I
Ingo Molnar 已提交
8236 8237
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8238
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8239
		rq->sd = NULL;
G
Gregory Haskins 已提交
8240
		rq->rd = NULL;
L
Linus Torvalds 已提交
8241
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8242
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8243
		rq->push_cpu = 0;
8244
		rq->cpu = i;
8245
		rq->online = 0;
L
Linus Torvalds 已提交
8246 8247
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8248
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8249
#endif
P
Peter Zijlstra 已提交
8250
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8251 8252 8253
		atomic_set(&rq->nr_iowait, 0);
	}

8254
	set_load_weight(&init_task);
8255

8256 8257 8258 8259
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8260
#ifdef CONFIG_SMP
8261
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8262 8263
#endif

8264 8265 8266 8267
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8281 8282 8283 8284
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8285 8286

	scheduler_running = 1;
L
Linus Torvalds 已提交
8287 8288 8289 8290 8291
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8292
#ifdef in_atomic
L
Linus Torvalds 已提交
8293 8294
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8314 8315 8316 8317 8318 8319
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8320 8321 8322
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8323

8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8335 8336
void normalize_rt_tasks(void)
{
8337
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8338
	unsigned long flags;
8339
	struct rq *rq;
L
Linus Torvalds 已提交
8340

8341
	read_lock_irqsave(&tasklist_lock, flags);
8342
	do_each_thread(g, p) {
8343 8344 8345 8346 8347 8348
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8349 8350
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8351 8352 8353
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8354
#endif
I
Ingo Molnar 已提交
8355 8356 8357 8358 8359 8360 8361 8362

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8363
			continue;
I
Ingo Molnar 已提交
8364
		}
L
Linus Torvalds 已提交
8365

8366
		spin_lock(&p->pi_lock);
8367
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8368

8369
		normalize_task(rq, p);
8370

8371
		__task_rq_unlock(rq);
8372
		spin_unlock(&p->pi_lock);
8373 8374
	} while_each_thread(g, p);

8375
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8376 8377 8378
}

#endif /* CONFIG_MAGIC_SYSRQ */
8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8397
struct task_struct *curr_task(int cpu)
8398 8399 8400 8401 8402 8403 8404 8405 8406 8407
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8408 8409
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8410 8411 8412 8413 8414 8415 8416
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8417
void set_curr_task(int cpu, struct task_struct *p)
8418 8419 8420 8421 8422
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8423

8424 8425
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8440 8441
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8442 8443
{
	struct cfs_rq *cfs_rq;
8444
	struct sched_entity *se, *parent_se;
8445
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8446 8447
	int i;

8448
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8449 8450
	if (!tg->cfs_rq)
		goto err;
8451
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8452 8453
	if (!tg->se)
		goto err;
8454 8455

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8456 8457

	for_each_possible_cpu(i) {
8458
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8459

P
Peter Zijlstra 已提交
8460 8461
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8462 8463 8464
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8465 8466
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8467 8468 8469
		if (!se)
			goto err;

8470 8471
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8490
#else /* !CONFG_FAIR_GROUP_SCHED */
8491 8492 8493 8494
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8495 8496
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8508
#endif /* CONFIG_FAIR_GROUP_SCHED */
8509 8510

#ifdef CONFIG_RT_GROUP_SCHED
8511 8512 8513 8514
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8515 8516
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8528 8529
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8530 8531
{
	struct rt_rq *rt_rq;
8532
	struct sched_rt_entity *rt_se, *parent_se;
8533 8534 8535
	struct rq *rq;
	int i;

8536
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8537 8538
	if (!tg->rt_rq)
		goto err;
8539
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8540 8541 8542
	if (!tg->rt_se)
		goto err;

8543 8544
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8545 8546 8547 8548

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8549 8550 8551 8552
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8553

P
Peter Zijlstra 已提交
8554 8555 8556 8557
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8558

8559 8560
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8561 8562
	}

8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8579
#else /* !CONFIG_RT_GROUP_SCHED */
8580 8581 8582 8583
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8584 8585
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8597
#endif /* CONFIG_RT_GROUP_SCHED */
8598

8599
#ifdef CONFIG_GROUP_SCHED
8600 8601 8602 8603 8604 8605 8606 8607
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8608
struct task_group *sched_create_group(struct task_group *parent)
8609 8610 8611 8612 8613 8614 8615 8616 8617
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8618
	if (!alloc_fair_sched_group(tg, parent))
8619 8620
		goto err;

