sched_fair.c 48.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
37
unsigned int sysctl_sched_latency = 5000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 1000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50

/*
51
 * After fork, child runs first. If set to 0 (default) then
52
 * parent will (try to) run first.
53
 */
54
unsigned int sysctl_sched_child_runs_first __read_mostly;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77
static const struct sched_class fair_sched_class;

78 79 80 81
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

82
#ifdef CONFIG_FAIR_GROUP_SCHED
83

84
/* cpu runqueue to which this cfs_rq is attached */
85 86
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
87
	return cfs_rq->rq;
88 89
}

90 91
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
92

93 94 95 96 97 98 99 100
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

192 193 194 195 196 197
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
198

199 200 201
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
202 203 204 205
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
206 207
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
208

P
Peter Zijlstra 已提交
209
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
210
{
P
Peter Zijlstra 已提交
211
	return &task_rq(p)->cfs;
212 213
}

P
Peter Zijlstra 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

247 248 249 250 251
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
252 253
#endif	/* CONFIG_FAIR_GROUP_SCHED */

254 255 256 257 258

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

259
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
260
{
261 262
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
263 264 265 266 267
		min_vruntime = vruntime;

	return min_vruntime;
}

268
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
269 270 271 272 273 274 275 276
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

277 278 279 280 281 282
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

283
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
284
{
285
	return se->vruntime - cfs_rq->min_vruntime;
286 287
}

288 289 290 291 292 293 294 295 296 297 298 299
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
300
		if (!cfs_rq->curr)
301 302 303 304 305 306 307 308
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
}

309 310 311
/*
 * Enqueue an entity into the rb-tree:
 */
312
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
313 314 315 316
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
317
	s64 key = entity_key(cfs_rq, se);
318 319 320 321 322 323 324 325 326 327 328 329
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
330
		if (key < entity_key(cfs_rq, entry)) {
331 332 333 334 335 336 337 338 339 340 341
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
342
	if (leftmost)
I
Ingo Molnar 已提交
343
		cfs_rq->rb_leftmost = &se->run_node;
344 345 346 347 348

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

349
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
350
{
P
Peter Zijlstra 已提交
351 352 353 354 355 356
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
357

358 359 360 361 362
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
363 364 365 366 367 368
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
369 370
}

371
static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
372
{
373
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
374

375 376
	if (!last)
		return NULL;
377 378

	return rb_entry(last, struct sched_entity, run_node);
379 380
}

381 382 383 384
/**************************************************************
 * Scheduling class statistics methods:
 */

385 386
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
387
		void __user *buffer, size_t *lenp,
388 389
		loff_t *ppos)
{
390
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
391 392 393 394 395 396 397 398 399 400

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
401

402
/*
403
 * delta /= w
404 405 406 407
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
408 409
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
410 411 412 413

	return delta;
}

414 415 416 417 418 419 420 421
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
422 423 424
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
425
	unsigned long nr_latency = sched_nr_latency;
426 427

	if (unlikely(nr_running > nr_latency)) {
428
		period = sysctl_sched_min_granularity;
429 430 431 432 433 434
		period *= nr_running;
	}

	return period;
}

435 436 437 438
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
439
 * s = p*P[w/rw]
440
 */
P
Peter Zijlstra 已提交
441
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
442
{
M
Mike Galbraith 已提交
443
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
444

M
Mike Galbraith 已提交
445
	for_each_sched_entity(se) {
L
Lin Ming 已提交
446
		struct load_weight *load;
447
		struct load_weight lw;
L
Lin Ming 已提交
448 449 450

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
451

M
Mike Galbraith 已提交
452
		if (unlikely(!se->on_rq)) {
453
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
454 455 456 457 458 459 460

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
461 462
}

463
/*
464
 * We calculate the vruntime slice of a to be inserted task
465
 *
466
 * vs = s/w
467
 */
468
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
469
{
470
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
471 472
}

473 474 475 476 477
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
478 479
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
480
{
481
	unsigned long delta_exec_weighted;
482

483
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
484 485

	curr->sum_exec_runtime += delta_exec;
486
	schedstat_add(cfs_rq, exec_clock, delta_exec);
487
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
488
	curr->vruntime += delta_exec_weighted;
489
	update_min_vruntime(cfs_rq);
490 491
}

