sched_fair.c 49.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
A
Arjan van de Ven 已提交
25

26
/*
27
 * Targeted preemption latency for CPU-bound tasks:
28
 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
29
 *
30
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
31 32 33
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
34
 *
I
Ingo Molnar 已提交
35 36
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
37
 */
38
unsigned int sysctl_sched_latency = 5000000ULL;
39
unsigned int normalized_sysctl_sched_latency = 5000000ULL;
40

41 42 43 44 45 46 47 48 49 50 51 52
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

53
/*
54
 * Minimal preemption granularity for CPU-bound tasks:
55
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
56
 */
57
unsigned int sysctl_sched_min_granularity = 1000000ULL;
58
unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL;
59 60

/*
61 62
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
63
static unsigned int sched_nr_latency = 5;
64 65

/*
66
 * After fork, child runs first. If set to 0 (default) then
67
 * parent will (try to) run first.
68
 */
69
unsigned int sysctl_sched_child_runs_first __read_mostly;
70

71 72 73 74 75 76 77 78
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

79 80
/*
 * SCHED_OTHER wake-up granularity.
81
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 83 84 85 86
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
87
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89

90 91
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

92 93
static const struct sched_class fair_sched_class;

94 95 96 97
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

98
#ifdef CONFIG_FAIR_GROUP_SCHED
99

100
/* cpu runqueue to which this cfs_rq is attached */
101 102
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
103
	return cfs_rq->rq;
104 105
}

106 107
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
108

109 110 111 112 113 114 115 116
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

208 209 210 211 212 213
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
214

215 216 217
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
218 219 220 221
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
222 223
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
224

P
Peter Zijlstra 已提交
225
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
226
{
P
Peter Zijlstra 已提交
227
	return &task_rq(p)->cfs;
228 229
}

P
Peter Zijlstra 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

263 264 265 266 267
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
268 269
#endif	/* CONFIG_FAIR_GROUP_SCHED */

270 271 272 273 274

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

275
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
276
{
277 278
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
279 280 281 282 283
		min_vruntime = vruntime;

	return min_vruntime;
}

284
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
285 286 287 288 289 290 291 292
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

293 294 295 296 297 298
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

299
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
300
{
301
	return se->vruntime - cfs_rq->min_vruntime;
302 303
}

304 305 306 307 308 309 310 311 312 313 314 315
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
316
		if (!cfs_rq->curr)
317 318 319 320 321 322 323 324
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
}

325 326 327
/*
 * Enqueue an entity into the rb-tree:
 */
328
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
329 330 331 332
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
333
	s64 key = entity_key(cfs_rq, se);
334 335 336 337 338 339 340 341 342 343 344 345
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
346
		if (key < entity_key(cfs_rq, entry)) {
347 348 349 350 351 352 353 354 355 356 357
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
358
	if (leftmost)
I
Ingo Molnar 已提交
359
		cfs_rq->rb_leftmost = &se->run_node;
360 361 362 363 364

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

365
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
366
{
P
Peter Zijlstra 已提交
367 368 369 370 371 372
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
373

374 375 376 377 378
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
379 380 381 382 383 384
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
385 386
}

387
static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
388
{
389
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
390

391 392
	if (!last)
		return NULL;
393 394

	return rb_entry(last, struct sched_entity, run_node);
395 396
}

397 398 399 400
/**************************************************************
 * Scheduling class statistics methods:
 */

401
#ifdef CONFIG_SCHED_DEBUG
402
int sched_proc_update_handler(struct ctl_table *table, int write,
403
		void __user *buffer, size_t *lenp,
404 405
		loff_t *ppos)
{
406
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
407
	int factor = get_update_sysctl_factor();
408 409 410 411 412 413 414

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

415 416 417 418 419 420 421 422
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
	WRT_SYSCTL(sched_shares_ratelimit);
#undef WRT_SYSCTL

423 424 425
	return 0;
}
#endif
426

427
/*
428
 * delta /= w
429 430 431 432
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
433 434
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
435 436 437 438

	return delta;
}

439 440 441 442 443 444 445 446
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
447 448 449
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
450
	unsigned long nr_latency = sched_nr_latency;
451 452

	if (unlikely(nr_running > nr_latency)) {
453
		period = sysctl_sched_min_granularity;
454 455 456 457 458 459
		period *= nr_running;
	}

	return period;
}

460 461 462 463
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
464
 * s = p*P[w/rw]
465
 */
P
Peter Zijlstra 已提交
466
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
467
{
M
Mike Galbraith 已提交
468
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
469

M
Mike Galbraith 已提交
470
	for_each_sched_entity(se) {
L
Lin Ming 已提交
471
		struct load_weight *load;
472
		struct load_weight lw;
L
Lin Ming 已提交
473 474 475

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
476

M
Mike Galbraith 已提交
477
		if (unlikely(!se->on_rq)) {
478
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
479 480 481 482 483 484 485

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
486 487
}

488
/*
489
 * We calculate the vruntime slice of a to be inserted task
490
 *
491
 * vs = s/w
492
 */
493
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
494
{
495
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
496 497
}

498 499 500 501 502
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
503 504
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
505
{
506
	unsigned long delta_exec_weighted;
507

508
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
509 510

	curr->sum_exec_runtime += delta_exec;
511
	schedstat_add(cfs_rq, exec_clock, delta_exec);
512
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
513
	curr->vruntime += delta_exec_weighted;
514
	update_min_vruntime(cfs_rq);
515 516
}

517
static void update_curr(struct cfs_rq *cfs_rq)
518
{
519
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
520
	u64 now = rq_of(cfs_rq)->clock;
521 522 523 524 525 526 527 528 529 530
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
531
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
532 533
	if (!delta_exec)
		return;
534

I
Ingo Molnar 已提交
535 536
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
537 538 539 540

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

541
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
542
		cpuacct_charge(curtask, delta_exec);
543
		account_group_exec_runtime(curtask, delta_exec);
544
	}
545 546 547
}

static inline void
548
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
549
{
550
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
551 552 553 554 555
}

/*
 * Task is being enqueued - update stats:
 */
556
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
557 558 559 560 561
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
562
	if (se != cfs_rq->curr)
563
		update_stats_wait_start(cfs_rq, se);
564 565 566
}

static void
567
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
568
{
569 570
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
571 572 573
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
574 575 576 577 578 579
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
			rq_of(cfs_rq)->clock - se->wait_start);
	}
#endif
580
	schedstat_set(se->wait_start, 0);
581 582 583
}

static inline void
584
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
585 586 587 588 589
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
590
	if (se != cfs_rq->curr)
591
		update_stats_wait_end(cfs_rq, se);
592 593 594 595 596 597
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
598
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
599 600 601 602
{
	/*
	 * We are starting a new run period:
	 */
603
	se->exec_start = rq_of(cfs_rq)->clock;
604 605 606 607 608 609
}

/**************************************************
 * Scheduling class queueing methods:
 */

610 611 612 613 614 615 616 617 618 619 620 621 622
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

623 624 625 626
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
627 628
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
629
	if (entity_is_task(se)) {
630
		add_cfs_task_weight(cfs_rq, se->load.weight);
631 632
		list_add(&se->group_node, &cfs_rq->tasks);
	}
633 634 635 636 637 638 639 640
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
641 642
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
643
	if (entity_is_task(se)) {
644
		add_cfs_task_weight(cfs_rq, -se->load.weight);
645 646
		list_del_init(&se->group_node);
	}
647 648 649 650
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

651
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
652 653
{
#ifdef CONFIG_SCHEDSTATS
654 655 656 657 658
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

659
	if (se->sleep_start) {
660
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
661 662 663 664 665 666 667 668 669

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
670

671
		if (tsk) {
672
			account_scheduler_latency(tsk, delta >> 10, 1);
673 674
			trace_sched_stat_sleep(tsk, delta);
		}
675 676
	}
	if (se->block_start) {
677
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
678 679 680 681 682 683 684 685 686

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
687

688
		if (tsk) {
689 690 691
			if (tsk->in_iowait) {
				se->iowait_sum += delta;
				se->iowait_count++;
692
				trace_sched_stat_iowait(tsk, delta);
693 694
			}

695 696 697 698 699 700 701 702 703 704 705
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
706
		}
707 708 709 710
	}
#endif
}

P
Peter Zijlstra 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

724 725 726
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
727
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
728

729 730 731 732 733 734
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
735
	if (initial && sched_feat(START_DEBIT))
736
		vruntime += sched_vslice(cfs_rq, se);
737

738 739 740
	/* sleeps up to a single latency don't count. */
	if (!initial && sched_feat(FAIR_SLEEPERS)) {
		unsigned long thresh = sysctl_sched_latency;
741

742 743 744 745 746 747 748 749 750
		/*
		 * Convert the sleeper threshold into virtual time.
		 * SCHED_IDLE is a special sub-class.  We care about
		 * fairness only relative to other SCHED_IDLE tasks,
		 * all of which have the same weight.
		 */
		if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
				 task_of(se)->policy != SCHED_IDLE))
			thresh = calc_delta_fair(thresh, se);
751

752 753 754 755 756 757
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
758

759
		vruntime -= thresh;
760 761
	}

762 763 764
	/* ensure we never gain time by being placed backwards. */
	vruntime = max_vruntime(se->vruntime, vruntime);

P
Peter Zijlstra 已提交
765
	se->vruntime = vruntime;
766 767
}

768
static void
769
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
770 771
{
	/*
772
	 * Update run-time statistics of the 'current'.
773
	 */
774
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
775
	account_entity_enqueue(cfs_rq, se);
776

I
Ingo Molnar 已提交
777
	if (wakeup) {
778
		place_entity(cfs_rq, se, 0);
779
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
780
	}
781

782
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
783
	check_spread(cfs_rq, se);
784 785
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
786 787
}

P
Peter Zijlstra 已提交
788
static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
789
{
790
	if (!se || cfs_rq->last == se)
P
Peter Zijlstra 已提交
791 792
		cfs_rq->last = NULL;

793
	if (!se || cfs_rq->next == se)
P
Peter Zijlstra 已提交
794 795 796
		cfs_rq->next = NULL;
}

P
Peter Zijlstra 已提交
797 798 799 800 801 802
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	for_each_sched_entity(se)
		__clear_buddies(cfs_rq_of(se), se);
}

803
static void
804
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
805
{
806 807 808 809 810
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

811
	update_stats_dequeue(cfs_rq, se);
812
	if (sleep) {
P
Peter Zijlstra 已提交
813
#ifdef CONFIG_SCHEDSTATS
814 815 816 817
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
818
				se->sleep_start = rq_of(cfs_rq)->clock;
819
			if (tsk->state & TASK_UNINTERRUPTIBLE)
820
				se->block_start = rq_of(cfs_rq)->clock;
821
		}
822
#endif
P
Peter Zijlstra 已提交
823 824
	}

P
Peter Zijlstra 已提交
825
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
826

827
	if (se != cfs_rq->curr)
828 829
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
830
	update_min_vruntime(cfs_rq);
831 832 833 834 835
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
836
static void
I
Ingo Molnar 已提交
837
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
838
{
839 840
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
841
	ideal_runtime = sched_slice(cfs_rq, curr);
842
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
843
	if (delta_exec > ideal_runtime) {
844
		resched_task(rq_of(cfs_rq)->curr);
845 846 847 848 849
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (!sched_feat(WAKEUP_PREEMPT))
		return;

	if (delta_exec < sysctl_sched_min_granularity)
		return;

	if (cfs_rq->nr_running > 1) {
		struct sched_entity *se = __pick_next_entity(cfs_rq);
		s64 delta = curr->vruntime - se->vruntime;

		if (delta > ideal_runtime)
			resched_task(rq_of(cfs_rq)->curr);
870
	}
871 872
}

873
static void
874
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
875
{
876 877 878 879 880 881 882 883 884 885 886
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

887
	update_stats_curr_start(cfs_rq, se);
888
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
889 890 891 892 893 894
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
895
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
896 897 898 899
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
900
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
901 902
}

903 904 905
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

906
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
907
{
908
	struct sched_entity *se = __pick_next_entity(cfs_rq);
909
	struct sched_entity *left = se;
910

911 912
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;
913

914 915 916 917 918 919 920
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
921 922

	return se;
923 924
}

925
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
926 927 928 929 930 931
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
932
		update_curr(cfs_rq);
933

P
Peter Zijlstra 已提交
934
	check_spread(cfs_rq, prev);
935
	if (prev->on_rq) {
936
		update_stats_wait_start(cfs_rq, prev);
937 938 939
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
940
	cfs_rq->curr = NULL;
941 942
}

P
Peter Zijlstra 已提交
943 944
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
945 946
{
	/*
947
	 * Update run-time statistics of the 'current'.
948
	 */
949
	update_curr(cfs_rq);
950

P
Peter Zijlstra 已提交
951 952 953 954 955
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
956 957 958 959
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
960 961 962 963 964 965 966 967
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

968
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
969
		check_preempt_tick(cfs_rq, curr);
970 971 972 973 974 975
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
999
		if (rq->curr != p)
1000
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
1001

1002
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
1003 1004
	}
}
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
1021
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1022 1023 1024 1025
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
1026 1027 1028 1029

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
1030 1031
#endif

1032 1033 1034 1035 1036
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
1037
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
1038 1039
{
	struct cfs_rq *cfs_rq;
1040
	struct sched_entity *se = &p->se;
1041 1042

	for_each_sched_entity(se) {
1043
		if (se->on_rq)
1044 1045
			break;
		cfs_rq = cfs_rq_of(se);
1046
		enqueue_entity(cfs_rq, se, wakeup);
1047
		wakeup = 1;
1048
	}
P
Peter Zijlstra 已提交
1049

1050
	hrtick_update(rq);
1051 1052 1053 1054 1055 1056 1057
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
1058
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1059 1060
{
	struct cfs_rq *cfs_rq;
1061
	struct sched_entity *se = &p->se;
1062 1063 1064

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1065
		dequeue_entity(cfs_rq, se, sleep);
1066
		/* Don't dequeue parent if it has other entities besides us */
1067
		if (cfs_rq->load.weight)
1068
			break;
1069
		sleep = 1;
1070
	}
P
Peter Zijlstra 已提交
1071

1072
	hrtick_update(rq);
1073 1074 1075
}

/*
1076 1077 1078
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
1079
 */
1080
static void yield_task_fair(struct rq *rq)
1081
{
1082 1083 1084
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
1085 1086

	/*
1087 1088 1089 1090 1091
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

P
Peter Zijlstra 已提交
1092 1093
	clear_buddies(cfs_rq, se);

1094
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1095
		update_rq_clock(rq);
1096
		/*
1097
		 * Update run-time statistics of the 'current'.
1098
		 */
D
Dmitry Adamushko 已提交
1099
		update_curr(cfs_rq);
1100 1101 1102 1103 1104

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
1105
	 */
D
Dmitry Adamushko 已提交
1106
	rightmost = __pick_last_entity(cfs_rq);
1107 1108 1109
	/*
	 * Already in the rightmost position?
	 */
1110
	if (unlikely(!rightmost || entity_before(rightmost, se)))
1111 1112 1113 1114
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
1115 1116
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
1117
	 */
1118
	se->vruntime = rightmost->vruntime + 1;
1119 1120
}

1121
#ifdef CONFIG_SMP
1122

1123
#ifdef CONFIG_FAIR_GROUP_SCHED
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 *
 * The problem is that perfectly aligning the shares is rather expensive, hence
 * we try to avoid doing that too often - see update_shares(), which ratelimits
 * this change.
 *
 * We compensate this by not only taking the current delta into account, but
 * also considering the delta between when the shares were last adjusted and
 * now.
 *
 * We still saw a performance dip, some tracing learned us that between
 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 * significantly. Therefore try to bias the error in direction of failing
 * the affine wakeup.
 *
 */
1145 1146
static long effective_load(struct task_group *tg, int cpu,
		long wl, long wg)
1147
{
P
Peter Zijlstra 已提交
1148
	struct sched_entity *se = tg->se[cpu];
1149 1150 1151 1152

	if (!tg->parent)
		return wl;

1153 1154 1155 1156 1157 1158 1159
	/*
	 * By not taking the decrease of shares on the other cpu into
	 * account our error leans towards reducing the affine wakeups.
	 */
	if (!wl && sched_feat(ASYM_EFF_LOAD))
		return wl;

P
Peter Zijlstra 已提交
1160
	for_each_sched_entity(se) {
1161
		long S, rw, s, a, b;
1162 1163 1164 1165 1166 1167 1168 1169 1170
		long more_w;

		/*
		 * Instead of using this increment, also add the difference
		 * between when the shares were last updated and now.
		 */
		more_w = se->my_q->load.weight - se->my_q->rq_weight;
		wl += more_w;
		wg += more_w;
P
Peter Zijlstra 已提交
1171 1172 1173

		S = se->my_q->tg->shares;
		s = se->my_q->shares;
1174
		rw = se->my_q->rq_weight;
1175

1176 1177
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1178

1179 1180 1181 1182 1183
		wl = s*(a-b);

		if (likely(b))
			wl /= b;

1184 1185 1186 1187 1188 1189 1190
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1191 1192
		wg = 0;
	}
1193

P
Peter Zijlstra 已提交
1194
	return wl;
1195
}
P
Peter Zijlstra 已提交
1196

1197
#else
P
Peter Zijlstra 已提交
1198

1199 1200
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1201
{
1202
	return wl;
1203
}
P
Peter Zijlstra 已提交
1204

