sched_fair.c 107.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
A
Arjan van de Ven 已提交
25

26
/*
27
 * Targeted preemption latency for CPU-bound tasks:
28
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
29
 *
30
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
31 32 33
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
34
 *
I
Ingo Molnar 已提交
35 36
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
37
 */
38 39
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
40

41 42 43 44 45 46 47 48 49 50 51 52
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

53
/*
54
 * Minimal preemption granularity for CPU-bound tasks:
55
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
56
 */
57 58
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
59 60

/*
61 62
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
63
static unsigned int sched_nr_latency = 8;
64 65

/*
66
 * After fork, child runs first. If set to 0 (default) then
67
 * parent will (try to) run first.
68
 */
69
unsigned int sysctl_sched_child_runs_first __read_mostly;
70

71 72 73 74 75 76 77 78
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

79 80
/*
 * SCHED_OTHER wake-up granularity.
81
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 83 84 85 86
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
87
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89

90 91
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

92 93 94 95 96 97 98
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

99 100
static const struct sched_class fair_sched_class;

101 102 103 104
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

105
#ifdef CONFIG_FAIR_GROUP_SCHED
106

107
/* cpu runqueue to which this cfs_rq is attached */
108 109
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
110
	return cfs_rq->rq;
111 112
}

113 114
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
115

116 117 118 119 120 121 122 123
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

153 154 155
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
156 157 158 159 160 161 162 163 164 165 166 167
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
168
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
169
		}
170 171 172 173 174 175 176 177 178 179 180 181 182

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

245 246 247 248 249 250
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
251

252 253 254
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
255 256 257 258
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
259 260
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
261

P
Peter Zijlstra 已提交
262
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
263
{
P
Peter Zijlstra 已提交
264
	return &task_rq(p)->cfs;
265 266
}

P
Peter Zijlstra 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

286 287 288 289 290 291 292 293
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

308 309 310 311 312
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
313 314
#endif	/* CONFIG_FAIR_GROUP_SCHED */

315 316 317 318 319

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

320
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
321
{
322 323
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
324 325 326 327 328
		min_vruntime = vruntime;

	return min_vruntime;
}

329
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
330 331 332 333 334 335 336 337
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

338 339 340 341 342 343
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

344
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
345
{
346
	return se->vruntime - cfs_rq->min_vruntime;
347 348
}

349 350 351 352 353 354 355 356 357 358 359 360
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
361
		if (!cfs_rq->curr)
362 363 364 365 366 367 368 369
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
}

370 371 372
/*
 * Enqueue an entity into the rb-tree:
 */
373
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
374 375 376 377
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
378
	s64 key = entity_key(cfs_rq, se);
379 380 381 382 383 384 385 386 387 388 389 390
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
391
		if (key < entity_key(cfs_rq, entry)) {
392 393 394 395 396 397 398 399 400 401 402
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
403
	if (leftmost)
I
Ingo Molnar 已提交
404
		cfs_rq->rb_leftmost = &se->run_node;
405 406 407 408 409

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

410
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
411
{
P
Peter Zijlstra 已提交
412 413 414 415 416 417
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
418

419 420 421 422 423
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
424 425 426 427 428 429
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
430 431
}

432
static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
433
{
434
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
435

436 437
	if (!last)
		return NULL;
438 439

	return rb_entry(last, struct sched_entity, run_node);
440 441
}

442 443 444 445
/**************************************************************
 * Scheduling class statistics methods:
 */

446
#ifdef CONFIG_SCHED_DEBUG
447
int sched_proc_update_handler(struct ctl_table *table, int write,
448
		void __user *buffer, size_t *lenp,
449 450
		loff_t *ppos)
{
451
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
452
	int factor = get_update_sysctl_factor();
453 454 455 456 457 458 459

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

460 461 462 463 464 465 466
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

467 468 469
	return 0;
}
#endif
470

471
/*
472
 * delta /= w
473 474 475 476
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
477 478
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
479 480 481 482

	return delta;
}

483 484 485 486 487 488 489 490
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
491 492 493
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
494
	unsigned long nr_latency = sched_nr_latency;
495 496

	if (unlikely(nr_running > nr_latency)) {
497
		period = sysctl_sched_min_granularity;
498 499 500 501 502 503
		period *= nr_running;
	}

	return period;
}

504 505 506 507
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
508
 * s = p*P[w/rw]
509
 */
P
Peter Zijlstra 已提交
510
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
511
{
M
Mike Galbraith 已提交
512
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
513

M
Mike Galbraith 已提交
514
	for_each_sched_entity(se) {
L
Lin Ming 已提交
515
		struct load_weight *load;
516
		struct load_weight lw;
L
Lin Ming 已提交
517 518 519

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
520

M
Mike Galbraith 已提交
521
		if (unlikely(!se->on_rq)) {
522
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
523 524 525 526 527 528 529

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
530 531
}

532
/*
533
 * We calculate the vruntime slice of a to be inserted task
534
 *
535
 * vs = s/w
536
 */
537
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
538
{
539
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
540 541
}

542
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
543 544
static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta);

545 546 547 548 549
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
550 551
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
552
{
553
	unsigned long delta_exec_weighted;
554

555 556
	schedstat_set(curr->statistics.exec_max,
		      max((u64)delta_exec, curr->statistics.exec_max));
557 558

	curr->sum_exec_runtime += delta_exec;
559
	schedstat_add(cfs_rq, exec_clock, delta_exec);
560
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
561

I
Ingo Molnar 已提交
562
	curr->vruntime += delta_exec_weighted;
563
	update_min_vruntime(cfs_rq);
564

P
Peter Zijlstra 已提交
565
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
566 567
	cfs_rq->load_unacc_exec_time += delta_exec;
#endif
568 569
}

570
static void update_curr(struct cfs_rq *cfs_rq)
571
{
572
	struct sched_entity *curr = cfs_rq->curr;
573
	u64 now = rq_of(cfs_rq)->clock_task;
574 575 576 577 578 579 580 581 582 583
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
584
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
585 586
	if (!delta_exec)
		return;
587

I
Ingo Molnar 已提交
588 589
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
590 591 592 593

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

594
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
595
		cpuacct_charge(curtask, delta_exec);
596
		account_group_exec_runtime(curtask, delta_exec);
597
	}
598 599 600
}

static inline void
601
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
602
{
603
	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
604 605 606 607 608
}

/*
 * Task is being enqueued - update stats:
 */
609
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
610 611 612 613 614
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
615
	if (se != cfs_rq->curr)
616
		update_stats_wait_start(cfs_rq, se);
617 618 619
}

static void
620
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
621
{
622 623 624 625 626
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
			rq_of(cfs_rq)->clock - se->statistics.wait_start));
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
			rq_of(cfs_rq)->clock - se->statistics.wait_start);
627 628 629
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
630
			rq_of(cfs_rq)->clock - se->statistics.wait_start);
631 632
	}
#endif
633
	schedstat_set(se->statistics.wait_start, 0);
634 635 636
}

static inline void
637
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
638 639 640 641 642
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
643
	if (se != cfs_rq->curr)
644
		update_stats_wait_end(cfs_rq, se);
645 646 647 648 649 650
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
651
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
652 653 654 655
{
	/*
	 * We are starting a new run period:
	 */
656
	se->exec_start = rq_of(cfs_rq)->clock_task;
657 658 659 660 661 662
}

/**************************************************
 * Scheduling class queueing methods:
 */

663 664 665 666 667 668 669 670 671 672 673 674 675
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

676 677 678 679
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
680 681
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
682
	if (entity_is_task(se)) {
683
		add_cfs_task_weight(cfs_rq, se->load.weight);
684 685
		list_add(&se->group_node, &cfs_rq->tasks);
	}
686 687 688 689 690 691 692
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
693 694
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
695
	if (entity_is_task(se)) {
696
		add_cfs_task_weight(cfs_rq, -se->load.weight);
697 698
		list_del_init(&se->group_node);
	}
699 700 701
	cfs_rq->nr_running--;
}

P
Peter Zijlstra 已提交
702
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
					    int global_update)
{
	struct task_group *tg = cfs_rq->tg;
	long load_avg;

	load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
	load_avg -= cfs_rq->load_contribution;

	if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
		atomic_add(load_avg, &tg->load_weight);
		cfs_rq->load_contribution += load_avg;
	}
}

static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
P
Peter Zijlstra 已提交
719
{
720
	u64 period = sysctl_sched_shares_window;
P
Peter Zijlstra 已提交
721
	u64 now, delta;
722
	unsigned long load = cfs_rq->load.weight;
P
Peter Zijlstra 已提交
723 724 725 726 727 728 729

	if (!cfs_rq)
		return;

	now = rq_of(cfs_rq)->clock;
	delta = now - cfs_rq->load_stamp;

730 731 732 733 734 735 736
	/* truncate load history at 4 idle periods */
	if (cfs_rq->load_stamp > cfs_rq->load_last &&
	    now - cfs_rq->load_last > 4 * period) {
		cfs_rq->load_period = 0;
		cfs_rq->load_avg = 0;
	}

P
Peter Zijlstra 已提交
737
	cfs_rq->load_stamp = now;
738
	cfs_rq->load_unacc_exec_time = 0;
P
Peter Zijlstra 已提交
739
	cfs_rq->load_period += delta;
740 741 742 743
	if (load) {
		cfs_rq->load_last = now;
		cfs_rq->load_avg += delta * load;
	}
P
Peter Zijlstra 已提交
744

745 746 747 748 749
	/* consider updating load contribution on each fold or truncate */
	if (global_update || cfs_rq->load_period > period
	    || !cfs_rq->load_period)
		update_cfs_rq_load_contribution(cfs_rq, global_update);

P
Peter Zijlstra 已提交
750 751 752 753 754 755 756 757 758 759
	while (cfs_rq->load_period > period) {
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (cfs_rq->load_period));
		cfs_rq->load_period /= 2;
		cfs_rq->load_avg /= 2;
	}
760

761 762
	if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
		list_del_leaf_cfs_rq(cfs_rq);
P
Peter Zijlstra 已提交
763 764 765 766 767
}

static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
768 769 770 771
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
772
		account_entity_dequeue(cfs_rq, se);
773
	}
P
Peter Zijlstra 已提交
774 775 776 777 778 779 780

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

781
static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
P
Peter Zijlstra 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794
{
	struct task_group *tg;
	struct sched_entity *se;
	long load_weight, load, shares;

	if (!cfs_rq)
		return;

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
	if (!se)
		return;

795
	load = cfs_rq->load.weight + weight_delta;
P
Peter Zijlstra 已提交
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811

	load_weight = atomic_read(&tg->load_weight);
	load_weight -= cfs_rq->load_contribution;
	load_weight += load;

	shares = (tg->shares * load);
	if (load_weight)
		shares /= load_weight;

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	reweight_entity(cfs_rq_of(se), se, shares);
}
812 813 814 815 816 817 818 819

static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
		update_cfs_load(cfs_rq, 0);
		update_cfs_shares(cfs_rq, 0);
	}
}
P
Peter Zijlstra 已提交
820
#else /* CONFIG_FAIR_GROUP_SCHED */
821
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
P
Peter Zijlstra 已提交
822 823 824
{
}

825
static inline void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
P
Peter Zijlstra 已提交
826 827
{
}
828 829 830 831

static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
{
}
P
Peter Zijlstra 已提交
832 833
#endif /* CONFIG_FAIR_GROUP_SCHED */

834
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
835 836
{
#ifdef CONFIG_SCHEDSTATS
837 838 839 840 841
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

842 843
	if (se->statistics.sleep_start) {
		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
844 845 846 847

		if ((s64)delta < 0)
			delta = 0;

848 849
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
850

851 852
		se->statistics.sleep_start = 0;
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
853

854
		if (tsk) {
855
			account_scheduler_latency(tsk, delta >> 10, 1);
856 857
			trace_sched_stat_sleep(tsk, delta);
		}
858
	}
859 860
	if (se->statistics.block_start) {
		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
861 862 863 864

		if ((s64)delta < 0)
			delta = 0;

865 866
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
867

868 869
		se->statistics.block_start = 0;
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
870

871
		if (tsk) {
872
			if (tsk->in_iowait) {
873 874
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
875
				trace_sched_stat_iowait(tsk, delta);
876 877
			}

878 879 880 881 882 883 884 885 886 887 888
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
889
		}
890 891 892 893
	}
#endif
}

P
Peter Zijlstra 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

907 908 909
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
910
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
911

912 913 914 915 916 917
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
918
	if (initial && sched_feat(START_DEBIT))
919
		vruntime += sched_vslice(cfs_rq, se);
920

921
	/* sleeps up to a single latency don't count. */
922
	if (!initial) {
923
		unsigned long thresh = sysctl_sched_latency;
924

925 926 927 928 929 930
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
931

932
		vruntime -= thresh;
933 934
	}

935 936 937
	/* ensure we never gain time by being placed backwards. */
	vruntime = max_vruntime(se->vruntime, vruntime);

P
Peter Zijlstra 已提交
938
	se->vruntime = vruntime;
939 940
}

941
static void
942
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
943
{
944 945 946 947
	/*
	 * Update the normalized vruntime before updating min_vruntime
	 * through callig update_curr().
	 */
948
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
949 950
		se->vruntime += cfs_rq->min_vruntime;

951
	/*
952
	 * Update run-time statistics of the 'current'.
953
	 */
954
	update_curr(cfs_rq);
955
	update_cfs_load(cfs_rq, 0);
956
	update_cfs_shares(cfs_rq, se->load.weight);
P
Peter Zijlstra 已提交
957
	account_entity_enqueue(cfs_rq, se);
958

959
	if (flags & ENQUEUE_WAKEUP) {
960
		place_entity(cfs_rq, se, 0);
961
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
962
	}
963

964
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
965
	check_spread(cfs_rq, se);
966 967
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
968
	se->on_rq = 1;
969 970 971

	if (cfs_rq->nr_running == 1)
		list_add_leaf_cfs_rq(cfs_rq);
972 973
}

P
Peter Zijlstra 已提交
974
static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
975
{
976
	if (!se || cfs_rq->last == se)
P
Peter Zijlstra 已提交
977 978
		cfs_rq->last = NULL;

979
	if (!se || cfs_rq->next == se)
P
Peter Zijlstra 已提交
980 981 982
		cfs_rq->next = NULL;
}

P
Peter Zijlstra 已提交
983 984 985 986 987 988
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	for_each_sched_entity(se)
		__clear_buddies(cfs_rq_of(se), se);
}

989
static void
990
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
991
{
992 993 994 995 996
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

997
	update_stats_dequeue(cfs_rq, se);
998
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
999
#ifdef CONFIG_SCHEDSTATS
1000 1001 1002 1003
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
1004
				se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1005
			if (tsk->state & TASK_UNINTERRUPTIBLE)
1006
				se->statistics.block_start = rq_of(cfs_rq)->clock;
1007
		}
1008
#endif
P
Peter Zijlstra 已提交
1009 1010
	}

P
Peter Zijlstra 已提交
1011
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
1012

1013
	if (se != cfs_rq->curr)
1014
		__dequeue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
1015
	se->on_rq = 0;
1016
	update_cfs_load(cfs_rq, 0);
1017
	account_entity_dequeue(cfs_rq, se);
1018
	update_min_vruntime(cfs_rq);
1019
	update_cfs_shares(cfs_rq, 0);
1020 1021 1022 1023 1024 1025

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
1026
	if (!(flags & DEQUEUE_SLEEP))
1027
		se->vruntime -= cfs_rq->min_vruntime;
1028 1029 1030 1031 1032
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
1033
static void
I
Ingo Molnar 已提交
1034
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1035
{
1036 1037
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
1038
	ideal_runtime = sched_slice(cfs_rq, curr);
1039
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1040
	if (delta_exec > ideal_runtime) {
1041
		resched_task(rq_of(cfs_rq)->curr);
1042 1043 1044 1045 1046
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (!sched_feat(WAKEUP_PREEMPT))
		return;

	if (delta_exec < sysctl_sched_min_granularity)
		return;

	if (cfs_rq->nr_running > 1) {
		struct sched_entity *se = __pick_next_entity(cfs_rq);
		s64 delta = curr->vruntime - se->vruntime;

		if (delta > ideal_runtime)
			resched_task(rq_of(cfs_rq)->curr);
1067
	}
1068 1069
}

1070
static void
1071
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1072
{
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

1084
	update_stats_curr_start(cfs_rq, se);
1085
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
1086 1087 1088 1089 1090 1091
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
1092
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1093
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
1094 1095 1096
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
1097
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
1098 1099
}

1100 1101 1102
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

1103
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1104
{
1105
	struct sched_entity *se = __pick_next_entity(cfs_rq);
1106
	struct sched_entity *left = se;
1107

1108 1109
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;
1110

1111 1112 1113 1114 1115 1116 1117
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
1118 1119

	return se;
1120 1121
}

1122
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1123 1124 1125 1126 1127 1128
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
1129
		update_curr(cfs_rq);
1130

P
Peter Zijlstra 已提交
1131
	check_spread(cfs_rq, prev);
1132
	if (prev->on_rq) {
1133
		update_stats_wait_start(cfs_rq, prev);
1134 1135 1136
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
1137
	cfs_rq->curr = NULL;
1138 1139
}

P
Peter Zijlstra 已提交
1140 1141
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1142 1143
{
	/*
1144
	 * Update run-time statistics of the 'current'.
1145
	 */
1146
	update_curr(cfs_rq);
1147

1148 1149 1150 1151 1152
	/*
	 * Update share accounting for long-running entities.
	 */
	update_entity_shares_tick(cfs_rq);

P
Peter Zijlstra 已提交
1153 1154 1155 1156 1157
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
1158 1159 1160 1161
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
1162 1163 1164 1165 1166 1167 1168 1169
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

1170
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
1171
		check_preempt_tick(cfs_rq, curr);
1172 1173 1174 1175 1176 1177
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
1201
		if (rq->curr != p)
1202
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
1203

1204
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
1205 1206
	}
}
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
1223
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1224 1225 1226 1227
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
1228 1229 1230 1231

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
1232 1233
#endif

1234 1235 1236 1237 1238
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
1239
static void
1240
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1241 1242
{
	struct cfs_rq *cfs_rq;
1243
	struct sched_entity *se = &p->se;
1244 1245

	for_each_sched_entity(se) {
1246
		if (se->on_rq)
1247 1248
			break;
		cfs_rq = cfs_rq_of(se);
1249 1250
		enqueue_entity(cfs_rq, se, flags);
		flags = ENQUEUE_WAKEUP;
1251
	}
P
Peter Zijlstra 已提交
1252

P
Peter Zijlstra 已提交
1253 1254 1255
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

1256
		update_cfs_load(cfs_rq, 0);
1257
		update_cfs_shares(cfs_rq, 0);
P
Peter Zijlstra 已提交
1258 1259
	}

1260
	hrtick_update(rq);
1261 1262 1263 1264 1265 1266 1267
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
1268
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1269 1270
{
	struct cfs_rq *cfs_rq;
1271
	struct sched_entity *se = &p->se;
1272 1273 1274

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1275
		dequeue_entity(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
1276

1277
		/* Don't dequeue parent if it has other entities besides us */
1278
		if (cfs_rq->load.weight)
1279
			break;
1280
		flags |= DEQUEUE_SLEEP;
1281
	}
P
Peter Zijlstra 已提交
1282

P
Peter Zijlstra 已提交
1283 1284 1285
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

1286
		update_cfs_load(cfs_rq, 0);
1287
		update_cfs_shares(cfs_rq, 0);
P
Peter Zijlstra 已提交
1288 1289
	}

1290
	hrtick_update(rq);
1291 1292 1293
}

/*
1294 1295 1296
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
1297
 */
1298
static void yield_task_fair(struct rq *rq)
1299
{
1300 1301 1302
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
1303 1304

	/*
1305 1306 1307 1308 1309
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

P
Peter Zijlstra 已提交
1310 1311
	clear_buddies(cfs_rq, se);

1312
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1313
		update_rq_clock(rq);
1314
		/*
1315
		 * Update run-time statistics of the 'current'.
1316
		 */
D
Dmitry Adamushko 已提交
1317
		update_curr(cfs_rq);
1318 1319 1320 1321 1322

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
1323
	 */
D
Dmitry Adamushko 已提交
1324
	rightmost = __pick_last_entity(cfs_rq);
1325 1326 1327
	/*
	 * Already in the rightmost position?
	 */
1328
	if (unlikely(!rightmost || entity_before(rightmost, se)))
1329 1330 1331 1332
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
1333 1334
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
1335
	 */
1336
	se->vruntime = rightmost->vruntime + 1;
1337 1338
}

1339
#ifdef CONFIG_SMP
1340

1341 1342 1343 1344 1345 1346 1347 1348
static void task_waking_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	se->vruntime -= cfs_rq->min_vruntime;
}

1349
#ifdef CONFIG_FAIR_GROUP_SCHED
1350 1351 1352 1353 1354 1355 1356
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 */
P
Peter Zijlstra 已提交
1357
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
1358
{
P
Peter Zijlstra 已提交
1359
	struct sched_entity *se = tg->se[cpu];
1360 1361 1362 1363

	if (!tg->parent)
		return wl;

P
Peter Zijlstra 已提交
1364
	for_each_sched_entity(se) {
1365
		long S, rw, s, a, b;
P
Peter Zijlstra 已提交
1366 1367

		S = se->my_q->tg->shares;
P
Peter Zijlstra 已提交
1368 1369
		s = se->load.weight;
		rw = se->my_q->load.weight;
1370

1371 1372
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1373

1374 1375 1376 1377 1378
		wl = s*(a-b);

		if (likely(b))
			wl /= b;

1379 1380 1381 1382 1383 1384 1385
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1386 1387
		wg = 0;
	}
1388

P
Peter Zijlstra 已提交
1389
	return wl;
1390
}
P
Peter Zijlstra 已提交
1391

1392
#else
P
Peter Zijlstra 已提交
1393

1394 1395
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1396
{
1397
	return wl;
1398
}
P
Peter Zijlstra 已提交
1399

1400 1401
#endif

1402
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1403
{
1404 1405
	unsigned long this_load, load;
	int idx, this_cpu, prev_cpu;
1406
	unsigned long tl_per_task;
1407
	struct task_group *tg;
1408
	unsigned long weight;
1409
	int balanced;
1410

1411 1412 1413 1414 1415
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
1416

1417 1418 1419 1420 1421
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1422
	rcu_read_lock();
1423 1424 1425 1426
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

1427
		this_load += effective_load(tg, this_cpu, -weight, -weight);
1428 1429
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
1430

1431 1432
	tg = task_group(p);
	weight = p->se.load.weight;
1433

1434 1435
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1436 1437 1438
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
1439 1440 1441 1442
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
	if (this_load) {
		unsigned long this_eff_load, prev_eff_load;

		this_eff_load = 100;
		this_eff_load *= power_of(prev_cpu);
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
		prev_eff_load *= power_of(this_cpu);
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;
1458
	rcu_read_unlock();
1459

1460
	/*
I
Ingo Molnar 已提交
1461 1462 1463
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1464
	 */
1465 1466
	if (sync && balanced)
		return 1;
1467

1468
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1469 1470
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1471 1472 1473
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1474 1475 1476 1477 1478
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
1479
		schedstat_inc(sd, ttwu_move_affine);
1480
		schedstat_inc(p, se.statistics.nr_wakeups_affine);
1481 1482 1483 1484 1485 1486

		return 1;
	}
	return 0;
}

1487 1488 1489 1490 1491
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
1492
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1493
		  int this_cpu, int load_idx)
1494
{
1495
	struct sched_group *idlest = NULL, *group = sd->groups;
1496 1497
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
1498

1499 1500 1501 1502
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
1503

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
1558 1559 1560
		}
	}

1561 1562
	return idlest;
}
1563

1564 1565 1566
/*
 * Try and locate an idle CPU in the sched_domain.
 */
1567
static int select_idle_sibling(struct task_struct *p, int target)
1568 1569 1570
{
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
1571
	struct sched_domain *sd;
1572 1573 1574
	int i;

	/*
1575 1576
	 * If the task is going to be woken-up on this cpu and if it is
	 * already idle, then it is the right target.
1577
	 */
1578 1579 1580 1581 1582 1583 1584 1585
	if (target == cpu && idle_cpu(cpu))
		return cpu;

	/*
	 * If the task is going to be woken-up on the cpu where it previously
	 * ran and if it is currently idle, then it the right target.
	 */
	if (target == prev_cpu && idle_cpu(prev_cpu))
1586
		return prev_cpu;
1587 1588

	/*
1589
	 * Otherwise, iterate the domains and find an elegible idle cpu.
1590
	 */
1591 1592
	for_each_domain(target, sd) {
		if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1593
			break;
1594 1595 1596 1597 1598 1599

		for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
			if (idle_cpu(i)) {
				target = i;
				break;
			}
1600
		}
1601 1602 1603 1604 1605 1606 1607 1608

		/*
		 * Lets stop looking for an idle sibling when we reached
		 * the domain that spans the current cpu and prev_cpu.
		 */
		if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
			break;
1609 1610 1611 1612 1613
	}

	return target;
}

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
1625 1626
static int
select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1627
{
1628
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1629 1630 1631
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
	int new_cpu = cpu;
1632
	int want_affine = 0;
1633
	int want_sd = 1;
1634
	int sync = wake_flags & WF_SYNC;
1635

1636
	if (sd_flag & SD_BALANCE_WAKE) {
1637
		if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1638 1639 1640
			want_affine = 1;
		new_cpu = prev_cpu;
	}
1641 1642

	for_each_domain(cpu, tmp) {
1643 1644 1645
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

1646
		/*
1647 1648
		 * If power savings logic is enabled for a domain, see if we
		 * are not overloaded, if so, don't balance wider.
1649
		 */
P
Peter Zijlstra 已提交
1650
		if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
			unsigned long power = 0;
			unsigned long nr_running = 0;
			unsigned long capacity;
			int i;

			for_each_cpu(i, sched_domain_span(tmp)) {
				power += power_of(i);
				nr_running += cpu_rq(i)->cfs.nr_running;
			}

			capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);

P
Peter Zijlstra 已提交
1663 1664 1665 1666
			if (tmp->flags & SD_POWERSAVINGS_BALANCE)
				nr_running /= 2;

			if (nr_running < capacity)
1667
				want_sd = 0;
1668
		}
1669

1670
		/*
1671 1672
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
1673
		 */
1674 1675 1676 1677
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
			want_affine = 0;
1678 1679
		}

1680 1681 1682
		if (!want_sd && !want_affine)
			break;

1683
		if (!(tmp->flags & sd_flag))
1684 1685
			continue;

1686 1687 1688 1689
		if (want_sd)
			sd = tmp;
	}

1690
	if (affine_sd) {
1691 1692 1693 1694
		if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
			return select_idle_sibling(p, cpu);
		else
			return select_idle_sibling(p, prev_cpu);
1695
	}
1696

1697
	while (sd) {
1698
		int load_idx = sd->forkexec_idx;
1699
		struct sched_group *group;
1700
		int weight;
1701

1702
		if (!(sd->flags & sd_flag)) {
1703 1704 1705
			sd = sd->child;
			continue;
		}
1706

1707 1708
		if (sd_flag & SD_BALANCE_WAKE)
			load_idx = sd->wake_idx;
1709

1710
		group = find_idlest_group(sd, p, cpu, load_idx);
1711 1712 1713 1714
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
1715

1716
		new_cpu = find_idlest_cpu(group, p, cpu);
1717 1718 1719 1720
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
1721
		}
1722 1723 1724

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
1725
		weight = sd->span_weight;
1726 1727
		sd = NULL;
		for_each_domain(cpu, tmp) {
1728
			if (weight <= tmp->span_weight)
1729
				break;
1730
			if (tmp->flags & sd_flag)
1731 1732 1733
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
1734 1735
	}

1736
	return new_cpu;
1737 1738 1739
}
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
1740 1741
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1742 1743 1744 1745
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
1746 1747
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
1757
	 */
M
Mike Galbraith 已提交
1758 1759
	if (unlikely(se->load.weight != NICE_0_LOAD))
		gran = calc_delta_fair(gran, se);
1760 1761 1762 1763

	return gran;
}

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
1786
	gran = wakeup_gran(curr, se);
1787 1788 1789 1790 1791 1792
	if (vdiff > gran)
		return 1;

	return 0;
}

1793 1794
static void set_last_buddy(struct sched_entity *se)
{
1795 1796 1797 1798
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->last = se;
	}
1799 1800 1801 1802
}

static void set_next_buddy(struct sched_entity *se)
{
1803 1804 1805 1806
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->next = se;
	}
1807 1808
}

1809 1810 1811
/*
 * Preempt the current task with a newly woken task if needed:
 */
1812
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1813 1814
{
	struct task_struct *curr = rq->curr;
1815
	struct sched_entity *se = &curr->se, *pse = &p->se;
1816
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1817
	int scale = cfs_rq->nr_running >= sched_nr_latency;
1818

I
Ingo Molnar 已提交
1819 1820 1821
	if (unlikely(se == pse))
		return;

1822
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
M
Mike Galbraith 已提交
1823
		set_next_buddy(pse);
P
Peter Zijlstra 已提交
1824

1825 1826 1827 1828 1829 1830 1831
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 */
	if (test_tsk_need_resched(curr))
		return;

1832
	/*
1833
	 * Batch and idle tasks do not preempt (their preemption is driven by
1834 1835
	 * the tick):
	 */
1836
	if (unlikely(p->policy != SCHED_NORMAL))
1837
		return;
1838

1839
	/* Idle tasks are by definition preempted by everybody. */
1840 1841
	if (unlikely(curr->policy == SCHED_IDLE))
		goto preempt;
1842

1843 1844 1845
	if (!sched_feat(WAKEUP_PREEMPT))
		return;

1846
	update_curr(cfs_rq);
1847
	find_matching_se(&se, &pse);
1848
	BUG_ON(!pse);
1849 1850
	if (wakeup_preempt_entity(se, pse) == 1)
		goto preempt;
1851

1852
	return;
1853

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
1870 1871
}

1872
static struct task_struct *pick_next_task_fair(struct rq *rq)
1873
{
P
Peter Zijlstra 已提交
1874
	struct task_struct *p;
1875 1876 1877
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

1878
	if (!cfs_rq->nr_running)
1879 1880 1881
		return NULL;

	do {
1882
		se = pick_next_entity(cfs_rq);
1883
		set_next_entity(cfs_rq, se);
1884 1885 1886
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1887 1888 1889 1890
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1891 1892 1893 1894 1895
}

/*
 * Account for a descheduled task:
 */
1896
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1897 1898 1899 1900 1901 1902
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1903
		put_prev_entity(cfs_rq, se);
1904 1905 1906
	}
}

1907
#ifdef CONFIG_SMP
1908 1909 1910 1911
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
{
	deactivate_task(src_rq, p, 0);
	set_task_cpu(p, this_cpu);
	activate_task(this_rq, p, 0);
	check_preempt_curr(this_rq, p, 0);
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
		     struct sched_domain *sd, enum cpu_idle_type idle,
		     int *all_pinned)
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1941
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1942 1943 1944 1945 1946
		return 0;
	}
	*all_pinned = 0;

	if (task_running(rq, p)) {
1947
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1948 1949 1950 1951 1952 1953 1954 1955 1956
		return 0;
	}

	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

1957
	tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1958 1959 1960 1961 1962
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
#ifdef CONFIG_SCHEDSTATS
		if (tsk_cache_hot) {
			schedstat_inc(sd, lb_hot_gained[idle]);
1963
			schedstat_inc(p, se.statistics.nr_forced_migrations);
1964 1965 1966 1967 1968 1969
		}
#endif
		return 1;
	}

	if (tsk_cache_hot) {
1970
		schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1971 1972 1973 1974 1975
		return 0;
	}
	return 1;
}

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int
move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct task_struct *p, *n;
	struct cfs_rq *cfs_rq;
	int pinned = 0;

	for_each_leaf_cfs_rq(busiest, cfs_rq) {
		list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {

			if (!can_migrate_task(p, busiest, this_cpu,
						sd, idle, &pinned))
				continue;

			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);
			return 1;
		}
	}

	return 0;
}

2012 2013 2014 2015
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
2016
	      int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
2017 2018 2019
{
	int loops = 0, pulled = 0, pinned = 0;
	long rem_load_move = max_load_move;
2020
	struct task_struct *p, *n;
2021 2022 2023 2024 2025 2026

	if (max_load_move == 0)
		goto out;

	pinned = 1;

2027 2028 2029
	list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
		if (loops++ > sysctl_sched_nr_migrate)
			break;
2030

2031 2032 2033
		if ((p->se.load.weight >> 1) > rem_load_move ||
		    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
			continue;
2034

2035 2036 2037
		pull_task(busiest, p, this_rq, this_cpu);
		pulled++;
		rem_load_move -= p->se.load.weight;
2038 2039

#ifdef CONFIG_PREEMPT
2040 2041 2042 2043 2044 2045 2046
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
		if (idle == CPU_NEWLY_IDLE)
			break;
2047 2048
#endif

2049 2050 2051 2052 2053 2054 2055
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
		if (rem_load_move <= 0)
			break;

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
	}
out:
	/*
	 * Right now, this is one of only two places pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);

	if (all_pinned)
		*all_pinned = pinned;

	return max_load_move - rem_load_move;
}

P
Peter Zijlstra 已提交
2073
#ifdef CONFIG_FAIR_GROUP_SCHED
2074 2075 2076
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
2077
static int update_shares_cpu(struct task_group *tg, int cpu)
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
{
	struct cfs_rq *cfs_rq;
	unsigned long flags;
	struct rq *rq;

	if (!tg->se[cpu])
		return 0;

	rq = cpu_rq(cpu);
	cfs_rq = tg->cfs_rq[cpu];

	raw_spin_lock_irqsave(&rq->lock, flags);

	update_rq_clock(rq);
2092
	update_cfs_load(cfs_rq, 1);
2093 2094 2095 2096 2097

	/*
	 * We need to update shares after updating tg->load_weight in
	 * order to adjust the weight of groups with long running tasks.
	 */
2098
	update_cfs_shares(cfs_rq, 0);
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110

	raw_spin_unlock_irqrestore(&rq->lock, flags);

	return 0;
}

static void update_shares(int cpu)
{
	struct cfs_rq *cfs_rq;
	struct rq *rq = cpu_rq(cpu);

	rcu_read_lock();
2111 2112
	for_each_leaf_cfs_rq(rq, cfs_rq)
		update_shares_cpu(cfs_rq->tg, cpu);
2113 2114 2115
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	long rem_load_move = max_load_move;
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;

	rcu_read_lock();
	update_h_load(busiest_cpu);

	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
		u64 rem_load, moved_load;

		/*
		 * empty group
		 */
		if (!busiest_cfs_rq->task_weight)
			continue;

		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);

		moved_load = balance_tasks(this_rq, this_cpu, busiest,
				rem_load, sd, idle, all_pinned, this_best_prio,
				busiest_cfs_rq);

		if (!moved_load)
			continue;

		moved_load *= busiest_h_load;
		moved_load = div_u64(moved_load, busiest_weight + 1);

		rem_load_move -= moved_load;
		if (rem_load_move < 0)
			break;
	}
	rcu_read_unlock();

	return max_load_move - rem_load_move;
}
#else
2163 2164 2165 2166
static inline void update_shares(int cpu)
{
}

P
Peter Zijlstra 已提交
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
/*
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2191
	unsigned long total_load_moved = 0, load_moved;
2192 2193 2194
	int this_best_prio = this_rq->curr->prio;

	do {
2195
		load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2196 2197
				max_load_move - total_load_moved,
				sd, idle, all_pinned, &this_best_prio);
2198 2199

		total_load_moved += load_moved;
2200 2201 2202 2203 2204 2205 2206 2207 2208

#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
2209 2210 2211 2212

		if (raw_spin_is_contended(&this_rq->lock) ||
				raw_spin_is_contended(&busiest->lock))
			break;
2213
#endif
2214
	} while (load_moved && max_load_move > total_load_moved);
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234

	return total_load_moved > 0;
}

/********** Helpers for find_busiest_group ************************/
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;
2235
	unsigned long this_has_capacity;
2236
	unsigned int  this_idle_cpus;
2237 2238

	/* Statistics of the busiest group */
2239
	unsigned int  busiest_idle_cpus;
2240 2241 2242
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;
2243
	unsigned long busiest_group_capacity;
2244
	unsigned long busiest_has_capacity;
2245
	unsigned int  busiest_group_weight;
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266

	int group_imb; /* Is there imbalance in this sd */
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
#endif
};

/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
2267 2268
	unsigned long idle_cpus;
	unsigned long group_weight;
2269
	int group_imb; /* Is there an imbalance in the group ? */
2270
	int group_has_capacity; /* Is there extra capacity in the group? */
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
};

/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}


#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}

/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{

	if (!sds->power_savings_balance)
		return;

	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;

	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;

	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}

	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
		return;

	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}

/**
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;

	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;

	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;

	return 1;

}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}

static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */


unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return SCHED_LOAD_SCALE;
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
{
2462
	unsigned long weight = sd->span_weight;
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 total, available;

	total = sched_avg_period() + (rq->clock - rq->age_stamp);
2481 2482 2483 2484 2485 2486 2487

	if (unlikely(total < rq->rt_avg)) {
		/* Ensures that power won't end up being negative */
		available = 0;
	} else {
		available = total - rq->rt_avg;
	}
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498

	if (unlikely((s64)total < SCHED_LOAD_SCALE))
		total = SCHED_LOAD_SCALE;

	total >>= SCHED_LOAD_SHIFT;

	return div_u64(available, total);
}

static void update_cpu_power(struct sched_domain *sd, int cpu)
{
2499
	unsigned long weight = sd->span_weight;
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
	unsigned long power = SCHED_LOAD_SCALE;
	struct sched_group *sdg = sd->groups;

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

		power >>= SCHED_LOAD_SHIFT;
	}

2512 2513 2514 2515 2516 2517 2518 2519 2520
	sdg->cpu_power_orig = power;

	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

	power >>= SCHED_LOAD_SHIFT;

2521 2522 2523 2524 2525 2526
	power *= scale_rt_power(cpu);
	power >>= SCHED_LOAD_SHIFT;

	if (!power)
		power = 1;

2527
	cpu_rq(cpu)->cpu_power = power;
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
	sdg->cpu_power = power;
}

static void update_group_power(struct sched_domain *sd, int cpu)
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
	unsigned long power;

	if (!child) {
		update_cpu_power(sd, cpu);
		return;
	}

	power = 0;

	group = child->groups;
	do {
		power += group->cpu_power;
		group = group->next;
	} while (group != child->groups);

	sdg->cpu_power = power;
}

2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
	 * Only siblings can have significantly less than SCHED_LOAD_SCALE
	 */
	if (sd->level != SD_LV_SIBLING)
		return 0;

	/*
	 * If ~90% of the cpu_power is still there, we're good.
	 */
M
Michael Neuling 已提交
2572
	if (group->cpu_power * 32 > group->cpu_power_orig * 29)
2573 2574 2575 2576 2577
		return 1;

	return 0;
}

2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: The sched_domain whose statistics are to be updated.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
static inline void update_sg_lb_stats(struct sched_domain *sd,
			struct sched_group *group, int this_cpu,
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
2597
	unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
2598 2599
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
2600
	unsigned long avg_load_per_task = 0;
2601

2602
	if (local_group)
2603 2604 2605 2606 2607
		balance_cpu = group_first_cpu(group);

	/* Tally up the load of all CPUs in the group */
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
2608
	max_nr_running = 0;
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625

	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);

		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;

		/* Bias balancing toward cpus of our domain */
		if (local_group) {
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
2626
			if (load > max_cpu_load) {
2627
				max_cpu_load = load;
2628 2629
				max_nr_running = rq->nr_running;
			}
2630 2631 2632 2633 2634 2635 2636
			if (min_cpu_load > load)
				min_cpu_load = load;
		}

		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
2637 2638
		if (idle_cpu(i))
			sgs->idle_cpus++;
2639 2640 2641 2642 2643 2644 2645 2646
	}

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
2647 2648 2649 2650 2651 2652
	if (idle != CPU_NEWLY_IDLE && local_group) {
		if (balance_cpu != this_cpu) {
			*balance = 0;
			return;
		}
		update_group_power(sd, this_cpu);
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
	}

	/* Adjust by relative CPU power of the group */
	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
2667 2668
	if (sgs->sum_nr_running)
		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2669

2670
	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
2671 2672
		sgs->group_imb = 1;

2673
	sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2674 2675
	if (!sgs->group_capacity)
		sgs->group_capacity = fix_small_capacity(sd, group);
2676
	sgs->group_weight = group->group_weight;
2677 2678 2679

	if (sgs->group_capacity > sgs->sum_nr_running)
		sgs->group_has_capacity = 1;
2680 2681
}

2682 2683 2684 2685 2686
/**
 * update_sd_pick_busiest - return 1 on busiest group
 * @sd: sched_domain whose statistics are to be checked
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
2687 2688
 * @sgs: sched_group statistics
 * @this_cpu: the current cpu
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
 */
static bool update_sd_pick_busiest(struct sched_domain *sd,
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
				   struct sg_lb_stats *sgs,
				   int this_cpu)
{
	if (sgs->avg_load <= sds->max_load)
		return false;

	if (sgs->sum_nr_running > sgs->group_capacity)
		return true;

	if (sgs->group_imb)
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
	if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
	    this_cpu < group_first_cpu(sg)) {
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

2725 2726 2727 2728 2729
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
2730
 * @sd_idle: Idle status of the sched_domain containing sg.
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
 */
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
{
	struct sched_domain *child = sd->child;
2741
	struct sched_group *sg = sd->groups;
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
	struct sg_lb_stats sgs;
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

	init_sd_power_savings_stats(sd, sds, idle);
	load_idx = get_sd_load_idx(sd, idle);

	do {
		int local_group;

2754
		local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
2755
		memset(&sgs, 0, sizeof(sgs));
2756
		update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
2757 2758
				local_group, cpus, balance, &sgs);

P
Peter Zijlstra 已提交
2759
		if (local_group && !(*balance))
2760 2761 2762
			return;

		sds->total_load += sgs.group_load;
2763
		sds->total_pwr += sg->cpu_power;
2764 2765 2766

		/*
		 * In case the child domain prefers tasks go to siblings
2767
		 * first, lower the sg capacity to one so that we'll try
2768 2769 2770 2771 2772 2773
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
		 * these excess tasks, i.e. nr_running < group_capacity. The
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
2774
		 */
2775
		if (prefer_sibling && !local_group && sds->this_has_capacity)
2776 2777 2778 2779
			sgs.group_capacity = min(sgs.group_capacity, 1UL);

		if (local_group) {
			sds->this_load = sgs.avg_load;
2780
			sds->this = sg;
2781 2782
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
2783
			sds->this_has_capacity = sgs.group_has_capacity;
2784
			sds->this_idle_cpus = sgs.idle_cpus;
2785
		} else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
2786
			sds->max_load = sgs.avg_load;
2787
			sds->busiest = sg;
2788
			sds->busiest_nr_running = sgs.sum_nr_running;
2789
			sds->busiest_idle_cpus = sgs.idle_cpus;
2790
			sds->busiest_group_capacity = sgs.group_capacity;
2791
			sds->busiest_load_per_task = sgs.sum_weighted_load;
2792
			sds->busiest_has_capacity = sgs.group_has_capacity;
2793
			sds->busiest_group_weight = sgs.group_weight;
2794 2795 2796
			sds->group_imb = sgs.group_imb;
		}

2797 2798 2799 2800 2801
		update_sd_power_savings_stats(sg, sds, local_group, &sgs);
		sg = sg->next;
	} while (sg != sd->groups);
}

M
Michael Neuling 已提交
2802
int __weak arch_sd_sibling_asym_packing(void)
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
{
       return 0*SD_ASYM_PACKING;
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
2824 2825 2826
 * Returns 1 when packing is required and a task should be moved to
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
 * @sd: The sched_domain whose packing is to be checked.
 * @sds: Statistics of the sched_domain which is to be packed
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: returns amount of imbalanced due to packing.
 */
static int check_asym_packing(struct sched_domain *sd,
			      struct sd_lb_stats *sds,
			      int this_cpu, unsigned long *imbalance)
{
	int busiest_cpu;

	if (!(sd->flags & SD_ASYM_PACKING))
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
	if (this_cpu > busiest_cpu)
		return 0;

	*imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
				       SCHED_LOAD_SCALE);
	return 1;
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;
2866
	unsigned long scaled_busy_load_per_task;
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);

2877 2878 2879 2880 2881 2882
	scaled_busy_load_per_task = sds->busiest_load_per_task
						 * SCHED_LOAD_SCALE;
	scaled_busy_load_per_task /= sds->busiest->cpu_power;

	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
			(scaled_busy_load_per_task * imbn)) {
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
		*imbalance = sds->busiest_load_per_task;
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

	pwr_now += sds->busiest->cpu_power *
			min(sds->busiest_load_per_task, sds->max_load);
	pwr_now += sds->this->cpu_power *
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
		sds->busiest->cpu_power;
	if (sds->max_load > tmp)
		pwr_move += sds->busiest->cpu_power *
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
	if (sds->max_load * sds->busiest->cpu_power <
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
		tmp = (sds->max_load * sds->busiest->cpu_power) /
			sds->this->cpu_power;
	else
		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
			sds->this->cpu_power;
	pwr_move += sds->this->cpu_power *
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
2933 2934 2935 2936 2937 2938 2939 2940
	unsigned long max_pull, load_above_capacity = ~0UL;

	sds->busiest_load_per_task /= sds->busiest_nr_running;
	if (sds->group_imb) {
		sds->busiest_load_per_task =
			min(sds->busiest_load_per_task, sds->avg_load);
	}

2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (sds->max_load < sds->avg_load) {
		*imbalance = 0;
		return fix_small_imbalance(sds, this_cpu, imbalance);
	}

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
	if (!sds->group_imb) {
		/*
		 * Don't want to pull so many tasks that a group would go idle.
		 */
		load_above_capacity = (sds->busiest_nr_running -
						sds->busiest_group_capacity);

		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);

		load_above_capacity /= sds->busiest->cpu_power;
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 * Be careful of negative numbers as they'll appear as very large values
	 * with unsigned longs.
	 */
	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989

	/* How much load to actually move to equalise the imbalance */
	*imbalance = min(max_pull * sds->busiest->cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
			/ SCHED_LOAD_SCALE;

	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);

}
2990

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;

	memset(&sds, 0, sizeof(sds));

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
3042 3043 3044 3045 3046
	 *
	 * Note: when doing newidle balance, if the local group has excess
	 * capacity (i.e. nr_running < group_capacity) and the busiest group
	 * does not have any capacity, we force a load balance to pull tasks
	 * to the local group. In this case, we skip past checks 3, 4 and 5.
3047
	 */
P
Peter Zijlstra 已提交
3048
	if (!(*balance))
3049 3050
		goto ret;

3051 3052 3053 3054
	if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(sd, &sds, this_cpu, imbalance))
		return sds.busiest;

3055 3056 3057
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;

3058 3059 3060 3061 3062
	/*  SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
	if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
			!sds.busiest_has_capacity)
		goto force_balance;

3063 3064 3065 3066 3067 3068 3069 3070
	if (sds.this_load >= sds.max_load)
		goto out_balanced;

	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;

	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
	/*
	 * In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative.
	 * And to check for busy balance use !idle_cpu instead of
	 * CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE
	 * even when they are idle.
	 */
	if (idle == CPU_NEWLY_IDLE || !idle_cpu(this_cpu)) {
		if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
			goto out_balanced;
	} else {
		/*
		 * This cpu is idle. If the busiest group load doesn't
		 * have more tasks than the number of available cpu's and
		 * there is no imbalance between this and busiest group
		 * wrt to idle cpu's, it is balanced.
		 */
		if ((sds.this_idle_cpus  <= sds.busiest_idle_cpus + 1) &&
		    sds.busiest_nr_running <= sds.busiest_group_weight)
			goto out_balanced;
	}
3091