492
static void update_curr(struct cfs_rq *cfs_rq)
493
{
494
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
495
	u64 now = rq_of(cfs_rq)->clock;
496 497 498 499 500 501 502 503 504 505
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
506
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
507 508
	if (!delta_exec)
		return;
509

I
Ingo Molnar 已提交
510 511
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
512 513 514 515

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

516
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
517
		cpuacct_charge(curtask, delta_exec);
518
		account_group_exec_runtime(curtask, delta_exec);
519
	}
520 521 522
}

static inline void
523
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
524
{
525
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
526 527 528 529 530
}

/*
 * Task is being enqueued - update stats:
 */
531
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
532 533 534 535 536
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
537
	if (se != cfs_rq->curr)
538
		update_stats_wait_start(cfs_rq, se);
539 540 541
}

static void
542
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
543
{
544 545
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
546 547 548
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
549 550 551 552 553 554
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
			rq_of(cfs_rq)->clock - se->wait_start);
	}
#endif
555
	schedstat_set(se->wait_start, 0);
556 557 558
}

static inline void
559
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
560 561 562 563 564
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
565
	if (se != cfs_rq->curr)
566
		update_stats_wait_end(cfs_rq, se);
567 568 569 570 571 572
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
573
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
574 575 576 577
{
	/*
	 * We are starting a new run period:
	 */
578
	se->exec_start = rq_of(cfs_rq)->clock;
579 580 581 582 583 584
}

/**************************************************
 * Scheduling class queueing methods:
 */

585 586 587 588 589 590 591 592 593 594 595 596 597
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

598 599 600 601
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
602 603
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
604
	if (entity_is_task(se)) {
605
		add_cfs_task_weight(cfs_rq, se->load.weight);
606 607
		list_add(&se->group_node, &cfs_rq->tasks);
	}
608 609 610 611 612 613 614 615
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
616 617
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
618
	if (entity_is_task(se)) {
619
		add_cfs_task_weight(cfs_rq, -se->load.weight);
620 621
		list_del_init(&se->group_node);
	}
622 623 624 625
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

626
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 628
{
#ifdef CONFIG_SCHEDSTATS
629 630 631 632 633
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

634
	if (se->sleep_start) {
635
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
636 637 638 639 640 641 642 643 644

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
645

646
		if (tsk) {
647
			account_scheduler_latency(tsk, delta >> 10, 1);
648 649
			trace_sched_stat_sleep(tsk, delta);
		}
650 651
	}
	if (se->block_start) {
652
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
653 654 655 656 657 658 659 660 661

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
662

663
		if (tsk) {
664 665 666
			if (tsk->in_iowait) {
				se->iowait_sum += delta;
				se->iowait_count++;
667
				trace_sched_stat_iowait(tsk, delta);
668 669
			}

670 671 672 673 674 675 676 677 678 679 680
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
681
		}
682 683 684 685
	}
#endif
}

P
Peter Zijlstra 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

699 700 701
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
702
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
703

704 705 706 707 708 709
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
710
	if (initial && sched_feat(START_DEBIT))
711
		vruntime += sched_vslice(cfs_rq, se);
712

713 714 715
	/* sleeps up to a single latency don't count. */
	if (!initial && sched_feat(FAIR_SLEEPERS)) {
		unsigned long thresh = sysctl_sched_latency;
716

717 718 719 720 721 722 723 724 725
		/*
		 * Convert the sleeper threshold into virtual time.
		 * SCHED_IDLE is a special sub-class.  We care about
		 * fairness only relative to other SCHED_IDLE tasks,
		 * all of which have the same weight.
		 */
		if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
				 task_of(se)->policy != SCHED_IDLE))
			thresh = calc_delta_fair(thresh, se);
726

727 728 729 730 731 732
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
733

734
		vruntime -= thresh;
735 736
	}

737 738 739
	/* ensure we never gain time by being placed backwards. */
	vruntime = max_vruntime(se->vruntime, vruntime);

P
Peter Zijlstra 已提交
740
	se->vruntime = vruntime;
741 742
}

743
static void
744
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
745 746
{
	/*
747
	 * Update run-time statistics of the 'current'.
748
	 */
749
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
750
	account_entity_enqueue(cfs_rq, se);
751