8621
	if (!alloc_rt_sched_group(tg, parent))
8622 8623
		goto err;

8624
	spin_lock_irqsave(&task_group_lock, flags);
8625
	for_each_possible_cpu(i) {
8626 8627
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8628
	}
P
Peter Zijlstra 已提交
8629
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8630 8631 8632 8633 8634

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8635
	list_add_rcu(&tg->siblings, &parent->children);
8636
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8637

8638
	return tg;
S
Srivatsa Vaddagiri 已提交
8639 8640

err:
P
Peter Zijlstra 已提交
8641
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8642 8643 8644
	return ERR_PTR(-ENOMEM);
}

8645
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8646
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8647 8648
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8649
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8650 8651
}

8652
/* Destroy runqueue etc associated with a task group */
8653
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8654
{
8655
	unsigned long flags;
8656
	int i;
S
Srivatsa Vaddagiri 已提交
8657

8658
	spin_lock_irqsave(&task_group_lock, flags);
8659
	for_each_possible_cpu(i) {
8660 8661
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8662
	}
P
Peter Zijlstra 已提交
8663
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8664
	list_del_rcu(&tg->siblings);
8665
	spin_unlock_irqrestore(&task_group_lock, flags);
8666 8667

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8668
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8669 8670
}

8671
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8672 8673 8674
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8675 8676
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8677 8678 8679 8680 8681 8682 8683 8684 8685
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8686
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8687 8688
	on_rq = tsk->se.on_rq;

8689
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8690
		dequeue_task(rq, tsk, 0);
8691 8692
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8693

P
Peter Zijlstra 已提交
8694
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8695

P
Peter Zijlstra 已提交
8696 8697 8698 8699 8700
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8701 8702 8703
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8704
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8705 8706 8707

	task_rq_unlock(rq, &flags);
}
8708
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8709

8710
#ifdef CONFIG_FAIR_GROUP_SCHED
8711
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8712 8713 8714 8715 8716
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8717
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8718 8719 8720
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8721
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8722

8723
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8724
		enqueue_entity(cfs_rq, se, 0);
8725
}
8726

8727 8728 8729 8730 8731 8732 8733 8734 8735
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8736 8737
}

8738 8739
static DEFINE_MUTEX(shares_mutex);

8740
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8741 8742
{
	int i;
8743
	unsigned long flags;
8744

8745 8746 8747 8748 8749 8750
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8751 8752
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8753 8754
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8755

8756
	mutex_lock(&shares_mutex);
8757
	if (tg->shares == shares)
8758
		goto done;
S
Srivatsa Vaddagiri 已提交
8759

8760
	spin_lock_irqsave(&task_group_lock, flags);
8761 8762
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8763
	list_del_rcu(&tg->siblings);
8764
	spin_unlock_irqrestore(&task_group_lock, flags);
8765 8766 8767 8768 8769 8770 8771 8772

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8773
	tg->shares = shares;
8774 8775 8776 8777 8778
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8779
		set_se_shares(tg->se[i], shares);
8780
	}
S
Srivatsa Vaddagiri 已提交
8781

8782 8783 8784 8785
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8786
	spin_lock_irqsave(&task_group_lock, flags);
8787 8788
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8789
	list_add_rcu(&tg->siblings, &tg->parent->children);
8790
	spin_unlock_irqrestore(&task_group_lock, flags);
8791
done:
8792
	mutex_unlock(&shares_mutex);
8793
	return 0;
S
Srivatsa Vaddagiri 已提交
8794 8795
}

8796 8797 8798 8799
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8800
#endif
8801

8802
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8803
/*
P
Peter Zijlstra 已提交
8804
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8805
 */
P
Peter Zijlstra 已提交
8806 8807 8808 8809 8810 8811 8812
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8813
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8814 8815
}

8816 8817 8818
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
8819
	struct task_group *tgi, *parent = tg->parent;
8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

8843
	return total + to_ratio(period, runtime) <=
8844 8845 8846 8847
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8848
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8849 8850 8851
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8852
	unsigned long global_ratio =
8853
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8854 8855

	rcu_read_lock();
P
Peter Zijlstra 已提交
8856 8857 8858
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8859

8860 8861
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8862 8863
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8864