3092
force_balance:
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
	return sds.busiest;

out_balanced:
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
ret:
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
static struct rq *
3113 3114 3115
find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
		   enum cpu_idle_type idle, unsigned long imbalance,
		   const struct cpumask *cpus)
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
{
	struct rq *busiest = NULL, *rq;
	unsigned long max_load = 0;
	int i;

	for_each_cpu(i, sched_group_cpus(group)) {
		unsigned long power = power_of(i);
		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
		unsigned long wl;

3126 3127 3128
		if (!capacity)
			capacity = fix_small_capacity(sd, group);

3129 3130 3131 3132
		if (!cpumask_test_cpu(i, cpus))
			continue;

		rq = cpu_rq(i);
3133
		wl = weighted_cpuload(i);
3134

3135 3136 3137 3138
		/*
		 * When comparing with imbalance, use weighted_cpuload()
		 * which is not scaled with the cpu power.
		 */
3139 3140 3141
		if (capacity && rq->nr_running == 1 && wl > imbalance)
			continue;

3142 3143 3144 3145 3146 3147 3148 3149
		/*
		 * For the load comparisons with the other cpu's, consider
		 * the weighted_cpuload() scaled with the cpu power, so that
		 * the load can be moved away from the cpu that is potentially
		 * running at a lower capacity.
		 */
		wl = (wl * SCHED_LOAD_SCALE) / power;

3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
		if (wl > max_load) {
			max_load = wl;
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

3168 3169
static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
			       int busiest_cpu, int this_cpu)
3170 3171
{
	if (idle == CPU_NEWLY_IDLE) {
3172 3173 3174 3175 3176 3177 3178 3179 3180

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
		if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
			return 1;

3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package.
		 *
		 * The package power saving logic comes from
		 * find_busiest_group(). If there are no imbalance, then
		 * f_b_g() will return NULL. However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
			return 0;

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return 0;
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

3211 3212
static int active_load_balance_cpu_stop(void *data);

3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
			int *balance)
{
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
	struct sched_group *group;
	unsigned long imbalance;
	struct rq *busiest;
	unsigned long flags;
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);

	cpumask_copy(cpus, cpu_active_mask);

	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
	 * portraying it as CPU_NOT_IDLE.
	 */
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
		sd_idle = 1;

	schedstat_inc(sd, lb_count[idle]);

redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
				   cpus, balance);

	if (*balance == 0)
		goto out_balanced;

	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3254
	busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

	BUG_ON(busiest == this_rq);

	schedstat_add(sd, lb_imbalance[idle], imbalance);

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
		local_irq_save(flags);
		double_rq_lock(this_rq, busiest);
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
				      imbalance, sd, idle, &all_pinned);
		double_rq_unlock(this_rq, busiest);
		local_irq_restore(flags);

		/*
		 * some other cpu did the load balance for us.
		 */
		if (ld_moved && this_cpu != smp_processor_id())
			resched_cpu(this_cpu);

		/* All tasks on this runqueue were pinned by CPU affinity */
		if (unlikely(all_pinned)) {
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
				goto redo;
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
3296 3297 3298 3299 3300 3301 3302 3303
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
3304

3305 3306
		if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
					this_cpu)) {
3307 3308
			raw_spin_lock_irqsave(&busiest->lock, flags);

3309 3310 3311
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
3312 3313 3314 3315 3316 3317 3318 3319 3320
			 */
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
				all_pinned = 1;
				goto out_one_pinned;
			}

3321 3322 3323 3324 3325
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
3326 3327 3328 3329 3330 3331
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
3332

3333
			if (active_balance)
3334 3335 3336
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
		ld_moved = -1;

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
		ld_moved = -1;
	else
		ld_moved = 0;
out:
	return ld_moved;
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
static void idle_balance(int this_cpu, struct rq *this_rq)
{
	struct sched_domain *sd;
	int pulled_task = 0;
	unsigned long next_balance = jiffies + HZ;

	this_rq->idle_stamp = this_rq->clock;

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

3402 3403 3404 3405 3406
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

P
Paul Turner 已提交
3407
	update_shares(this_cpu);
3408 3409
	for_each_domain(this_cpu, sd) {
		unsigned long interval;
3410
		int balance = 1;
3411 3412 3413 3414

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

3415
		if (sd->flags & SD_BALANCE_NEWIDLE) {
3416
			/* If we've pulled tasks over stop searching: */
3417 3418 3419
			pulled_task = load_balance(this_cpu, this_rq,
						   sd, CPU_NEWLY_IDLE, &balance);
		}
3420 3421 3422 3423

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
N
Nikhil Rao 已提交
3424 3425
		if (pulled_task) {
			this_rq->idle_stamp = 0;
3426
			break;
N
Nikhil Rao 已提交
3427
		}
3428
	}
3429 3430 3431

	raw_spin_lock(&this_rq->lock);

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
	}
}

/*
3442 3443 3444 3445
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
3446
 */
3447
static int active_load_balance_cpu_stop(void *data)
3448
{
3449 3450
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
3451
	int target_cpu = busiest_rq->push_cpu;
3452
	struct rq *target_rq = cpu_rq(target_cpu);
3453
	struct sched_domain *sd;
3454 3455 3456 3457 3458 3459 3460

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
3461 3462 3463

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
3464
		goto out_unlock;
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
		schedstat_inc(sd, alb_count);

		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
	double_unlock_balance(busiest_rq, target_rq);
3493 3494 3495 3496
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
3497 3498 3499
}

#ifdef CONFIG_NO_HZ
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525

static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);

static void trigger_sched_softirq(void *data)
{
	raise_softirq_irqoff(SCHED_SOFTIRQ);
}

static inline void init_sched_softirq_csd(struct call_single_data *csd)
{
	csd->func = trigger_sched_softirq;
	csd->info = NULL;
	csd->flags = 0;
	csd->priv = 0;
}

/*
 * idle load balancing details
 * - One of the idle CPUs nominates itself as idle load_balancer, while
 *   entering idle.
 * - This idle load balancer CPU will also go into tickless mode when
 *   it is idle, just like all other idle CPUs
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
3526 3527
static struct {
	atomic_t load_balancer;
3528 3529 3530 3531 3532 3533
	atomic_t first_pick_cpu;
	atomic_t second_pick_cpu;
	cpumask_var_t idle_cpus_mask;
	cpumask_var_t grp_idle_mask;
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586

int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
3587
	cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
3588 3589 3590 3591 3592 3593
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
3594
	if (cpumask_empty(nohz.grp_idle_mask))
3595 3596
		return 0;

3597
	if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
3630
	if (cpumask_weight(nohz.idle_cpus_mask) < 2)
3631 3632 3633 3634 3635 3636 3637
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
3638
				return cpumask_first(nohz.grp_idle_mask);
3639 3640 3641 3642 3643 3644 3645

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
3646
	return nr_cpu_ids;
3647 3648 3649 3650
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
3651
	return nr_cpu_ids;
3652 3653 3654
}
#endif

3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
static void nohz_balancer_kick(int cpu)
{
	int ilb_cpu;

	nohz.next_balance++;

	ilb_cpu = get_nohz_load_balancer();

	if (ilb_cpu >= nr_cpu_ids) {
		ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
		if (ilb_cpu >= nr_cpu_ids)
			return;
	}

	if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
		struct call_single_data *cp;

		cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
		cp = &per_cpu(remote_sched_softirq_cb, cpu);
		__smp_call_function_single(ilb_cpu, cp, 0);
	}
	return;
}

3684 3685 3686
/*
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3687
 * load balancing on behalf of all those cpus.
3688
 *
3689 3690 3691
 * When the ilb owner becomes busy, we will not have new ilb owner until some
 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
 * idle load balancing by kicking one of the idle CPUs.
3692
 *
3693 3694 3695
 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
 * ilb owner CPU in future (when there is a need for idle load balancing on
 * behalf of all idle CPUs).
3696
 */
3697
void select_nohz_load_balancer(int stop_tick)
3698 3699 3700 3701 3702 3703
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
3704
				return;
3705 3706 3707 3708 3709

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
3710 3711
			if (atomic_cmpxchg(&nohz.load_balancer, cpu,
					   nr_cpu_ids) != cpu)
3712 3713
				BUG();

3714
			return;
3715 3716
		}

3717
		cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
3718

3719 3720 3721 3722
		if (atomic_read(&nohz.first_pick_cpu) == cpu)
			atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
		if (atomic_read(&nohz.second_pick_cpu) == cpu)
			atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3723

3724
		if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
3725 3726
			int new_ilb;

3727 3728 3729 3730 3731
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
					   cpu) != nr_cpu_ids)
				return;

3732 3733 3734 3735 3736 3737
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3738
				atomic_set(&nohz.load_balancer, nr_cpu_ids);
3739
				resched_cpu(new_ilb);
3740
				return;
3741
			}
3742
			return;
3743 3744
		}
	} else {
3745 3746
		if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
			return;
3747

3748
		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
3749 3750

		if (atomic_read(&nohz.load_balancer) == cpu)
3751 3752
			if (atomic_cmpxchg(&nohz.load_balancer, cpu,
					   nr_cpu_ids) != cpu)
3753 3754
				BUG();
	}
3755
	return;
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
{
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
	unsigned long interval;
	struct sched_domain *sd;
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
	int need_serialize;

P
Peter Zijlstra 已提交
3778 3779
	update_shares(cpu);

3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
	for_each_domain(cpu, sd) {
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
		if (idle != CPU_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

		need_serialize = sd->flags & SD_SERIALIZE;

		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
			if (load_balance(cpu, rq, sd, idle, &balance)) {
				/*
				 * We've pulled tasks over so either we're no
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
				idle = CPU_NOT_IDLE;
			}
			sd->last_balance = jiffies;
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
	}

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

3839
#ifdef CONFIG_NO_HZ
3840
/*
3841
 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3842 3843
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
{
	struct rq *this_rq = cpu_rq(this_cpu);
	struct rq *rq;
	int balance_cpu;

	if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
		return;

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
		if (balance_cpu == this_cpu)
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
		if (need_resched()) {
			this_rq->nohz_balance_kick = 0;
			break;
		}

		raw_spin_lock_irq(&this_rq->lock);
3868
		update_rq_clock(this_rq);
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
		update_cpu_load(this_rq);
		raw_spin_unlock_irq(&this_rq->lock);

		rebalance_domains(balance_cpu, CPU_IDLE);

		rq = cpu_rq(balance_cpu);
		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
	this_rq->nohz_balance_kick = 0;
}

/*
 * Current heuristic for kicking the idle load balancer
 * - first_pick_cpu is the one of the busy CPUs. It will kick
 *   idle load balancer when it has more than one process active. This
 *   eliminates the need for idle load balancing altogether when we have
 *   only one running process in the system (common case).
 * - If there are more than one busy CPU, idle load balancer may have
 *   to run for active_load_balance to happen (i.e., two busy CPUs are
 *   SMT or core siblings and can run better if they move to different
 *   physical CPUs). So, second_pick_cpu is the second of the busy CPUs
 *   which will kick idle load balancer as soon as it has any load.
 */
static inline int nohz_kick_needed(struct rq *rq, int cpu)
{
	unsigned long now = jiffies;
	int ret;
	int first_pick_cpu, second_pick_cpu;

	if (time_before(now, nohz.next_balance))
		return 0;

S
Suresh Siddha 已提交
3903
	if (rq->idle_at_tick)
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
		return 0;

	first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
	second_pick_cpu = atomic_read(&nohz.second_pick_cpu);

	if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
	    second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
		return 0;

	ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
	if (ret == nr_cpu_ids || ret == cpu) {
		atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
		if (rq->nr_running > 1)
			return 1;
	} else {
		ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
		if (ret == nr_cpu_ids || ret == cpu) {
			if (rq->nr_running)
				return 1;
		}
	}
	return 0;
}
#else
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
static void run_rebalance_domains(struct softirq_action *h)
{
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;

	rebalance_domains(this_cpu, idle);

	/*
3945
	 * If this cpu has a pending nohz_balance_kick, then do the
3946 3947 3948
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
3949
	nohz_idle_balance(this_cpu, idle);
3950 3951 3952 3953
}

static inline int on_null_domain(int cpu)
{
3954
	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
static inline void trigger_load_balance(struct rq *rq, int cpu)
{
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
		raise_softirq(SCHED_SOFTIRQ);
3966 3967 3968 3969
#ifdef CONFIG_NO_HZ
	else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
		nohz_balancer_kick(cpu);
#endif
3970 3971
}

3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
}

3982 3983 3984 3985 3986 3987 3988 3989 3990
#else	/* CONFIG_SMP */

/*
 * on UP we do not need to balance between CPUs:
 */
static inline void idle_balance(int cpu, struct rq *rq)
{
}

3991
#endif /* CONFIG_SMP */
3992

3993 3994 3995
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
3996
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
3997 3998 3999 4000 4001 4002
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
4003
		entity_tick(cfs_rq, se, queued);
4004 4005 4006 4007
	}
}

/*
P
Peter Zijlstra 已提交
4008 4009 4010
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
4011
 */
P
Peter Zijlstra 已提交
4012
static void task_fork_fair(struct task_struct *p)
4013
{
P
Peter Zijlstra 已提交
4014
	struct cfs_rq *cfs_rq = task_cfs_rq(current);
4015
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
4016
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
4017 4018 4019
	struct rq *rq = this_rq();
	unsigned long flags;

4020
	raw_spin_lock_irqsave(&rq->lock, flags);
4021

4022 4023
	update_rq_clock(rq);

4024 4025
	if (unlikely(task_cpu(p) != this_cpu)) {
		rcu_read_lock();
P
Peter Zijlstra 已提交
4026
		__set_task_cpu(p, this_cpu);
4027 4028
		rcu_read_unlock();
	}
4029

4030
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
4031

4032 4033
	if (curr)
		se->vruntime = curr->vruntime;
4034
	place_entity(cfs_rq, se, 1);
4035

P
Peter Zijlstra 已提交
4036
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
4037
		/*
4038 4039 4040
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
4041
		swap(curr->vruntime, se->vruntime);
4042
		resched_task(rq->curr);
4043
	}
4044

4045 4046
	se->vruntime -= cfs_rq->min_vruntime;

4047
	raw_spin_unlock_irqrestore(&rq->lock, flags);
4048 4049
}

4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
4066
		check_preempt_curr(rq, p, 0);
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
4083
		check_preempt_curr(rq, p, 0);
4084 4085
}

4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
4099
#ifdef CONFIG_FAIR_GROUP_SCHED
4100
static void task_move_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
4101
{
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
	if (!on_rq)
		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
	set_task_rq(p, task_cpu(p));
4118
	if (!on_rq)
4119
		p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
P
Peter Zijlstra 已提交
4120 4121 4122
}
#endif

4123
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));

	return rr_interval;
}

4138 4139 4140
/*
 * All the scheduling class methods:
 */
4141 4142
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
4143 4144 4145 4146
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
4147
	.check_preempt_curr	= check_preempt_wakeup,
4148 4149 4150 4151

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

4152
#ifdef CONFIG_SMP
L
Li Zefan 已提交
4153 4154
	.select_task_rq		= select_task_rq_fair,

4155 4156
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
4157 4158

	.task_waking		= task_waking_fair,
4159
#endif
4160

4161
	.set_curr_task          = set_curr_task_fair,
4162
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
4163
	.task_fork		= task_fork_fair,
4164 4165 4166

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
4167

4168 4169
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
4170
#ifdef CONFIG_FAIR_GROUP_SCHED
4171
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
4172
#endif
4173 4174 4175
};

#ifdef CONFIG_SCHED_DEBUG
4176
static void print_cfs_stats(struct seq_file *m, int cpu)
4177 4178 4179
{
	struct cfs_rq *cfs_rq;

4180
	rcu_read_lock();
4181
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
4182
		print_cfs_rq(m, cpu, cfs_rq);
4183
	rcu_read_unlock();
4184 4185
}
#endif