I
Ingo Molnar 已提交
752
	if (wakeup) {
753
		place_entity(cfs_rq, se, 0);
754
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
755
	}
756

757
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
758
	check_spread(cfs_rq, se);
759 760
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
761 762
}

P
Peter Zijlstra 已提交
763
static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
764
{
765
	if (!se || cfs_rq->last == se)
P
Peter Zijlstra 已提交
766 767
		cfs_rq->last = NULL;

768
	if (!se || cfs_rq->next == se)
P
Peter Zijlstra 已提交
769 770 771
		cfs_rq->next = NULL;
}

P
Peter Zijlstra 已提交
772 773 774 775 776 777
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	for_each_sched_entity(se)
		__clear_buddies(cfs_rq_of(se), se);
}

778
static void
779
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
780
{
781 782 783 784 785
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

786
	update_stats_dequeue(cfs_rq, se);
787
	if (sleep) {
P
Peter Zijlstra 已提交
788
#ifdef CONFIG_SCHEDSTATS
789 790 791 792
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
793
				se->sleep_start = rq_of(cfs_rq)->clock;
794
			if (tsk->state & TASK_UNINTERRUPTIBLE)
795
				se->block_start = rq_of(cfs_rq)->clock;
796
		}
797
#endif
P
Peter Zijlstra 已提交
798 799
	}

P
Peter Zijlstra 已提交
800
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
801

802
	if (se != cfs_rq->curr)
803 804
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
805
	update_min_vruntime(cfs_rq);
806 807 808 809 810
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
811
static void
I
Ingo Molnar 已提交
812
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
813
{
814 815
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
816
	ideal_runtime = sched_slice(cfs_rq, curr);
817
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
818
	if (delta_exec > ideal_runtime) {
819
		resched_task(rq_of(cfs_rq)->curr);
820 821 822 823 824 825
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
	}
826 827
}

828
static void
829
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
830
{
831 832 833 834 835 836 837 838 839 840 841
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

842
	update_stats_curr_start(cfs_rq, se);
843
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
844 845 846 847 848 849
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
850
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
851 852 853 854
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
855
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
856 857
}

858 859 860
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

861
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
862
{
863 864
	struct sched_entity *se = __pick_next_entity(cfs_rq);

P
Peter Zijlstra 已提交
865 866
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
		return cfs_rq->next;
867

P
Peter Zijlstra 已提交
868 869 870 871
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
		return cfs_rq->last;

	return se;
872 873
}

874
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
875 876 877 878 879 880
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
881
		update_curr(cfs_rq);
882

P
Peter Zijlstra 已提交
883
	check_spread(cfs_rq, prev);
884
	if (prev->on_rq) {
885
		update_stats_wait_start(cfs_rq, prev);
886 887 888
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
889
	cfs_rq->curr = NULL;
890 891
}

P
Peter Zijlstra 已提交
892 893
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
894 895
{
	/*
896
	 * Update run-time statistics of the 'current'.
897
	 */
898
	update_curr(cfs_rq);
899

P
Peter Zijlstra 已提交
900 901 902 903 904
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
905 906 907 908
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
909 910 911 912 913 914 915 916
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

917
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
918
		check_preempt_tick(cfs_rq, curr);
919 920 921 922 923 924
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
948
		if (rq->curr != p)
949
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
950

951
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
952 953
	}
}
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
970
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
971 972 973 974
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
975 976 977 978

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
979 980
#endif

981 982 983 984 985
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
986
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
987 988
{
	struct cfs_rq *cfs_rq;
989
	struct sched_entity *se = &p->se;
990 991

	for_each_sched_entity(se) {
992
		if (se->on_rq)
993 994
			break;
		cfs_rq = cfs_rq_of(se);
995
		enqueue_entity(cfs_rq, se, wakeup);
996
		wakeup = 1;
997
	}
P
Peter Zijlstra 已提交
998

999
	hrtick_update(rq);
1000 1001 1002 1003 1004 1005 1006
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
1007
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1008 1009
{
	struct cfs_rq *cfs_rq;
1010
	struct sched_entity *se = &p->se;
1011 1012 1013