P
Peter Zijlstra 已提交
8865
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8866
}
8867
#endif
P
Peter Zijlstra 已提交
8868

8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8880 8881
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8882
{
P
Peter Zijlstra 已提交
8883
	int i, err = 0;
P
Peter Zijlstra 已提交
8884 8885

	mutex_lock(&rt_constraints_mutex);
8886
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8887
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8888 8889 8890
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8891 8892 8893 8894
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8895 8896

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8897 8898
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8899 8900 8901 8902 8903 8904 8905 8906 8907

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8908
 unlock:
8909
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8910 8911 8912
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8913 8914
}

8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8927 8928 8929 8930
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8931
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8932 8933
		return -1;

8934
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8935 8936 8937
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8938 8939 8940 8941 8942 8943 8944 8945

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8946 8947 8948
	if (rt_period == 0)
		return -EINVAL;

8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8963 8964
	struct task_group *tg = &root_task_group;
	u64 rt_runtime, rt_period;
8965 8966
	int ret = 0;

8967 8968 8969
	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8970
	mutex_lock(&rt_constraints_mutex);
8971
	if (!__rt_schedulable(tg, rt_period, rt_runtime))
8972 8973 8974 8975 8976
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8977
#else /* !CONFIG_RT_GROUP_SCHED */
8978 8979
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8993 8994
	return 0;
}
8995
#endif /* CONFIG_RT_GROUP_SCHED */
8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9026

9027
#ifdef CONFIG_CGROUP_SCHED
9028 9029

/* return corresponding task_group object of a cgroup */
9030
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9031
{
9032 9033
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9034 9035 9036
}

static struct cgroup_subsys_state *
9037
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9038
{
9039
	struct task_group *tg, *parent;
9040

9041
	if (!cgrp->parent) {
9042
		/* This is early initialization for the top cgroup */
9043
		init_task_group.css.cgroup = cgrp;
9044 9045 9046
		return &init_task_group.css;
	}

9047 9048
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9049 9050 9051 9052
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
9053
	tg->css.cgroup = cgrp;
9054 9055 9056 9057

	return &tg->css;
}

I
Ingo Molnar 已提交
9058 9059
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9060
{
9061
	struct task_group *tg = cgroup_tg(cgrp);
9062 9063 9064 9065

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9066 9067 9068
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9069
{
9070 9071
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9072
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9073 9074
		return -EINVAL;
#else
9075 9076 9077
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9078
#endif
9079 9080 9081 9082 9083

	return 0;
}

static void
9084
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9085 9086 9087 9088 9089
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9090
#ifdef CONFIG_FAIR_GROUP_SCHED
9091
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9092
				u64 shareval)
9093
{
9094
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9095 9096
}

9097
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9098
{
9099
	struct task_group *tg = cgroup_tg(cgrp);
9100 9101 9102

	return (u64) tg->shares;
}
9103
#endif /* CONFIG_FAIR_GROUP_SCHED */
9104

9105
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9106
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9107
				s64 val)
P
Peter Zijlstra 已提交
9108
{
9109
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9110 9111
}

9112
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9113
{
9114
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9115
}
9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9127
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9128

9129
static struct cftype cpu_files[] = {
9130
#ifdef CONFIG_FAIR_GROUP_SCHED
9131 9132
	{
		.name = "shares",
9133 9134
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9135
	},
9136 9137
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9138
	{
P
Peter Zijlstra 已提交
9139
		.name = "rt_runtime_us",
9140 9141
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9142
	},
9143 9144
	{
		.name = "rt_period_us",
9145 9146
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9147
	},
9148
#endif
9149 9150 9151 9152
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9153
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9154 9155 9156
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9157 9158 9159 9160 9161 9162 9163
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9164 9165 9166
	.early_init	= 1,
};

9167
#endif	/* CONFIG_CGROUP_SCHED */
9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9188
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9189
{
9190
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9203
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9220
static void
9221
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9222
{
9223
	struct cpuacct *ca = cgroup_ca(cgrp);
9224 9225 9226 9227 9228 9229

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9230
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9231
{
9232
	struct cpuacct *ca = cgroup_ca(cgrp);
9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9274 9275 9276
static struct cftype files[] = {
	{
		.name = "usage",
9277 9278
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9279 9280 9281
	},
};

9282
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9283
{
9284
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */