workqueue.c 139.4 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/jhash.h>
45
#include <linux/hashtable.h>
46
#include <linux/rculist.h>
47
#include <linux/nodemask.h>
48
#include <linux/moduleparam.h>
49
#include <linux/uaccess.h>
50

51
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
52

T
Tejun Heo 已提交
53
enum {
54 55
	/*
	 * worker_pool flags
56
	 *
57
	 * A bound pool is either associated or disassociated with its CPU.
58 59 60 61 62 63
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
64
	 * be executing on any CPU.  The pool behaves as an unbound one.
65
	 *
66 67
	 * Note that DISASSOCIATED should be flipped only while holding
	 * manager_mutex to avoid changing binding state while
68
	 * create_worker() is in progress.
69
	 */
70
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
71
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
73

T
Tejun Heo 已提交
74 75 76 77
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
78
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
79
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
80
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
81
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
82

83 84
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
85

86
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
87

88
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
89
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
90

91 92 93
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

94 95 96
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
97 98 99 100 101 102 103 104
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
105
	HIGHPRI_NICE_LEVEL	= -20,
106 107

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
108
};
L
Linus Torvalds 已提交
109 110

/*
T
Tejun Heo 已提交
111 112
 * Structure fields follow one of the following exclusion rules.
 *
113 114
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
115
 *
116 117 118
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
119
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
120
 *
121 122 123 124
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
125
 *
126 127 128
 * MG: pool->manager_mutex and pool->lock protected.  Writes require both
 *     locks.  Reads can happen under either lock.
 *
129
 * PL: wq_pool_mutex protected.
130
 *
131
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
132
 *
133 134
 * WQ: wq->mutex protected.
 *
135
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
136 137
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
138 139
 */

140
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
141

142
struct worker_pool {
143
	spinlock_t		lock;		/* the pool lock */
144
	int			cpu;		/* I: the associated cpu */
145
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
146
	int			id;		/* I: pool ID */
147
	unsigned int		flags;		/* X: flags */
148 149 150

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
151 152

	/* nr_idle includes the ones off idle_list for rebinding */
153 154 155 156 157 158
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

159
	/* a workers is either on busy_hash or idle_list, or the manager */
160 161 162
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

163
	/* see manage_workers() for details on the two manager mutexes */
164
	struct mutex		manager_arb;	/* manager arbitration */
165
	struct mutex		manager_mutex;	/* manager exclusion */
166
	struct idr		worker_idr;	/* MG: worker IDs and iteration */
167

T
Tejun Heo 已提交
168
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
169 170
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
171

172 173 174 175 176 177
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
178 179 180 181 182 183

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
184 185
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
186
/*
187 188 189 190
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
191
 */
192
struct pool_workqueue {
193
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
194
	struct workqueue_struct *wq;		/* I: the owning workqueue */
195 196
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
197
	int			refcnt;		/* L: reference count */
198 199
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
200
	int			nr_active;	/* L: nr of active works */
201
	int			max_active;	/* L: max active works */
202
	struct list_head	delayed_works;	/* L: delayed works */
203
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
204
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
205 206 207 208 209

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
210
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
211 212 213
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
214
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
215

216 217 218 219
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
220 221
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
222 223 224
	struct completion	done;		/* flush completion */
};

225 226
struct wq_device;

L
Linus Torvalds 已提交
227
/*
228 229
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
230 231
 */
struct workqueue_struct {
232
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
233
	struct list_head	list;		/* PL: list of all workqueues */
234

235 236 237
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
238
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
239 240 241
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
242

243
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
244 245
	struct worker		*rescuer;	/* I: rescue worker */

246
	int			nr_drainers;	/* WQ: drain in progress */
247
	int			saved_max_active; /* WQ: saved pwq max_active */
248

249
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
250
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
251

252 253 254
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
255
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
256
	struct lockdep_map	lockdep_map;
257
#endif
258
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
259 260 261 262

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
264 265
};

266 267
static struct kmem_cache *pwq_cache;

268 269 270 271
static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

272 273 274
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

275 276 277 278 279 280 281 282 283
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

284 285
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

286 287 288
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

289
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
290
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
291

292 293
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
294 295 296 297 298

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

299
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
300

301
/* PL: hash of all unbound pools keyed by pool->attrs */
302 303
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

304
/* I: attributes used when instantiating standard unbound pools on demand */
305 306
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

307
struct workqueue_struct *system_wq __read_mostly;
308
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
309
struct workqueue_struct *system_highpri_wq __read_mostly;
310
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
311
struct workqueue_struct *system_long_wq __read_mostly;
312
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
313
struct workqueue_struct *system_unbound_wq __read_mostly;
314
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
315
struct workqueue_struct *system_freezable_wq __read_mostly;
316
EXPORT_SYMBOL_GPL(system_freezable_wq);
317 318 319 320
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
321

322 323 324 325
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

326 327 328
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

329
#define assert_rcu_or_pool_mutex()					\
330
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
331 332
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
333

334
#define assert_rcu_or_wq_mutex(wq)					\
335
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
336
			   lockdep_is_held(&wq->mutex),			\
337
			   "sched RCU or wq->mutex should be held")
338

339 340
#ifdef CONFIG_LOCKDEP
#define assert_manager_or_pool_lock(pool)				\
341 342
	WARN_ONCE(debug_locks &&					\
		  !lockdep_is_held(&(pool)->manager_mutex) &&		\
343 344 345 346 347 348
		  !lockdep_is_held(&(pool)->lock),			\
		  "pool->manager_mutex or ->lock should be held")
#else
#define assert_manager_or_pool_lock(pool)	do { } while (0)
#endif

349 350 351
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
352
	     (pool)++)
353

T
Tejun Heo 已提交
354 355 356
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
357
 * @pi: integer used for iteration
358
 *
359 360 361
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
362 363 364
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
365
 */
366 367
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
368
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
369
		else
T
Tejun Heo 已提交
370

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @wi: integer used for iteration
 * @pool: worker_pool to iterate workers of
 *
 * This must be called with either @pool->manager_mutex or ->lock held.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
#define for_each_pool_worker(worker, wi, pool)				\
	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
		if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
		else

387 388 389 390
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
391
 *
392
 * This must be called either with wq->mutex held or sched RCU read locked.
393 394
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
395 396 397
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
398 399
 */
#define for_each_pwq(pwq, wq)						\
400
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
401
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
402
		else
403

404 405 406 407
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

408 409 410 411 412
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
448
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
484
	.debug_hint	= work_debug_hint,
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

T
Tejun Heo 已提交
520 521 522 523 524
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

525
	lockdep_assert_held(&wq_pool_mutex);
526

T
Tejun Heo 已提交
527
	ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
528
	if (ret >= 0) {
T
Tejun Heo 已提交
529
		pool->id = ret;
530 531
		return 0;
	}
532
	return ret;
533 534
}

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
566

567
/*
568 569
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
570
 * is cleared and the high bits contain OFFQ flags and pool ID.
571
 *
572 573
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
574 575
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
576
 *
577
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
578
 * corresponding to a work.  Pool is available once the work has been
579
 * queued anywhere after initialization until it is sync canceled.  pwq is
580
 * available only while the work item is queued.
581
 *
582 583 584 585
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
586
 */
587 588
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
589
{
590
	WARN_ON_ONCE(!work_pending(work));
591 592
	atomic_long_set(&work->data, data | flags | work_static(work));
}
593

594
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
595 596
			 unsigned long extra_flags)
{
597 598
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
599 600
}

601 602 603 604 605 606 607
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

608 609
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
610
{
611 612 613 614 615 616 617
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
618
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
619
}
620

621
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
622
{
623 624
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
625 626
}

627
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
628
{
629
	unsigned long data = atomic_long_read(&work->data);
630

631
	if (data & WORK_STRUCT_PWQ)
632 633 634
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
635 636
}

637 638 639 640 641
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
642
 *
643 644 645
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
646 647 648 649 650
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
651 652
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
653
{
654
	unsigned long data = atomic_long_read(&work->data);
655
	int pool_id;
656

657
	assert_rcu_or_pool_mutex();
658

659 660
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
661
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
662

663 664
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
665 666
		return NULL;

667
	return idr_find(&worker_pool_idr, pool_id);
668 669 670 671 672 673 674 675 676 677 678
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
679 680
	unsigned long data = atomic_long_read(&work->data);

681 682
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
683
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
684

685
	return data >> WORK_OFFQ_POOL_SHIFT;
686 687
}

688 689
static void mark_work_canceling(struct work_struct *work)
{
690
	unsigned long pool_id = get_work_pool_id(work);
691

692 693
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
694 695 696 697 698 699
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

700
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
701 702
}

703
/*
704 705
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
706
 * they're being called with pool->lock held.
707 708
 */

709
static bool __need_more_worker(struct worker_pool *pool)
710
{
711
	return !atomic_read(&pool->nr_running);
712 713
}

714
/*
715 716
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
717 718
 *
 * Note that, because unbound workers never contribute to nr_running, this
719
 * function will always return %true for unbound pools as long as the
720
 * worklist isn't empty.
721
 */
722
static bool need_more_worker(struct worker_pool *pool)
723
{
724
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
725
}
726