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1014
		dequeue_entity(cfs_rq, se, sleep);
1015
		/* Don't dequeue parent if it has other entities besides us */
1016
		if (cfs_rq->load.weight)
1017
			break;
1018
		sleep = 1;
1019
	}
P
Peter Zijlstra 已提交
1020

1021
	hrtick_update(rq);
1022 1023 1024
}

/*
1025 1026 1027
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
1028
 */
1029
static void yield_task_fair(struct rq *rq)
1030
{
1031 1032 1033
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
1034 1035

	/*
1036 1037 1038 1039 1040
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

P
Peter Zijlstra 已提交
1041 1042
	clear_buddies(cfs_rq, se);

1043
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1044
		update_rq_clock(rq);
1045
		/*
1046
		 * Update run-time statistics of the 'current'.
1047
		 */
D
Dmitry Adamushko 已提交
1048
		update_curr(cfs_rq);
1049 1050 1051 1052 1053

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
1054
	 */
D
Dmitry Adamushko 已提交
1055
	rightmost = __pick_last_entity(cfs_rq);
1056 1057 1058
	/*
	 * Already in the rightmost position?
	 */
1059
	if (unlikely(!rightmost || entity_before(rightmost, se)))
1060 1061 1062 1063
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
1064 1065
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
1066
	 */
1067
	se->vruntime = rightmost->vruntime + 1;
1068 1069
}

1070
#ifdef CONFIG_SMP
1071

1072
#ifdef CONFIG_FAIR_GROUP_SCHED
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 *
 * The problem is that perfectly aligning the shares is rather expensive, hence
 * we try to avoid doing that too often - see update_shares(), which ratelimits
 * this change.
 *
 * We compensate this by not only taking the current delta into account, but
 * also considering the delta between when the shares were last adjusted and
 * now.
 *
 * We still saw a performance dip, some tracing learned us that between
 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 * significantly. Therefore try to bias the error in direction of failing
 * the affine wakeup.
 *
 */
1094 1095
static long effective_load(struct task_group *tg, int cpu,
		long wl, long wg)
1096
{
P
Peter Zijlstra 已提交
1097
	struct sched_entity *se = tg->se[cpu];
1098 1099 1100 1101

	if (!tg->parent)
		return wl;

1102 1103 1104 1105 1106 1107 1108
	/*
	 * By not taking the decrease of shares on the other cpu into
	 * account our error leans towards reducing the affine wakeups.
	 */
	if (!wl && sched_feat(ASYM_EFF_LOAD))
		return wl;

P
Peter Zijlstra 已提交
1109
	for_each_sched_entity(se) {
1110
		long S, rw, s, a, b;
1111 1112 1113 1114 1115 1116 1117 1118 1119
		long more_w;

		/*
		 * Instead of using this increment, also add the difference
		 * between when the shares were last updated and now.
		 */
		more_w = se->my_q->load.weight - se->my_q->rq_weight;
		wl += more_w;
		wg += more_w;
P
Peter Zijlstra 已提交
1120 1121 1122

		S = se->my_q->tg->shares;
		s = se->my_q->shares;
1123
		rw = se->my_q->rq_weight;
1124

1125 1126
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1127

1128 1129 1130 1131 1132
		wl = s*(a-b);

		if (likely(b))
			wl /= b;

1133 1134 1135 1136 1137 1138 1139
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1140 1141
		wg = 0;
	}
1142

P
Peter Zijlstra 已提交
1143
	return wl;
1144
}
P
Peter Zijlstra 已提交
1145

1146
#else
P
Peter Zijlstra 已提交
1147

1148 1149
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1150
{
1151
	return wl;
1152
}
P
Peter Zijlstra 已提交
1153

1154 1155
#endif

1156
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1157
{
1158 1159 1160
	struct task_struct *curr = current;
	unsigned long this_load, load;
	int idx, this_cpu, prev_cpu;
1161
	unsigned long tl_per_task;
1162 1163
	unsigned int imbalance;
	struct task_group *tg;
1164
	unsigned long weight;
1165
	int balanced;
1166

1167 1168 1169 1170 1171
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
1172

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	if (sync) {
	       if (sched_feat(SYNC_LESS) &&
		   (curr->se.avg_overlap > sysctl_sched_migration_cost ||
		    p->se.avg_overlap > sysctl_sched_migration_cost))
		       sync = 0;
	} else {
		if (sched_feat(SYNC_MORE) &&
		    (curr->se.avg_overlap < sysctl_sched_migration_cost &&
		     p->se.avg_overlap < sysctl_sched_migration_cost))
			sync = 1;
	}
1184

1185 1186 1187 1188 1189
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1190 1191 1192 1193
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

1194
		this_load += effective_load(tg, this_cpu, -weight, -weight);
1195 1196
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
1197

1198 1199
	tg = task_group(p);
	weight = p->se.load.weight;
1200

1201 1202
	imbalance = 100 + (sd->imbalance_pct - 100) / 2;

1203 1204
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1205 1206 1207
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
1208 1209 1210 1211
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
1212 1213
	balanced = !this_load ||
		100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
1214
		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1215

1216
	/*
I
Ingo Molnar 已提交
1217 1218 1219
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1220
	 */
1221 1222
	if (sync && balanced)
		return 1;
1223 1224 1225 1226

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1227 1228 1229
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1230 1231 1232 1233 1234
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
1235
		schedstat_inc(sd, ttwu_move_affine);
1236 1237 1238 1239 1240 1241 1242
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1243 1244 1245 1246 1247
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
1248
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1249
		  int this_cpu, int load_idx)
1250
{
1251 1252 1253
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
1254

1255 1256 1257 1258
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
1259

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
1315 1316 1317
		}
	}

1318 1319
	return idlest;
}
1320

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
/*
 * Try and locate an idle CPU in the sched_domain.
 */
static int
select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
	int i;

	/*
	 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
	 * test in select_task_rq_fair) and the prev_cpu is idle then that's
	 * always a better target than the current cpu.
	 */
1336 1337
	if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
		return prev_cpu;
1338 1339 1340 1341

	/*
	 * Otherwise, iterate the domain and find an elegible idle cpu.
	 */
1342 1343 1344 1345
	for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
		if (!cpu_rq(i)->cfs.nr_running) {
			target = i;
			break;
1346 1347 1348 1349 1350 1351
		}
	}

	return target;
}

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
1363
static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1364
{
1365
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1366 1367 1368 1369
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
	int new_cpu = cpu;
	int want_affine = 0;
1370
	int want_sd = 1;
1371
	int sync = wake_flags & WF_SYNC;
1372

1373
	if (sd_flag & SD_BALANCE_WAKE) {
1374 1375
		if (sched_feat(AFFINE_WAKEUPS) &&
		    cpumask_test_cpu(cpu, &p->cpus_allowed))
1376 1377 1378
			want_affine = 1;
		new_cpu = prev_cpu;
	}
1379

P
Peter Zijlstra 已提交
1380
	rcu_read_lock();
1381 1382
	for_each_domain(cpu, tmp) {
		/*
1383 1384
		 * If power savings logic is enabled for a domain, see if we
		 * are not overloaded, if so, don't balance wider.
1385
		 */
P
Peter Zijlstra 已提交
1386
		if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
			unsigned long power = 0;
			unsigned long nr_running = 0;
			unsigned long capacity;
			int i;

			for_each_cpu(i, sched_domain_span(tmp)) {
				power += power_of(i);
				nr_running += cpu_rq(i)->cfs.nr_running;
			}

			capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);

P
Peter Zijlstra 已提交
1399 1400 1401 1402
			if (tmp->flags & SD_POWERSAVINGS_BALANCE)
				nr_running /= 2;

			if (nr_running < capacity)
1403
				want_sd = 0;
1404
		}
1405

1406 1407 1408 1409 1410 1411
		/*
		 * While iterating the domains looking for a spanning
		 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
		 * in cache sharing domains along the way.
		 */
		if (want_affine) {
1412
			int target = -1;
1413

1414 1415 1416 1417
			/*
			 * If both cpu and prev_cpu are part of this domain,
			 * cpu is a valid SD_WAKE_AFFINE target.
			 */
1418
			if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
1419
				target = cpu;
1420 1421

			/*
1422 1423
			 * If there's an idle sibling in this domain, make that
			 * the wake_affine target instead of the current cpu.
1424
			 */
1425 1426
			if (tmp->flags & SD_PREFER_SIBLING)
				target = select_idle_sibling(p, tmp, target);
1427

1428
			if (target >= 0) {
1429 1430 1431 1432
				if (tmp->flags & SD_WAKE_AFFINE) {
					affine_sd = tmp;
					want_affine = 0;
				}
1433
				cpu = target;
1434
			}
1435 1436
		}

1437 1438 1439
		if (!want_sd && !want_affine)
			break;

1440
		if (!(tmp->flags & sd_flag))
1441 1442
			continue;

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
		if (want_sd)
			sd = tmp;
	}

	if (sched_feat(LB_SHARES_UPDATE)) {
		/*
		 * Pick the largest domain to update shares over
		 */
		tmp = sd;
		if (affine_sd && (!tmp ||
				  cpumask_weight(sched_domain_span(affine_sd)) >
				  cpumask_weight(sched_domain_span(sd))))
			tmp = affine_sd;

		if (tmp)
			update_shares(tmp);
1459
	}
1460

1461 1462
	if (affine_sd && wake_affine(affine_sd, p, sync)) {
		new_cpu = cpu;
1463
		goto out;
1464
	}
1465

1466
	while (sd) {
1467
		int load_idx = sd->forkexec_idx;
1468
		struct sched_group *group;
1469
		int weight;
1470

1471
		if (!(sd->flags & sd_flag)) {
1472 1473 1474
			sd = sd->child;
			continue;
		}
1475

1476 1477
		if (sd_flag & SD_BALANCE_WAKE)
			load_idx = sd->wake_idx;
1478

1479
		group = find_idlest_group(sd, p, cpu, load_idx);
1480 1481 1482 1483
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
1484

1485
		new_cpu = find_idlest_cpu(group, p, cpu);
1486 1487 1488 1489
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
1490
		}
1491 1492 1493 1494 1495 1496 1497 1498

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
		weight = cpumask_weight(sched_domain_span(sd));
		sd = NULL;
		for_each_domain(cpu, tmp) {
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
				break;
1499
			if (tmp->flags & sd_flag)
1500 1501 1502
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
1503 1504
	}

1505
out:
P
Peter Zijlstra 已提交
1506
	rcu_read_unlock();
1507
	return new_cpu;
1508 1509 1510
}
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
/*
 * Adaptive granularity
 *
 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
 * with the limit of wakeup_gran -- when it never does a wakeup.
 *
 * So the smaller avg_wakeup is the faster we want this task to preempt,
 * but we don't want to treat the preemptee unfairly and therefore allow it
 * to run for at least the amount of time we'd like to run.
 *
 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
 *
 * NOTE: we use *nr_running to scale with load, this nicely matches the
 *       degrading latency on load.
 */
static unsigned long
adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
{
	u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
	u64 gran = 0;

	if (this_run < expected_wakeup)
		gran = expected_wakeup - this_run;

	return min_t(s64, gran, sysctl_sched_wakeup_granularity);
}

static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1541 1542 1543
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

P
Peter Zijlstra 已提交
1544 1545 1546
	if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
		gran = adaptive_gran(curr, se);

1547
	/*
P
Peter Zijlstra 已提交
1548 1549
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
1550
	 */
P
Peter Zijlstra 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	if (sched_feat(ASYM_GRAN)) {
		/*
		 * By using 'se' instead of 'curr' we penalize light tasks, so
		 * they get preempted easier. That is, if 'se' < 'curr' then
		 * the resulting gran will be larger, therefore penalizing the
		 * lighter, if otoh 'se' > 'curr' then the resulting gran will
		 * be smaller, again penalizing the lighter task.
		 *
		 * This is especially important for buddies when the leftmost
		 * task is higher priority than the buddy.
		 */
		if (unlikely(se->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, se);
	} else {
		if (unlikely(curr->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, curr);
	}
1568 1569 1570 1571

	return gran;
}

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
1594
	gran = wakeup_gran(curr, se);
1595 1596 1597 1598 1599 1600
	if (vdiff > gran)
		return 1;

	return 0;
}

1601 1602
static void set_last_buddy(struct sched_entity *se)
{
1603 1604 1605 1606
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->last = se;
	}
1607 1608 1609 1610
}

static void set_next_buddy(struct sched_entity *se)
{
1611 1612 1613 1614
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->next = se;
	}
1615 1616
}