727
/* Can I start working?  Called from busy but !running workers. */
728
static bool may_start_working(struct worker_pool *pool)
729
{
730
	return pool->nr_idle;
731 732 733
}

/* Do I need to keep working?  Called from currently running workers. */
734
static bool keep_working(struct worker_pool *pool)
735
{
736 737
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
738 739 740
}

/* Do we need a new worker?  Called from manager. */
741
static bool need_to_create_worker(struct worker_pool *pool)
742
{
743
	return need_more_worker(pool) && !may_start_working(pool);
744
}
745

746
/* Do I need to be the manager? */
747
static bool need_to_manage_workers(struct worker_pool *pool)
748
{
749
	return need_to_create_worker(pool) ||
750
		(pool->flags & POOL_MANAGE_WORKERS);
751 752 753
}

/* Do we have too many workers and should some go away? */
754
static bool too_many_workers(struct worker_pool *pool)
755
{
756
	bool managing = mutex_is_locked(&pool->manager_arb);
757 758
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
759

760 761 762 763 764 765 766
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

767
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
768 769
}

770
/*
771 772 773
 * Wake up functions.
 */

774
/* Return the first worker.  Safe with preemption disabled */
775
static struct worker *first_worker(struct worker_pool *pool)
776
{
777
	if (unlikely(list_empty(&pool->idle_list)))
778 779
		return NULL;

780
	return list_first_entry(&pool->idle_list, struct worker, entry);
781 782 783 784
}

/**
 * wake_up_worker - wake up an idle worker
785
 * @pool: worker pool to wake worker from
786
 *
787
 * Wake up the first idle worker of @pool.
788 789
 *
 * CONTEXT:
790
 * spin_lock_irq(pool->lock).
791
 */
792
static void wake_up_worker(struct worker_pool *pool)
793
{
794
	struct worker *worker = first_worker(pool);
795 796 797 798 799

	if (likely(worker))
		wake_up_process(worker->task);
}

800
/**
801 802 803 804 805 806 807 808 809 810
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
811
void wq_worker_waking_up(struct task_struct *task, int cpu)
812 813 814
{
	struct worker *worker = kthread_data(task);

815
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
816
		WARN_ON_ONCE(worker->pool->cpu != cpu);
817
		atomic_inc(&worker->pool->nr_running);
818
	}
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
836
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
837 838
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
839
	struct worker_pool *pool;
840

841 842 843 844 845
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
846
	if (worker->flags & WORKER_NOT_RUNNING)
847 848
		return NULL;

849 850
	pool = worker->pool;

851
	/* this can only happen on the local cpu */
852 853
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
854 855 856 857 858 859

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
860 861 862
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
863
	 * manipulating idle_list, so dereferencing idle_list without pool
864
	 * lock is safe.
865
	 */
866 867
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
868
		to_wakeup = first_worker(pool);
869 870 871 872 873
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
874
 * @worker: self
875 876 877
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
878 879 880
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
881
 *
882
 * CONTEXT:
883
 * spin_lock_irq(pool->lock)
884 885 886 887
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
888
	struct worker_pool *pool = worker->pool;
889

890 891
	WARN_ON_ONCE(worker->task != current);

892 893 894 895 896 897 898 899
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
900
			if (atomic_dec_and_test(&pool->nr_running) &&
901
			    !list_empty(&pool->worklist))
902
				wake_up_worker(pool);
903
		} else
904
			atomic_dec(&pool->nr_running);
905 906
	}

907 908 909 910
	worker->flags |= flags;
}

/**
911
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
912
 * @worker: self
913 914
 * @flags: flags to clear
 *
915
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
916
 *
917
 * CONTEXT:
918
 * spin_lock_irq(pool->lock)
919 920 921
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
922
	struct worker_pool *pool = worker->pool;
923 924
	unsigned int oflags = worker->flags;

925 926
	WARN_ON_ONCE(worker->task != current);

927
	worker->flags &= ~flags;
928

929 930 931 932 933
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
934 935
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
936
			atomic_inc(&pool->nr_running);
937 938
}

939 940
/**
 * find_worker_executing_work - find worker which is executing a work
941
 * @pool: pool of interest
942 943
 * @work: work to find worker for
 *
944 945
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
946 947 948 949 950 951 952 953 954 955 956 957
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
958 959 960 961 962 963
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
964 965
 *
 * CONTEXT:
966
 * spin_lock_irq(pool->lock).
967 968 969 970
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
971
 */
972
static struct worker *find_worker_executing_work(struct worker_pool *pool,
973
						 struct work_struct *work)
974
{
975 976
	struct worker *worker;

977
	hash_for_each_possible(pool->busy_hash, worker, hentry,
978 979 980
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
981 982 983
			return worker;

	return NULL;
984 985
}

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1001
 * spin_lock_irq(pool->lock).
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1085
static void pwq_activate_delayed_work(struct work_struct *work)
1086
{
1087
	struct pool_workqueue *pwq = get_work_pwq(work);
1088 1089

	trace_workqueue_activate_work(work);
1090
	move_linked_works(work, &pwq->pool->worklist, NULL);
1091
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1092
	pwq->nr_active++;
1093 1094
}

1095
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1096
{
1097
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1098 1099
						    struct work_struct, entry);

1100
	pwq_activate_delayed_work(work);
1101 1102
}

1103
/**
1104 1105
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1106 1107 1108
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1109
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1110 1111
 *
 * CONTEXT:
1112
 * spin_lock_irq(pool->lock).
1113
 */
1114
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1115
{
T
Tejun Heo 已提交
1116
	/* uncolored work items don't participate in flushing or nr_active */
1117
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1118
		goto out_put;
1119

1120
	pwq->nr_in_flight[color]--;
1121

1122 1123
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1124
		/* one down, submit a delayed one */
1125 1126
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1127 1128 1129
	}

	/* is flush in progress and are we at the flushing tip? */
1130
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1131
		goto out_put;
1132 1133

	/* are there still in-flight works? */
1134
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1135
		goto out_put;
1136

1137 1138
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1139 1140

	/*
1141
	 * If this was the last pwq, wake up the first flusher.  It
1142 1143
	 * will handle the rest.
	 */
1144 1145
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1146 1147
out_put:
	put_pwq(pwq);
1148 1149
}

1150
/**
1151
 * try_to_grab_pending - steal work item from worklist and disable irq
1152 1153
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1154
 * @flags: place to store irq state
1155 1156 1157 1158 1159 1160 1161
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1162 1163
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1164
 *
1165
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1166 1167 1168
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1169 1170 1171 1172
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1173
 * This function is safe to call from any context including IRQ handler.
1174
 */
1175 1176
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1177
{
1178
	struct worker_pool *pool;
1179
	struct pool_workqueue *pwq;
1180

1181 1182
	local_irq_save(*flags);

1183 1184 1185 1186
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1187 1188 1189 1190 1191
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1192 1193 1194 1195 1196
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1197 1198 1199 1200 1201 1202 1203
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1204 1205
	pool = get_work_pool(work);
	if (!pool)
1206
		goto fail;
1207

1208
	spin_lock(&pool->lock);
1209
	/*
1210 1211 1212 1213 1214
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1215 1216
	 * item is currently queued on that pool.
	 */
1217 1218
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1219 1220 1221 1222 1223
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1224
		 * on the delayed_list, will confuse pwq->nr_active
1225 1226 1227 1228
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1229
			pwq_activate_delayed_work(work);
1230 1231

		list_del_init(&work->entry);
1232
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1233

1234
		/* work->data points to pwq iff queued, point to pool */
1235 1236 1237 1238
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1239
	}
1240
	spin_unlock(&pool->lock);
1241 1242 1243 1244 1245
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1246
	return -EAGAIN;
1247 1248
}

T
Tejun Heo 已提交
1249
/**
1250
 * insert_work - insert a work into a pool
1251
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1252 1253 1254 1255
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1256
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1257
 * work_struct flags.
T
Tejun Heo 已提交
1258 1259
 *
 * CONTEXT:
1260
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1261
 */
1262 1263
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1264
{
1265
	struct worker_pool *pool = pwq->pool;
1266

T
Tejun Heo 已提交
1267
	/* we own @work, set data and link */
1268
	set_work_pwq(work, pwq, extra_flags);
1269
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1270
	get_pwq(pwq);
1271 1272

	/*
1273 1274 1275
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1276 1277 1278
	 */
	smp_mb();

1279 1280
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1281 1282
}

1283 1284
/*
 * Test whether @work is being queued from another work executing on the
1285
 * same workqueue.
1286 1287 1288
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1289 1290 1291 1292 1293 1294 1295
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1296
	return worker && worker->current_pwq->wq == wq;
1297 1298
}

1299
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1300 1301
			 struct work_struct *work)
{
1302
	struct pool_workqueue *pwq;
1303
	struct worker_pool *last_pool;
1304
	struct list_head *worklist;
1305
	unsigned int work_flags;
1306
	unsigned int req_cpu = cpu;
1307 1308 1309 1310 1311 1312 1313 1314

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1315

1316
	debug_work_activate(work);
1317

1318
	/* if dying, only works from the same workqueue are allowed */
1319
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1320
	    WARN_ON_ONCE(!is_chained_work(wq)))
1321
		return;
1322
retry:
1323 1324 1325
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1326
	/* pwq which will be used unless @work is executing elsewhere */
1327
	if (!(wq->flags & WQ_UNBOUND))
1328
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1329 1330
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1331

1332 1333 1334 1335 1336 1337 1338 1339
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1340

1341
		spin_lock(&last_pool->lock);
1342

1343
		worker = find_worker_executing_work(last_pool, work);
1344

1345 1346
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1347
		} else {
1348 1349
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1350
			spin_lock(&pwq->pool->lock);
1351
		}
1352
	} else {
1353
		spin_lock(&pwq->pool->lock);
1354 1355
	}

1356 1357 1358 1359
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1360 1361
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1375 1376
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1377

1378
	if (WARN_ON(!list_empty(&work->entry))) {
1379
		spin_unlock(&pwq->pool->lock);
1380 1381
		return;
	}
1382

1383 1384
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1385

1386
	if (likely(pwq->nr_active < pwq->max_active)) {
1387
		trace_workqueue_activate_work(work);
1388 1389
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1390 1391
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1392
		worklist = &pwq->delayed_works;
1393
	}
1394

1395
	insert_work(pwq, work, worklist, work_flags);
1396

1397
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1398 1399
}

1400
/**
1401 1402
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1403 1404 1405
 * @wq: workqueue to use
 * @work: work to queue
 *
1406
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1407
 *
1408 1409
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1410
 */
1411 1412
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1413
{
1414
	bool ret = false;
1415
	unsigned long flags;
1416

1417
	local_irq_save(flags);
1418

1419
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1420
		__queue_work(cpu, wq, work);
1421
		ret = true;
1422
	}
1423

1424
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1425 1426
	return ret;
}
1427
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1428

1429
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1430
{
1431
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1432

1433
	/* should have been called from irqsafe timer with irq already off */
1434
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1435
}
1436
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1437

1438 1439
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1440
{
1441 1442 1443 1444 1445
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1446 1447
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1448

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1460
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1461

1462
	dwork->wq = wq;
1463
	dwork->cpu = cpu;
1464 1465 1466 1467 1468 1469
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1470 1471
}

1472 1473 1474 1475
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1476
 * @dwork: work to queue
1477 1478
 * @delay: number of jiffies to wait before queueing
 *
1479 1480 1481
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1482
 */
1483 1484
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1485
{
1486
	struct work_struct *work = &dwork->work;
1487
	bool ret = false;
1488
	unsigned long flags;
1489

1490 1491
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1492

1493
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1494
		__queue_delayed_work(cpu, wq, dwork, delay);
1495
		ret = true;
1496
	}
1497

1498
	local_irq_restore(flags);
1499 1500
	return ret;
}
1501
EXPORT_SYMBOL(queue_delayed_work_on);
1502

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1518
 * This function is safe to call from any context including IRQ handler.
1519 1520 1521 1522 1523 1524 1525
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1526

1527 1528 1529
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1530

1531 1532 1533
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1534
	}
1535 1536

	/* -ENOENT from try_to_grab_pending() becomes %true */
1537 1538
	return ret;
}
1539 1540
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1541 1542 1543 1544 1545 1546 1547 1548
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1549
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1550 1551
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1552
{
1553
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1554

1555 1556 1557 1558
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1559

1560 1561
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1562
	pool->nr_idle++;
1563
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1564 1565

	/* idle_list is LIFO */
1566
	list_add(&worker->entry, &pool->idle_list);
1567

1568 1569
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1570

1571
	/*
1572
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1573
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1574 1575
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1576
	 */
1577
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1578
		     pool->nr_workers == pool->nr_idle &&
1579
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1589
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1590 1591 1592
 */
static void worker_leave_idle(struct worker *worker)
{
1593
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1594

1595 1596
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1597
	worker_clr_flags(worker, WORKER_IDLE);
1598
	pool->nr_idle--;
T
Tejun Heo 已提交
1599 1600 1601
	list_del_init(&worker->entry);
}

1602
/**
1603 1604 1605 1606
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1607 1608 1609 1610 1611 1612
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1613
 * This function is to be used by unbound workers and rescuers to bind
1614 1615 1616
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1617
 * verbatim as it's best effort and blocking and pool may be
1618 1619
 * [dis]associated in the meantime.
 *
1620
 * This function tries set_cpus_allowed() and locks pool and verifies the
1621
 * binding against %POOL_DISASSOCIATED which is set during
1622 1623 1624
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1625 1626
 *
 * CONTEXT:
1627
 * Might sleep.  Called without any lock but returns with pool->lock
1628 1629 1630
 * held.
 *
 * RETURNS:
1631
 * %true if the associated pool is online (@worker is successfully
1632 1633
 * bound), %false if offline.
 */
1634
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1635
__acquires(&pool->lock)
1636 1637
{
	while (true) {
1638
		/*
1639 1640 1641
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1642
		 * against POOL_DISASSOCIATED.
1643
		 */
1644
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1645
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1646

1647
		spin_lock_irq(&pool->lock);
1648
		if (pool->flags & POOL_DISASSOCIATED)
1649
			return false;
1650
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1651
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1652
			return true;
1653
		spin_unlock_irq(&pool->lock);
1654

1655 1656 1657 1658 1659 1660
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1661
		cpu_relax();
1662
		cond_resched();
1663 1664 1665
	}
}

T
Tejun Heo 已提交
1666 1667 1668 1669 1670
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1671 1672
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1673
		INIT_LIST_HEAD(&worker->scheduled);
1674 1675
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1676
	}
T
Tejun Heo 已提交
1677 1678 1679 1680 1681
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1682
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1683
 *
1684
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1694
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1695 1696
{
	struct worker *worker = NULL;
1697
	int id = -1;
1698
	char id_buf[16];
T
Tejun Heo 已提交
1699

1700 1701
	lockdep_assert_held(&pool->manager_mutex);

1702 1703 1704 1705 1706
	/*
	 * ID is needed to determine kthread name.  Allocate ID first
	 * without installing the pointer.
	 */
	idr_preload(GFP_KERNEL);
1707
	spin_lock_irq(&pool->lock);
1708 1709 1710

	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);

1711
	spin_unlock_irq(&pool->lock);
1712 1713 1714
	idr_preload_end();
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1715 1716 1717 1718 1719

	worker = alloc_worker();
	if (!worker)
		goto fail;

1720
	worker->pool = pool;
T
Tejun Heo 已提交
1721 1722
	worker->id = id;

1723
	if (pool->cpu >= 0)
1724 1725
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1726
	else
1727 1728
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1729
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1730
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1731 1732 1733
	if (IS_ERR(worker->task))
		goto fail;

1734 1735 1736 1737
	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
T
Tejun Heo 已提交
1738 1739
	set_user_nice(worker->task, pool->attrs->nice);
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1740

1741 1742
	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;
T
Tejun Heo 已提交
1743 1744 1745 1746 1747 1748 1749

	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1750
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1751

1752 1753 1754 1755 1756
	/* successful, commit the pointer to idr */
	spin_lock_irq(&pool->lock);
	idr_replace(&pool->worker_idr, worker, worker->id);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1757
	return worker;
1758

T
Tejun Heo 已提交
1759 1760
fail:
	if (id >= 0) {
1761
		spin_lock_irq(&pool->lock);
1762
		idr_remove(&pool->worker_idr, id);
1763
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1773
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1774 1775
 *
 * CONTEXT:
1776
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1777 1778 1779
 */
static void start_worker(struct worker *worker)
{
1780
	worker->flags |= WORKER_STARTED;
1781
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1782
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1783 1784 1785
	wake_up_process(worker->task);
}

1786 1787 1788 1789
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1790
 * Grab the managership of @pool and create and start a new worker for it.
1791 1792 1793 1794 1795
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

1796 1797
	mutex_lock(&pool->manager_mutex);

1798 1799 1800 1801 1802 1803 1804
	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

1805 1806
	mutex_unlock(&pool->manager_mutex);

1807 1808 1809
	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1810 1811 1812 1813
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1814
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1815 1816
 *
 * CONTEXT:
1817
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1818 1819 1820
 */
static void destroy_worker(struct worker *worker)
{
1821
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1822

1823 1824 1825
	lockdep_assert_held(&pool->manager_mutex);
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1826
	/* sanity check frenzy */
1827 1828 1829
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1830

T
Tejun Heo 已提交
1831
	if (worker->flags & WORKER_STARTED)
1832
		pool->nr_workers--;
T
Tejun Heo 已提交
1833
	if (worker->flags & WORKER_IDLE)
1834
		pool->nr_idle--;
T
Tejun Heo 已提交
1835 1836

	list_del_init(&worker->entry);
1837
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1838

1839 1840
	idr_remove(&pool->worker_idr, worker->id);

1841
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1842

T
Tejun Heo 已提交
1843 1844 1845
	kthread_stop(worker->task);
	kfree(worker);

1846
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1847 1848
}

1849
static void idle_worker_timeout(unsigned long __pool)
1850
{
1851
	struct worker_pool *pool = (void *)__pool;
1852

1853
	spin_lock_irq(&pool->lock);
1854

1855
	if (too_many_workers(pool)) {
1856 1857 1858 1859
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1860
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1861 1862 1863
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1864
			mod_timer(&pool->idle_timer, expires);
1865 1866
		else {
			/* it's been idle for too long, wake up manager */
1867
			pool->flags |= POOL_MANAGE_WORKERS;
1868
			wake_up_worker(pool);
1869
		}
1870 1871
	}

1872
	spin_unlock_irq(&pool->lock);
1873
}
1874

1875
static void send_mayday(struct work_struct *work)
1876
{
1877 1878
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1879

1880
	lockdep_assert_held(&wq_mayday_lock);
1881

1882
	if (!wq->rescuer)
1883
		return;
1884 1885

	/* mayday mayday mayday */
1886 1887
	if (list_empty(&pwq->mayday_node)) {
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1888
		wake_up_process(wq->rescuer->task);
1889
	}
1890 1891
}

1892
static void pool_mayday_timeout(unsigned long __pool)
1893
{
1894
	struct worker_pool *pool = (void *)__pool;
1895 1896
	struct work_struct *work;

1897
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1898
	spin_lock(&pool->lock);
1899

1900
	if (need_to_create_worker(pool)) {
1901 1902 1903 1904 1905 1906
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1907
		list_for_each_entry(work, &pool->worklist, entry)
1908
			send_mayday(work);
L
Linus Torvalds 已提交
1909
	}
1910

1911
	spin_unlock(&pool->lock);
1912
	spin_unlock_irq(&wq_mayday_lock);
1913

1914
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1915 1916
}

1917 1918
/**
 * maybe_create_worker - create a new worker if necessary
1919
 * @pool: pool to create a new worker for
1920
 *
1921
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1922 1923
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1924
 * sent to all rescuers with works scheduled on @pool to resolve
1925 1926
 * possible allocation deadlock.
 *
1927 1928
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1929 1930
 *
 * LOCKING:
1931
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1932 1933 1934 1935
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1936
 * %false if no action was taken and pool->lock stayed locked, %true
1937 1938
 * otherwise.
 */
1939
static bool maybe_create_worker(struct worker_pool *pool)
1940 1941
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1942
{
1943
	if (!need_to_create_worker(pool))
1944 1945
		return false;
restart:
1946
	spin_unlock_irq(&pool->lock);
1947

1948
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1949
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1950 1951 1952 1953

	while (true) {
		struct worker *worker;

1954
		worker = create_worker(pool);
1955
		if (worker) {
1956
			del_timer_sync(&pool->mayday_timer);
1957
			spin_lock_irq(&pool->lock);
1958
			start_worker(worker);
1959 1960
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1961 1962 1963
			return true;
		}

1964
		if (!need_to_create_worker(pool))
1965
			break;
L
Linus Torvalds 已提交
1966

1967 1968
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1969

1970
		if (!need_to_create_worker(pool))
1971 1972 1973
			break;
	}

1974
	del_timer_sync(&pool->mayday_timer);
1975
	spin_lock_irq(&pool->lock);
1976
	if (need_to_create_worker(pool))
1977 1978 1979 1980 1981 1982
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1983
 * @pool: pool to destroy workers for
1984
 *
1985
 * Destroy @pool workers which have been idle for longer than
1986 1987 1988
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1989
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1990 1991 1992
 * multiple times.  Called only from manager.
 *
 * RETURNS:
1993
 * %false if no action was taken and pool->lock stayed locked, %true
1994 1995
 * otherwise.
 */
1996
static bool maybe_destroy_workers(struct worker_pool *pool)
1997 1998
{
	bool ret = false;
L
Linus Torvalds 已提交
1999

2000
	while (too_many_workers(pool)) {
2001 2002
		struct worker *worker;
		unsigned long expires;
2003

2004
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2005
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2006

2007
		if (time_before(jiffies, expires)) {
2008
			mod_timer(&pool->idle_timer, expires);
2009
			break;
2010
		}
L
Linus Torvalds 已提交
2011

2012 2013
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2014
	}
2015

2016
	return ret;
2017 2018
}

2019
/**
2020 2021
 * manage_workers - manage worker pool
 * @worker: self
2022
 *
2023
 * Assume the manager role and manage the worker pool @worker belongs
2024
 * to.  At any given time, there can be only zero or one manager per
2025
 * pool.  The exclusion is handled automatically by this function.
2026 2027 2028 2029
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2030 2031
 *
 * CONTEXT:
2032
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2033 2034 2035
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
2036 2037
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
2038
 */
2039
static bool manage_workers(struct worker *worker)
2040
{
2041
	struct worker_pool *pool = worker->pool;
2042
	bool ret = false;
2043

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	/*
	 * Managership is governed by two mutexes - manager_arb and
	 * manager_mutex.  manager_arb handles arbitration of manager role.
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 *
	 * manager_mutex is used for exclusion of actual management
	 * operations.  The holder of manager_mutex can be sure that none
	 * of management operations, including creation and destruction of
	 * workers, won't take place until the mutex is released.  Because
	 * manager_mutex doesn't interfere with manager role arbitration,
	 * it is guaranteed that the pool's management, while may be
	 * delayed, won't be disturbed by someone else grabbing
	 * manager_mutex.
	 */
2065
	if (!mutex_trylock(&pool->manager_arb))
2066
		return ret;
2067

2068
	/*
2069 2070
	 * With manager arbitration won, manager_mutex would be free in
	 * most cases.  trylock first without dropping @pool->lock.
2071
	 */
2072
	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2073
		spin_unlock_irq(&pool->lock);
2074
		mutex_lock(&pool->manager_mutex);
2075
		spin_lock_irq(&pool->lock);
2076 2077
		ret = true;
	}
2078

2079
	pool->flags &= ~POOL_MANAGE_WORKERS;
2080 2081

	/*
2082 2083
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2084
	 */
2085 2086
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2087

2088
	mutex_unlock(&pool->manager_mutex);
2089
	mutex_unlock(&pool->manager_arb);
2090
	return ret;
2091 2092
}

2093 2094
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2095
 * @worker: self
2096 2097 2098 2099 2100 2101 2102 2103 2104
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2105
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2106
 */
T
Tejun Heo 已提交
2107
static void process_one_work(struct worker *worker, struct work_struct *work)
2108 2109
__releases(&pool->lock)
__acquires(&pool->lock)
2110
{
2111
	struct pool_workqueue *pwq = get_work_pwq(work);
2112
	struct worker_pool *pool = worker->pool;
2113
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2114
	int work_color;
2115
	struct worker *collision;
2116 2117 2118 2119 2120 2121 2122 2123
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2124 2125 2126
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2127
#endif
2128 2129 2130
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2131
	 * unbound or a disassociated pool.
2132
	 */
2133
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2134
		     !(pool->flags & POOL_DISASSOCIATED) &&
2135
		     raw_smp_processor_id() != pool->cpu);
2136

2137 2138 2139 2140 2141 2142
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2143
	collision = find_worker_executing_work(pool, work);
2144 2145 2146 2147 2148
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2149
	/* claim and dequeue */
2150
	debug_work_deactivate(work);
2151
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2152
	worker->current_work = work;
2153
	worker->current_func = work->func;
2154
	worker->current_pwq = pwq;
2155
	work_color = get_work_color(work);
2156

2157 2158
	list_del_init(&work->entry);

2159 2160 2161 2162 2163 2164 2165
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2166
	/*
2167
	 * Unbound pool isn't concurrency managed and work items should be
2168 2169
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2170 2171
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2172

2173
	/*
2174
	 * Record the last pool and clear PENDING which should be the last
2175
	 * update to @work.  Also, do this inside @pool->lock so that
2176 2177
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2178
	 */
2179
	set_work_pool_and_clear_pending(work, pool->id);
2180

2181
	spin_unlock_irq(&pool->lock);
2182

2183
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2184
	lock_map_acquire(&lockdep_map);
2185
	trace_workqueue_execute_start(work);
2186
	worker->current_func(work);
2187 2188 2189 2190 2191
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2192
	lock_map_release(&lockdep_map);
2193
	lock_map_release(&pwq->wq->lockdep_map);
2194 2195

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2196 2197
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2198 2199
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2200 2201 2202 2203
		debug_show_held_locks(current);
		dump_stack();
	}

2204 2205 2206 2207 2208 2209 2210 2211 2212
	/*
	 * The following prevents a kworker from hogging CPU on !PREEMPT
	 * kernels, where a requeueing work item waiting for something to
	 * happen could deadlock with stop_machine as such work item could
	 * indefinitely requeue itself while all other CPUs are trapped in
	 * stop_machine.
	 */
	cond_resched();

2213
	spin_lock_irq(&pool->lock);
2214

2215 2216 2217 2218
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2219
	/* we're done with it, release */
2220
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2221
	worker->current_work = NULL;
2222
	worker->current_func = NULL;
2223
	worker->current_pwq = NULL;
2224
	worker->desc_valid = false;
2225
	pwq_dec_nr_in_flight(pwq, work_color);
2226 2227
}

2228 2229 2230 2231 2232 2233 2234 2235 2236
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2237
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2238 2239 2240
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2241
{
2242 2243
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2244
						struct work_struct, entry);
T
Tejun Heo 已提交
2245
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2246 2247 2248
	}
}

T
Tejun Heo 已提交
2249 2250
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2251
 * @__worker: self
T
Tejun Heo 已提交
2252
 *
2253 2254 2255 2256 2257
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
T
Tejun Heo 已提交
2258
 */
T
Tejun Heo 已提交
2259
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2260
{
T
Tejun Heo 已提交
2261
	struct worker *worker = __worker;
2262
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2263

2264 2265
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2266
woke_up:
2267
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2268

2269 2270
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2271
		spin_unlock_irq(&pool->lock);
2272 2273 2274
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
		return 0;
T
Tejun Heo 已提交
2275
	}
2276

T
Tejun Heo 已提交
2277
	worker_leave_idle(worker);
2278
recheck:
2279
	/* no more worker necessary? */
2280
	if (!need_more_worker(pool))
2281 2282 2283
		goto sleep;

	/* do we need to manage? */
2284
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2285 2286
		goto recheck;

T
Tejun Heo 已提交
2287 2288 2289 2290 2291
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2292
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2293

2294
	/*
2295 2296 2297 2298 2299
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2300
	 */
2301
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2302 2303

	do {
T
Tejun Heo 已提交
2304
		struct work_struct *work =
2305
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2306 2307 2308 2309 2310 2311
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2312
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2313 2314 2315
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2316
		}
2317
	} while (keep_working(pool));
2318 2319

	worker_set_flags(worker, WORKER_PREP, false);
2320
sleep:
2321
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2322
		goto recheck;
2323

T
Tejun Heo 已提交
2324
	/*
2325 2326 2327 2328 2329
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2330 2331 2332
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2333
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2334 2335
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2336 2337
}

2338 2339
/**
 * rescuer_thread - the rescuer thread function
2340
 * @__rescuer: self
2341 2342
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2343
 * workqueue which has WQ_MEM_RECLAIM set.
2344
 *
2345
 * Regular work processing on a pool may block trying to create a new
2346 2347 2348 2349 2350
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2351 2352
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2353 2354 2355 2356
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2357
static int rescuer_thread(void *__rescuer)
2358
{
2359 2360
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2361 2362 2363
	struct list_head *scheduled = &rescuer->scheduled;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2364 2365 2366 2367 2368 2369

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2370 2371 2372
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2373 2374
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2375
		rescuer->task->flags &= ~PF_WQ_WORKER;
2376
		return 0;
2377
	}
2378

2379
	/* see whether any pwq is asking for help */
2380
	spin_lock_irq(&wq_mayday_lock);
2381 2382 2383 2384

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2385
		struct worker_pool *pool = pwq->pool;
2386 2387 2388
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2389 2390
		list_del_init(&pwq->mayday_node);

2391
		spin_unlock_irq(&wq_mayday_lock);
2392 2393

		/* migrate to the target cpu if possible */
2394
		worker_maybe_bind_and_lock(pool);
2395
		rescuer->pool = pool;
2396 2397 2398 2399 2400

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2401
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2402
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2403
			if (get_work_pwq(work) == pwq)
2404 2405 2406
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2407 2408

		/*
2409
		 * Leave this pool.  If keep_working() is %true, notify a
2410 2411 2412
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2413 2414
		if (keep_working(pool))
			wake_up_worker(pool);
2415

2416
		rescuer->pool = NULL;
2417
		spin_unlock(&pool->lock);
2418
		spin_lock(&wq_mayday_lock);
2419 2420
	}

2421
	spin_unlock_irq(&wq_mayday_lock);
2422

2423 2424
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2425 2426
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2427 2428
}

O
Oleg Nesterov 已提交
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2440 2441
/**
 * insert_wq_barrier - insert a barrier work
2442
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2443
 * @barr: wq_barrier to insert
2444 2445
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2446
 *
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2459
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2460 2461
 *
 * CONTEXT:
2462
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2463
 */
2464
static void insert_wq_barrier(struct pool_workqueue *pwq,
2465 2466
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2467
{
2468 2469 2470
	struct list_head *head;
	unsigned int linked = 0;

2471
	/*
2472
	 * debugobject calls are safe here even with pool->lock locked
2473 2474 2475 2476
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2477
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2478
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2479
	init_completion(&barr->done);
2480

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2496
	debug_work_activate(&barr->work);
2497
	insert_work(pwq, &barr->work, head,
2498
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2499 2500
}

2501
/**
2502
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2503 2504 2505 2506
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2507
 * Prepare pwqs for workqueue flushing.
2508
 *
2509 2510 2511 2512 2513
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2514 2515 2516 2517 2518 2519 2520
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2521
 * If @work_color is non-negative, all pwqs should have the same
2522 2523 2524 2525
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2526
 * mutex_lock(wq->mutex).
2527 2528 2529 2530 2531
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2532
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2533
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2534
{
2535
	bool wait = false;
2536
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2537

2538
	if (flush_color >= 0) {
2539
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2540
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2541
	}
2542

2543
	for_each_pwq(pwq, wq) {
2544
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2545

2546
		spin_lock_irq(&pool->lock);
2547

2548
		if (flush_color >= 0) {
2549
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2550

2551 2552 2553
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2554 2555 2556
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2557

2558
		if (work_color >= 0) {
2559
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2560
			pwq->work_color = work_color;
2561
		}
L
Linus Torvalds 已提交
2562

2563
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2564
	}
2565

2566
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2567
		complete(&wq->first_flusher->done);
2568

2569
	return wait;
L
Linus Torvalds 已提交
2570 2571
}

2572
/**
L
Linus Torvalds 已提交
2573
 * flush_workqueue - ensure that any scheduled work has run to completion.
2574
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2575
 *
2576 2577
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2578
 */
2579
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2580
{
2581 2582 2583 2584 2585 2586
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2587

2588 2589
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2590

2591
	mutex_lock(&wq->mutex);
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2604
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2605 2606 2607 2608 2609
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2610
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2611 2612 2613

			wq->first_flusher = &this_flusher;

2614
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2615 2616 2617 2618 2619 2620 2621 2622
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2623
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2624
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2625
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2636
	mutex_unlock(&wq->mutex);
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2649
	mutex_lock(&wq->mutex);
2650

2651 2652 2653 2654
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2655 2656
	wq->first_flusher = NULL;

2657 2658
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2671 2672
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2692
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2693 2694 2695
		}

		if (list_empty(&wq->flusher_queue)) {
2696
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2697 2698 2699 2700 2701
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2702
		 * the new first flusher and arm pwqs.
2703
		 */
2704 2705
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2706 2707 2708 2709

		list_del_init(&next->list);
		wq->first_flusher = next;

2710
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2721
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2722
}
2723
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2724

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2739
	struct pool_workqueue *pwq;
2740 2741 2742 2743

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2744
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2745
	 */
2746
	mutex_lock(&wq->mutex);
2747
	if (!wq->nr_drainers++)
2748
		wq->flags |= __WQ_DRAINING;
2749
	mutex_unlock(&wq->mutex);
2750 2751 2752
reflush:
	flush_workqueue(wq);

2753
	mutex_lock(&wq->mutex);
2754

2755
	for_each_pwq(pwq, wq) {
2756
		bool drained;
2757

2758
		spin_lock_irq(&pwq->pool->lock);
2759
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2760
		spin_unlock_irq(&pwq->pool->lock);
2761 2762

		if (drained)
2763 2764 2765 2766
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2767
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2768
				wq->name, flush_cnt);
2769

2770
		mutex_unlock(&wq->mutex);
2771 2772 2773 2774
		goto reflush;
	}

	if (!--wq->nr_drainers)
2775
		wq->flags &= ~__WQ_DRAINING;
2776
	mutex_unlock(&wq->mutex);
2777 2778 2779
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2780
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2781
{
2782
	struct worker *worker = NULL;
2783
	struct worker_pool *pool;
2784
	struct pool_workqueue *pwq;
2785 2786

	might_sleep();
2787 2788

	local_irq_disable();
2789
	pool = get_work_pool(work);
2790 2791
	if (!pool) {
		local_irq_enable();
2792
		return false;
2793
	}
2794

2795
	spin_lock(&pool->lock);
2796
	/* see the comment in try_to_grab_pending() with the same code */
2797 2798 2799
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2800
			goto already_gone;
2801
	} else {
2802
		worker = find_worker_executing_work(pool, work);
2803
		if (!worker)
T
Tejun Heo 已提交
2804
			goto already_gone;
2805
		pwq = worker->current_pwq;
2806
	}
2807

2808
	insert_wq_barrier(pwq, barr, work, worker);
2809
	spin_unlock_irq(&pool->lock);
2810

2811 2812 2813 2814 2815 2816
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2817
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2818
		lock_map_acquire(&pwq->wq->lockdep_map);
2819
	else
2820 2821
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2822

2823
	return true;
T
Tejun Heo 已提交
2824
already_gone:
2825
	spin_unlock_irq(&pool->lock);
2826
	return false;
2827
}
2828

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
static bool __flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

	if (start_flush_work(work, &barr)) {
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
	} else {
		return false;
	}
}

2842 2843 2844 2845
/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2846 2847
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2848 2849 2850 2851 2852 2853 2854
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
2855 2856 2857
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2858
	return __flush_work(work);
2859
}
2860
EXPORT_SYMBOL_GPL(flush_work);
2861

2862
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2863
{
2864
	unsigned long flags;
2865 2866 2867
	int ret;

	do {
2868 2869 2870 2871 2872 2873
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2874
			flush_work(work);
2875 2876
	} while (unlikely(ret < 0));

2877 2878 2879 2880
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2881
	flush_work(work);
2882
	clear_work_data(work);
2883 2884 2885
	return ret;
}

2886
/**
2887 2888
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2889
 *
2890 2891 2892 2893
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2894
 *
2895 2896
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2897
 *
2898
 * The caller must ensure that the workqueue on which @work was last
2899
 * queued can't be destroyed before this function returns.
2900 2901 2902
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2903
 */
2904
bool cancel_work_sync(struct work_struct *work)
2905
{
2906
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2907
}
2908
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2909

2910
/**
2911 2912
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2913
 *
2914 2915 2916
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2917
 *
2918 2919 2920
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2921
 */
2922 2923
bool flush_delayed_work(struct delayed_work *dwork)
{
2924
	local_irq_disable();
2925
	if (del_timer_sync(&dwork->timer))
2926
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2927
	local_irq_enable();
2928 2929 2930 2931
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2932
/**
2933 2934
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2935
 *
2936 2937 2938 2939 2940
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2941
 *
2942
 * This function is safe to call from any context including IRQ handler.
2943
 */
2944
bool cancel_delayed_work(struct delayed_work *dwork)
2945
{
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2956 2957
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2958
	local_irq_restore(flags);
2959
	return ret;
2960
}
2961
EXPORT_SYMBOL(cancel_delayed_work);
2962

2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2973
{
2974
	return __cancel_work_timer(&dwork->work, true);
2975
}
2976
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2977

2978
/**
2979
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2980 2981
 * @func: the function to call
 *
2982 2983
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2984
 * schedule_on_each_cpu() is very slow.
2985 2986 2987
 *
 * RETURNS:
 * 0 on success, -errno on failure.
2988
 */
2989
int schedule_on_each_cpu(work_func_t func)
2990 2991
{
	int cpu;
2992
	struct work_struct __percpu *works;
2993

2994 2995
	works = alloc_percpu(struct work_struct);
	if (!works)
2996
		return -ENOMEM;
2997

2998 2999
	get_online_cpus();

3000
	for_each_online_cpu(cpu) {
3001 3002 3003
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3004
		schedule_work_on(cpu, work);
3005
	}
3006 3007 3008 3009

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3010
	put_online_cpus();
3011
	free_percpu(works);
3012 3013 3014
	return 0;
}

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3039 3040
void flush_scheduled_work(void)
{
3041
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3042
}
3043
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3044

3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3057
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3058 3059
{
	if (!in_interrupt()) {
3060
		fn(&ew->work);
3061 3062 3063
		return 0;
	}

3064
	INIT_WORK(&ew->work, fn);
3065 3066 3067 3068 3069 3070
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

static ssize_t wq_per_cpu_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}

static ssize_t wq_max_active_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

static ssize_t wq_max_active_store(struct device *dev,
				   struct device_attribute *attr,
				   const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}

static struct device_attribute wq_sysfs_attrs[] = {
	__ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
	__ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
	__ATTR_NULL,
};

3134 3135
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3136 3137
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3138 3139
	const char *delim = "";
	int node, written = 0;
3140 3141

	rcu_read_lock_sched();
3142 3143 3144 3145 3146 3147 3148
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3160 3161 3162
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3176 3177 3178
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= -20 && attrs->nice <= 19)
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3209 3210 3211
	mutex_lock(&wq->mutex);
	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
	mutex_unlock(&wq->mutex);
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3272
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3273
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3274 3275
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3276
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
	.dev_attrs			= wq_sysfs_attrs,
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
 * Returns 0 on success, -errno on failure.
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.  Returns NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3416
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3417 3418 3419 3420 3421 3422
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3423 3424 3425 3426 3427
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
3428 3429 3430 3431 3432 3433
	/*
	 * Unlike hash and equality test, this function doesn't ignore
	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
	 * get_unbound_pool() explicitly clears ->no_numa after copying.
	 */
	to->no_numa = from->no_numa;
3434 3435 3436 3437 3438 3439 3440 3441
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3442 3443
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3458 3459 3460 3461 3462
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3463 3464 3465
 * Returns 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3466 3467
 */
static int init_worker_pool(struct worker_pool *pool)
3468 3469
{
	spin_lock_init(&pool->lock);
3470 3471
	pool->id = -1;
	pool->cpu = -1;
3472
	pool->node = NUMA_NO_NODE;
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3486
	mutex_init(&pool->manager_mutex);
3487
	idr_init(&pool->worker_idr);
T
Tejun Heo 已提交
3488

3489 3490 3491 3492
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3493 3494 3495 3496
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3497 3498
}

3499 3500 3501 3502
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3503
	idr_destroy(&pool->worker_idr);
3504 3505 3506 3507 3508 3509 3510 3511 3512
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3513 3514 3515
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3516 3517
 *
 * Should be called with wq_pool_mutex held.
3518 3519 3520 3521 3522
 */
static void put_unbound_pool(struct worker_pool *pool)
{
	struct worker *worker;

3523 3524 3525
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3526 3527 3528 3529
		return;

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3530
	    WARN_ON(!list_empty(&pool->worklist)))
3531 3532 3533 3534 3535 3536 3537
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3538 3539 3540 3541 3542
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * manager_mutex.
	 */
3543
	mutex_lock(&pool->manager_arb);
3544
	mutex_lock(&pool->manager_mutex);
3545 3546 3547 3548 3549 3550 3551
	spin_lock_irq(&pool->lock);

	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);

	spin_unlock_irq(&pool->lock);
3552
	mutex_unlock(&pool->manager_mutex);
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.  On failure, returns NULL.
3571 3572
 *
 * Should be called with wq_pool_mutex held.
3573 3574 3575 3576 3577
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3578
	int node;
3579

3580
	lockdep_assert_held(&wq_pool_mutex);
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

3595 3596 3597
	if (workqueue_freezing)
		pool->flags |= POOL_FREEZING;

T
Tejun Heo 已提交
3598
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3599 3600
	copy_workqueue_attrs(pool->attrs, attrs);

3601 3602 3603 3604 3605 3606
	/*
	 * no_numa isn't a worker_pool attribute, always clear it.  See
	 * 'struct workqueue_attrs' comments for detail.
	 */
	pool->attrs->no_numa = false;

3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3618 3619 3620 3621
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3622
	if (create_and_start_worker(pool) < 0)
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3651
	bool is_last;
T
Tejun Heo 已提交
3652 3653 3654 3655

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3656
	/*
3657
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3658 3659 3660
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3661
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3662
	list_del_rcu(&pwq->pwqs_node);
3663
	is_last = list_empty(&wq->pwqs);
3664
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3665

3666
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3667
	put_unbound_pool(pool);
3668 3669
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3670 3671 3672 3673 3674 3675
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3676 3677
	if (is_last) {
		free_workqueue_attrs(wq->unbound_attrs);
T
Tejun Heo 已提交
3678
		kfree(wq);
3679
	}
T
Tejun Heo 已提交
3680 3681
}

3682
/**
3683
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3684 3685
 * @pwq: target pool_workqueue
 *
3686 3687 3688
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3689
 */
3690
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3691
{
3692 3693 3694 3695
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3696
	lockdep_assert_held(&wq->mutex);
3697 3698 3699 3700 3701

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3702
	spin_lock_irq(&pwq->pool->lock);
3703 3704 3705

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3706

3707 3708 3709
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3710 3711 3712 3713 3714 3715

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3716 3717 3718 3719
	} else {
		pwq->max_active = 0;
	}

3720
	spin_unlock_irq(&pwq->pool->lock);
3721 3722
}

3723
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3724 3725
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3726 3727 3728
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3729 3730
	memset(pwq, 0, sizeof(*pwq));

3731 3732 3733
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3734
	pwq->refcnt = 1;
3735
	INIT_LIST_HEAD(&pwq->delayed_works);
3736
	INIT_LIST_HEAD(&pwq->pwqs_node);
3737
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3738
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3739
}
3740

3741
/* sync @pwq with the current state of its associated wq and link it */
3742
static void link_pwq(struct pool_workqueue *pwq)
3743 3744 3745 3746
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3747

3748 3749 3750 3751
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3752 3753
	/*
	 * Set the matching work_color.  This is synchronized with
3754
	 * wq->mutex to avoid confusing flush_workqueue().
3755
	 */
3756
	pwq->work_color = wq->work_color;
3757 3758 3759 3760 3761

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3762
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3763
}
3764

3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3778
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3779 3780 3781
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3782
	}
3783