1617 1618 1619
/*
 * Preempt the current task with a newly woken task if needed:
 */
1620
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1621 1622
{
	struct task_struct *curr = rq->curr;
1623
	struct sched_entity *se = &curr->se, *pse = &p->se;
1624
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1625
	int sync = wake_flags & WF_SYNC;
1626

1627
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1628

1629
	if (unlikely(rt_prio(p->prio))) {
1630 1631 1632
		resched_task(curr);
		return;
	}
1633

P
Peter Zijlstra 已提交
1634 1635 1636
	if (unlikely(p->sched_class != &fair_sched_class))
		return;

I
Ingo Molnar 已提交
1637 1638 1639
	if (unlikely(se == pse))
		return;

P
Peter Zijlstra 已提交
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	/*
	 * Only set the backward buddy when the current task is still on the
	 * rq. This can happen when a wakeup gets interleaved with schedule on
	 * the ->pre_schedule() or idle_balance() point, either of which can
	 * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class, for
	 * obvious reasons its a bad idea to schedule back to the idle thread.
	 */
	if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1650
		set_last_buddy(se);
1651
	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK))
M
Mike Galbraith 已提交
1652
		set_next_buddy(pse);
P
Peter Zijlstra 已提交
1653

1654 1655 1656 1657 1658 1659 1660
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 */
	if (test_tsk_need_resched(curr))
		return;

1661
	/*
1662
	 * Batch and idle tasks do not preempt (their preemption is driven by
1663 1664
	 * the tick):
	 */
1665
	if (unlikely(p->policy != SCHED_NORMAL))
1666
		return;
1667

1668 1669 1670
	/* Idle tasks are by definition preempted by everybody. */
	if (unlikely(curr->policy == SCHED_IDLE)) {
		resched_task(curr);
1671
		return;
1672
	}
1673

P
Peter Zijlstra 已提交
1674 1675 1676 1677
	if ((sched_feat(WAKEUP_SYNC) && sync) ||
	    (sched_feat(WAKEUP_OVERLAP) &&
	     (se->avg_overlap < sysctl_sched_migration_cost &&
	      pse->avg_overlap < sysctl_sched_migration_cost))) {
1678 1679 1680 1681
		resched_task(curr);
		return;
	}

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
	if (sched_feat(WAKEUP_RUNNING)) {
		if (pse->avg_running < se->avg_running) {
			set_next_buddy(pse);
			resched_task(curr);
			return;
		}
	}

	if (!sched_feat(WAKEUP_PREEMPT))
		return;

1693 1694
	find_matching_se(&se, &pse);

1695
	BUG_ON(!pse);
1696

1697 1698
	if (wakeup_preempt_entity(se, pse) == 1)
		resched_task(curr);
1699 1700
}

1701
static struct task_struct *pick_next_task_fair(struct rq *rq)
1702
{
P
Peter Zijlstra 已提交
1703
	struct task_struct *p;
1704 1705 1706 1707 1708 1709 1710
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1711
		se = pick_next_entity(cfs_rq);
1712 1713 1714
		/*
		 * If se was a buddy, clear it so that it will have to earn
		 * the favour again.
1715 1716 1717 1718 1719
		 *
		 * If se was not a buddy, clear the buddies because neither
		 * was elegible to run, let them earn it again.
		 *
		 * IOW. unconditionally clear buddies.
1720
		 */
1721
		__clear_buddies(cfs_rq, NULL);
1722
		set_next_entity(cfs_rq, se);
1723 1724 1725
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1726 1727 1728 1729
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1730 1731 1732 1733 1734
}

/*
 * Account for a descheduled task:
 */
1735
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1736 1737 1738 1739 1740 1741
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1742
		put_prev_entity(cfs_rq, se);
1743 1744 1745
	}
}

1746
#ifdef CONFIG_SMP
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1758
static struct task_struct *
1759
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1760
{
D
Dhaval Giani 已提交
1761 1762
	struct task_struct *p = NULL;
	struct sched_entity *se;
1763

1764 1765 1766
	if (next == &cfs_rq->tasks)
		return NULL;

1767 1768 1769
	se = list_entry(next, struct sched_entity, group_node);
	p = task_of(se);
	cfs_rq->balance_iterator = next->next;
1770