3784 3785
	init_pwq(pwq, wq, pool);
	return pwq;
3786 3787
}

3788 3789 3790 3791 3792 3793 3794
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3795
		kmem_cache_free(pwq_cache, pwq);
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
 * calculation.  The result is stored in @cpumask.  This function returns
 * %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3823
	if (!wq_numa_enabled || attrs->no_numa)
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3860 3861 3862 3863 3864
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3865 3866 3867 3868 3869 3870
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3871 3872 3873 3874 3875 3876 3877
 *
 * Performs GFP_KERNEL allocations.  Returns 0 on success and -errno on
 * failure.
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3878 3879
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3880
	int node, ret;
3881

3882
	/* only unbound workqueues can change attributes */
3883 3884 3885
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3886 3887 3888 3889
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3890
	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3891
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3892 3893
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3894 3895
		goto enomem;

3896
	/* make a copy of @attrs and sanitize it */
3897 3898 3899
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3914
	mutex_lock(&wq_pool_mutex);
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

3936
	mutex_unlock(&wq_pool_mutex);
3937

3938
	/* all pwqs have been created successfully, let's install'em */
3939
	mutex_lock(&wq->mutex);
3940

3941
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3942 3943

	/* save the previous pwq and install the new one */
3944
	for_each_node(node)
3945 3946 3947 3948 3949
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
3950 3951

	mutex_unlock(&wq->mutex);
3952

3953 3954 3955 3956 3957 3958
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
3959 3960 3961
	ret = 0;
	/* fall through */
out_free:
3962
	free_workqueue_attrs(tmp_attrs);
3963
	free_workqueue_attrs(new_attrs);
3964
	kfree(pwq_tbl);
3965
	return ret;
3966

3967 3968 3969 3970 3971 3972 3973
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
3974
enomem:
3975 3976
	ret = -ENOMEM;
	goto out_free;
3977 3978
}

3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
4024 4025
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
	 * wq's, the default pwq should be used.  If @pwq is already the
	 * default one, nothing to do; otherwise, install the default one.
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
		if (pwq == wq->dfl_pwq)
			goto out_unlock;
		else
			goto use_dfl_pwq;
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
		pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			   wq->name);
		goto out_unlock;
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

4077
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
4078
{
4079
	bool highpri = wq->flags & WQ_HIGHPRI;
4080 4081 4082
	int cpu;

	if (!(wq->flags & WQ_UNBOUND)) {
4083 4084
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
4085 4086 4087
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
4088 4089
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
4090
			struct worker_pool *cpu_pools =
4091
				per_cpu(cpu_worker_pools, cpu);
4092

4093 4094 4095
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
4096
			link_pwq(pwq);
4097
			mutex_unlock(&wq->mutex);
4098
		}
4099
		return 0;
4100
	} else {
4101
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4102
	}
T
Tejun Heo 已提交
4103 4104
}

4105 4106
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
4107
{
4108 4109 4110
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4111 4112
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4113

4114
	return clamp_val(max_active, 1, lim);
4115 4116
}

4117
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4118 4119 4120
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4121
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4122
{
4123
	size_t tbl_size = 0;
4124
	va_list args;
L
Linus Torvalds 已提交
4125
	struct workqueue_struct *wq;
4126
	struct pool_workqueue *pwq;
4127

4128 4129 4130 4131
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

4132
	/* allocate wq and format name */
4133 4134 4135 4136
	if (flags & WQ_UNBOUND)
		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4137
	if (!wq)
4138
		return NULL;
4139

4140 4141 4142 4143 4144 4145
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4146 4147
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4148
	va_end(args);
L
Linus Torvalds 已提交
4149

4150
	max_active = max_active ?: WQ_DFL_ACTIVE;
4151
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4152

4153
	/* init wq */
4154
	wq->flags = flags;
4155
	wq->saved_max_active = max_active;
4156
	mutex_init(&wq->mutex);
4157
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4158
	INIT_LIST_HEAD(&wq->pwqs);
4159 4160
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4161
	INIT_LIST_HEAD(&wq->maydays);
4162

4163
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4164
	INIT_LIST_HEAD(&wq->list);
4165

4166
	if (alloc_and_link_pwqs(wq) < 0)
4167
		goto err_free_wq;
T
Tejun Heo 已提交
4168

4169 4170 4171 4172 4173
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4174 4175
		struct worker *rescuer;

4176
		rescuer = alloc_worker();
4177
		if (!rescuer)
4178
			goto err_destroy;
4179

4180 4181
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4182
					       wq->name);
4183 4184 4185 4186
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4187

4188
		wq->rescuer = rescuer;
4189
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4190
		wake_up_process(rescuer->task);
4191 4192
	}

4193 4194 4195
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4196
	/*
4197 4198 4199
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4200
	 */
4201
	mutex_lock(&wq_pool_mutex);
4202

4203
	mutex_lock(&wq->mutex);
4204 4205
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4206
	mutex_unlock(&wq->mutex);
4207

T
Tejun Heo 已提交
4208
	list_add(&wq->list, &workqueues);
4209

4210
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4211

4212
	return wq;
4213 4214

err_free_wq:
4215
	free_workqueue_attrs(wq->unbound_attrs);
4216 4217 4218 4219
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4220
	return NULL;
4221
}
4222
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4223

4224 4225 4226 4227 4228 4229 4230 4231
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4232
	struct pool_workqueue *pwq;
4233
	int node;
4234

4235 4236
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4237

4238
	/* sanity checks */
4239
	mutex_lock(&wq->mutex);
4240
	for_each_pwq(pwq, wq) {
4241 4242
		int i;

4243 4244
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4245
				mutex_unlock(&wq->mutex);
4246
				return;
4247 4248 4249
			}
		}

4250
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4251
		    WARN_ON(pwq->nr_active) ||
4252
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4253
			mutex_unlock(&wq->mutex);
4254
			return;
4255
		}
4256
	}
4257
	mutex_unlock(&wq->mutex);
4258

4259 4260 4261 4262
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4263
	mutex_lock(&wq_pool_mutex);
4264
	list_del_init(&wq->list);
4265
	mutex_unlock(&wq_pool_mutex);
4266

4267 4268
	workqueue_sysfs_unregister(wq);

4269
	if (wq->rescuer) {
4270
		kthread_stop(wq->rescuer->task);
4271
		kfree(wq->rescuer);
4272
		wq->rescuer = NULL;
4273 4274
	}

T
Tejun Heo 已提交
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4285 4286
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4287
		 */
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4300
		put_pwq_unlocked(pwq);
4301
	}
4302 4303 4304
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4317
	struct pool_workqueue *pwq;
4318

4319 4320 4321 4322
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4323
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4324

4325
	mutex_lock(&wq->mutex);
4326 4327 4328

	wq->saved_max_active = max_active;

4329 4330
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4331

4332
	mutex_unlock(&wq->mutex);
4333
}
4334
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4335

4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4346
	return worker && worker->rescue_wq;
4347 4348
}

4349
/**
4350 4351 4352
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4353
 *
4354 4355 4356
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4357
 *
4358 4359 4360 4361 4362 4363
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4364 4365
 * RETURNS:
 * %true if congested, %false otherwise.
4366
 */
4367
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4368
{
4369
	struct pool_workqueue *pwq;
4370 4371
	bool ret;

4372
	rcu_read_lock_sched();
4373

4374 4375 4376
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4377 4378 4379
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4380
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4381

4382
	ret = !list_empty(&pwq->delayed_works);
4383
	rcu_read_unlock_sched();
4384 4385

	return ret;
L
Linus Torvalds 已提交
4386
}
4387
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4388

4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4401
{
4402
	struct worker_pool *pool;
4403 4404
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4405

4406 4407
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4408

4409 4410
	local_irq_save(flags);
	pool = get_work_pool(work);
4411
	if (pool) {
4412
		spin_lock(&pool->lock);
4413 4414
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4415
		spin_unlock(&pool->lock);
4416
	}
4417
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4418

4419
	return ret;
L
Linus Torvalds 已提交
4420
}
4421
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4422

4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4500 4501 4502
/*
 * CPU hotplug.
 *
4503
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4504
 * are a lot of assumptions on strong associations among work, pwq and
4505
 * pool which make migrating pending and scheduled works very
4506
 * difficult to implement without impacting hot paths.  Secondly,
4507
 * worker pools serve mix of short, long and very long running works making
4508 4509
 * blocked draining impractical.
 *
4510
 * This is solved by allowing the pools to be disassociated from the CPU
4511 4512
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4513
 */
L
Linus Torvalds 已提交
4514

4515
static void wq_unbind_fn(struct work_struct *work)
4516
{
4517
	int cpu = smp_processor_id();
4518
	struct worker_pool *pool;
4519
	struct worker *worker;
4520
	int wi;
4521

4522
	for_each_cpu_worker_pool(pool, cpu) {
4523
		WARN_ON_ONCE(cpu != smp_processor_id());
4524

4525
		mutex_lock(&pool->manager_mutex);
4526
		spin_lock_irq(&pool->lock);
4527

4528
		/*
4529
		 * We've blocked all manager operations.  Make all workers
4530 4531 4532 4533 4534
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4535
		for_each_pool_worker(worker, wi, pool)
4536
			worker->flags |= WORKER_UNBOUND;
4537