1771 1772 1773 1774 1775 1776 1777
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1778
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1779 1780 1781 1782 1783 1784
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1785
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1786 1787
}

1788 1789 1790 1791 1792
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1793
{
1794
	struct rq_iterator cfs_rq_iterator;
1795

1796 1797 1798
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1799

1800 1801 1802
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1803 1804
}

1805
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1806
static unsigned long
1807
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1808
		  unsigned long max_load_move,
1809 1810
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1811 1812
{
	long rem_load_move = max_load_move;
1813 1814
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1815

1816
	rcu_read_lock();
1817
	update_h_load(busiest_cpu);
1818

1819
	list_for_each_entry_rcu(tg, &task_groups, list) {
1820
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1821 1822
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
S
Srivatsa Vaddagiri 已提交
1823
		u64 rem_load, moved_load;
1824

1825 1826 1827
		/*
		 * empty group
		 */
1828
		if (!busiest_cfs_rq->task_weight)
1829 1830
			continue;

S
Srivatsa Vaddagiri 已提交
1831 1832
		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);
1833

1834
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1835
				rem_load, sd, idle, all_pinned, this_best_prio,
1836
				tg->cfs_rq[busiest_cpu]);
1837

1838
		if (!moved_load)
1839 1840
			continue;

1841
		moved_load *= busiest_h_load;
S
Srivatsa Vaddagiri 已提交
1842
		moved_load = div_u64(moved_load, busiest_weight + 1);
1843

1844 1845
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1846 1847
			break;
	}
1848
	rcu_read_unlock();
1849

P
Peter Williams 已提交
1850
	return max_load_move - rem_load_move;
1851
}
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1864

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1888
#endif /* CONFIG_SMP */
1889

1890 1891 1892
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1893
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1894 1895 1896 1897 1898 1899
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1900
		entity_tick(cfs_rq, se, queued);
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
	}
}

/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1911
static void task_new_fair(struct rq *rq, struct task_struct *p)
1912 1913
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1914
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1915
	int this_cpu = smp_processor_id();
1916 1917 1918

	sched_info_queued(p);

1919
	update_curr(cfs_rq);
1920 1921
	if (curr)
		se->vruntime = curr->vruntime;
1922
	place_entity(cfs_rq, se, 1);
1923

1924
	/* 'curr' will be NULL if the child belongs to a different group */
1925
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1926
			curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
1927
		/*
1928 1929 1930
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1931
		swap(curr->vruntime, se->vruntime);
1932
		resched_task(rq->curr);
1933
	}
1934

1935
	enqueue_task_fair(rq, p, 0);
1936 1937
}

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
1954
		check_preempt_curr(rq, p, 0);
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
1971
		check_preempt_curr(rq, p, 0);
1972 1973
}

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
unsigned int get_rr_interval_fair(struct task_struct *task)
{
	struct sched_entity *se = &task->se;
	unsigned long flags;
	struct rq *rq;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	rq = task_rq_lock(task, &flags);
	if (rq->cfs.load.weight)
		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
	task_rq_unlock(rq, &flags);

	return rr_interval;
}

2016 2017 2018
/*
 * All the scheduling class methods:
 */
2019 2020
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
2021 2022 2023 2024
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
2025
	.check_preempt_curr	= check_preempt_wakeup,
2026 2027 2028 2029

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

2030
#ifdef CONFIG_SMP
L
Li Zefan 已提交
2031 2032
	.select_task_rq		= select_task_rq_fair,

2033
	.load_balance		= load_balance_fair,
2034
	.move_one_task		= move_one_task_fair,
2035
#endif
2036

2037
	.set_curr_task          = set_curr_task_fair,
2038 2039
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
2040 2041 2042

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
2043

2044 2045
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
2046 2047 2048
#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
2049 2050 2051
};

#ifdef CONFIG_SCHED_DEBUG
2052
static void print_cfs_stats(struct seq_file *m, int cpu)
2053 2054 2055
{
	struct cfs_rq *cfs_rq;

2056
	rcu_read_lock();
2057
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
2058
		print_cfs_rq(m, cpu, cfs_rq);
2059
	rcu_read_unlock();
2060 2061
}
#endif