4538
		pool->flags |= POOL_DISASSOCIATED;
4539

4540
		spin_unlock_irq(&pool->lock);
4541
		mutex_unlock(&pool->manager_mutex);
4542

4543 4544 4545 4546 4547 4548 4549
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4550

4551 4552 4553 4554 4555 4556 4557 4558
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4559
		atomic_set(&pool->nr_running, 0);
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4570 4571
}

T
Tejun Heo 已提交
4572 4573 4574 4575
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4576
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4577 4578 4579
 */
static void rebind_workers(struct worker_pool *pool)
{
4580 4581
	struct worker *worker;
	int wi;
T
Tejun Heo 已提交
4582 4583 4584

	lockdep_assert_held(&pool->manager_mutex);

4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4595

4596
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4597

4598 4599
	for_each_pool_worker(worker, wi, pool) {
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4600 4601

		/*
4602 4603 4604 4605 4606 4607
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4608
		 */
4609 4610
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4611

4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4631
	}
4632 4633

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4634 4635
}

4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;
	int wi;

	lockdep_assert_held(&pool->manager_mutex);

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4669 4670 4671 4672
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4673
static int workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4674 4675
					       unsigned long action,
					       void *hcpu)
4676
{
4677
	int cpu = (unsigned long)hcpu;
4678
	struct worker_pool *pool;
4679
	struct workqueue_struct *wq;
4680
	int pi;
4681

T
Tejun Heo 已提交
4682
	switch (action & ~CPU_TASKS_FROZEN) {
4683
	case CPU_UP_PREPARE:
4684
		for_each_cpu_worker_pool(pool, cpu) {
4685 4686
			if (pool->nr_workers)
				continue;
4687
			if (create_and_start_worker(pool) < 0)
4688
				return NOTIFY_BAD;
4689
		}
T
Tejun Heo 已提交
4690
		break;
4691

4692 4693
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4694
		mutex_lock(&wq_pool_mutex);
4695 4696

		for_each_pool(pool, pi) {
4697
			mutex_lock(&pool->manager_mutex);
4698

4699 4700 4701 4702
			if (pool->cpu == cpu) {
				spin_lock_irq(&pool->lock);
				pool->flags &= ~POOL_DISASSOCIATED;
				spin_unlock_irq(&pool->lock);
4703

4704 4705 4706 4707
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4708

4709
			mutex_unlock(&pool->manager_mutex);
4710
		}
4711

4712 4713 4714 4715
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4716
		mutex_unlock(&wq_pool_mutex);
4717
		break;
4718
	}
4719 4720 4721 4722 4723 4724 4725
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4726
static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4727 4728 4729
						 unsigned long action,
						 void *hcpu)
{
4730
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4731
	struct work_struct unbind_work;
4732
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4733

4734 4735
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4736
		/* unbinding per-cpu workers should happen on the local CPU */
4737
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4738
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4739 4740 4741 4742 4743 4744 4745 4746

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4747 4748
		flush_work(&unbind_work);
		break;
4749 4750 4751 4752
	}
	return NOTIFY_OK;
}

4753
#ifdef CONFIG_SMP
4754

4755
struct work_for_cpu {
4756
	struct work_struct work;
4757 4758 4759 4760 4761
	long (*fn)(void *);
	void *arg;
	long ret;
};

4762
static void work_for_cpu_fn(struct work_struct *work)
4763
{
4764 4765
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4766 4767 4768 4769 4770 4771 4772 4773 4774
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4775 4776
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
4777
 * The caller must not hold any locks which would prevent @fn from completing.
4778
 */
4779
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4780
{
4781
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4782

4783 4784
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
4785 4786 4787 4788 4789 4790 4791 4792

	/*
	 * The work item is on-stack and can't lead to deadlock through
	 * flushing.  Use __flush_work() to avoid spurious lockdep warnings
	 * when work_on_cpu()s are nested.
	 */
	__flush_work(&wfc.work);

4793 4794 4795 4796 4797
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4798 4799 4800 4801 4802
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4803
 * Start freezing workqueues.  After this function returns, all freezable
4804
 * workqueues will queue new works to their delayed_works list instead of
4805
 * pool->worklist.
4806 4807
 *
 * CONTEXT:
4808
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4809 4810 4811
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4812
	struct worker_pool *pool;
4813 4814
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4815
	int pi;
4816

4817
	mutex_lock(&wq_pool_mutex);
4818

4819
	WARN_ON_ONCE(workqueue_freezing);
4820 4821
	workqueue_freezing = true;

4822
	/* set FREEZING */
4823
	for_each_pool(pool, pi) {
4824
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4825 4826
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4827
		spin_unlock_irq(&pool->lock);
4828
	}
4829

4830
	list_for_each_entry(wq, &workqueues, list) {
4831
		mutex_lock(&wq->mutex);
4832 4833
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4834
		mutex_unlock(&wq->mutex);
4835
	}
4836

4837
	mutex_unlock(&wq_pool_mutex);
4838 4839 4840
}

/**
4841
 * freeze_workqueues_busy - are freezable workqueues still busy?
4842 4843 4844 4845 4846
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4847
 * Grabs and releases wq_pool_mutex.
4848 4849
 *
 * RETURNS:
4850 4851
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4852 4853 4854 4855
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4856 4857
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4858

4859
	mutex_lock(&wq_pool_mutex);
4860

4861
	WARN_ON_ONCE(!workqueue_freezing);
4862

4863 4864 4865
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4866 4867 4868 4869
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4870
		rcu_read_lock_sched();
4871
		for_each_pwq(pwq, wq) {
4872
			WARN_ON_ONCE(pwq->nr_active < 0);
4873
			if (pwq->nr_active) {
4874
				busy = true;
4875
				rcu_read_unlock_sched();
4876 4877 4878
				goto out_unlock;
			}
		}
4879
		rcu_read_unlock_sched();
4880 4881
	}
out_unlock:
4882
	mutex_unlock(&wq_pool_mutex);
4883 4884 4885 4886 4887 4888 4889
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4890
 * frozen works are transferred to their respective pool worklists.
4891 4892
 *
 * CONTEXT:
4893
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4894 4895 4896
 */
void thaw_workqueues(void)
{
4897 4898 4899
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
4900
	int pi;
4901

4902
	mutex_lock(&wq_pool_mutex);
4903 4904 4905 4906

	if (!workqueue_freezing)
		goto out_unlock;

4907
	/* clear FREEZING */
4908
	for_each_pool(pool, pi) {
4909
		spin_lock_irq(&pool->lock);
4910 4911
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
4912
		spin_unlock_irq(&pool->lock);
4913
	}
4914

4915 4916
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4917
		mutex_lock(&wq->mutex);
4918 4919
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4920
		mutex_unlock(&wq->mutex);
4921 4922 4923 4924
	}

	workqueue_freezing = false;
out_unlock:
4925
	mutex_unlock(&wq_pool_mutex);
4926 4927 4928
}
#endif /* CONFIG_FREEZER */

4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	/* determine NUMA pwq table len - highest node id + 1 */
	for_each_node(node)
		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);

	if (num_possible_nodes() <= 1)
		return;

4941 4942 4943 4944 4945
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

4946 4947 4948
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

4949 4950 4951 4952 4953 4954 4955 4956 4957
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
	BUG_ON(!tbl);

	for_each_node(node)
4958 4959
		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
				node_online(node) ? node : NUMA_NO_NODE));
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

4975
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4976
{
T
Tejun Heo 已提交
4977 4978
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4979

4980 4981
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4982
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
4983

4984 4985 4986 4987
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4988
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4989
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4990

4991 4992
	wq_numa_init();

4993
	/* initialize CPU pools */
4994
	for_each_possible_cpu(cpu) {
4995
		struct worker_pool *pool;
4996

T
Tejun Heo 已提交
4997
		i = 0;
4998
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4999
			BUG_ON(init_worker_pool(pool));
5000
			pool->cpu = cpu;
5001
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
5002
			pool->attrs->nice = std_nice[i++];
5003
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
5004

T
Tejun Heo 已提交
5005
			/* alloc pool ID */
5006
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
5007
			BUG_ON(worker_pool_assign_id(pool));
5008
			mutex_unlock(&wq_pool_mutex);
5009
		}
5010 5011
	}

5012
	/* create the initial worker */
5013
	for_each_online_cpu(cpu) {
5014
		struct worker_pool *pool;
5015

5016
		for_each_cpu_worker_pool(pool, cpu) {
5017
			pool->flags &= ~POOL_DISASSOCIATED;
5018
			BUG_ON(create_and_start_worker(pool) < 0);
5019
		}
5020 5021
	}

5022 5023 5024 5025 5026 5027 5028 5029 5030
	/* create default unbound wq attrs */
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
	}

5031
	system_wq = alloc_workqueue("events", 0, 0);
5032
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5033
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5034 5035
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5036 5037
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5038 5039 5040 5041 5042
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5043
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5044 5045 5046
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
5047
	return 0;
L
Linus Torvalds 已提交
5048
}
5049
early_initcall(init_workqueues);