1205 1206
#endif

1207
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1208
{
1209 1210 1211
	struct task_struct *curr = current;
	unsigned long this_load, load;
	int idx, this_cpu, prev_cpu;
1212
	unsigned long tl_per_task;
1213 1214
	unsigned int imbalance;
	struct task_group *tg;
1215
	unsigned long weight;
1216
	int balanced;
1217

1218 1219 1220 1221 1222
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
1223

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	if (sync) {
	       if (sched_feat(SYNC_LESS) &&
		   (curr->se.avg_overlap > sysctl_sched_migration_cost ||
		    p->se.avg_overlap > sysctl_sched_migration_cost))
		       sync = 0;
	} else {
		if (sched_feat(SYNC_MORE) &&
		    (curr->se.avg_overlap < sysctl_sched_migration_cost &&
		     p->se.avg_overlap < sysctl_sched_migration_cost))
			sync = 1;
	}
1235

1236 1237 1238 1239 1240
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1241 1242 1243 1244
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

1245
		this_load += effective_load(tg, this_cpu, -weight, -weight);
1246 1247
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
1248

1249 1250
	tg = task_group(p);
	weight = p->se.load.weight;
1251

1252 1253
	imbalance = 100 + (sd->imbalance_pct - 100) / 2;

1254 1255
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1256 1257 1258
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
1259 1260 1261 1262
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
1263 1264
	balanced = !this_load ||
		100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
1265
		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1266

1267
	/*
I
Ingo Molnar 已提交
1268 1269 1270
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1271
	 */
1272 1273
	if (sync && balanced)
		return 1;
1274 1275 1276 1277

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1278 1279 1280
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1281 1282 1283 1284 1285
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
1286
		schedstat_inc(sd, ttwu_move_affine);
1287 1288 1289 1290 1291 1292 1293
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1294 1295 1296 1297 1298
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
1299
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1300
		  int this_cpu, int load_idx)
1301
{
1302 1303 1304
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
1305

1306 1307 1308 1309
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
1310

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
1366 1367 1368
		}
	}

1369 1370
	return idlest;
}
1371

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
/*
 * Try and locate an idle CPU in the sched_domain.
 */
static int
select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
	int i;

	/*
	 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
	 * test in select_task_rq_fair) and the prev_cpu is idle then that's
	 * always a better target than the current cpu.
	 */
1387 1388
	if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
		return prev_cpu;
1389 1390 1391 1392

	/*
	 * Otherwise, iterate the domain and find an elegible idle cpu.
	 */
1393 1394 1395 1396
	for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
		if (!cpu_rq(i)->cfs.nr_running) {
			target = i;
			break;
1397 1398 1399 1400 1401 1402
		}
	}

	return target;
}

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
1414
static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1415
{
1416
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1417 1418 1419 1420
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
	int new_cpu = cpu;
	int want_affine = 0;
1421
	int want_sd = 1;
1422
	int sync = wake_flags & WF_SYNC;
1423

1424
	if (sd_flag & SD_BALANCE_WAKE) {
1425 1426
		if (sched_feat(AFFINE_WAKEUPS) &&
		    cpumask_test_cpu(cpu, &p->cpus_allowed))
1427 1428 1429
			want_affine = 1;
		new_cpu = prev_cpu;
	}
1430 1431 1432

	for_each_domain(cpu, tmp) {
		/*
1433 1434
		 * If power savings logic is enabled for a domain, see if we
		 * are not overloaded, if so, don't balance wider.
1435
		 */
P
Peter Zijlstra 已提交
1436
		if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
			unsigned long power = 0;
			unsigned long nr_running = 0;
			unsigned long capacity;
			int i;

			for_each_cpu(i, sched_domain_span(tmp)) {
				power += power_of(i);
				nr_running += cpu_rq(i)->cfs.nr_running;
			}

			capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);

P
Peter Zijlstra 已提交
1449 1450 1451 1452
			if (tmp->flags & SD_POWERSAVINGS_BALANCE)
				nr_running /= 2;

			if (nr_running < capacity)
1453
				want_sd = 0;
1454
		}
1455

1456 1457 1458 1459 1460 1461
		/*
		 * While iterating the domains looking for a spanning
		 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
		 * in cache sharing domains along the way.
		 */
		if (want_affine) {
1462
			int target = -1;
1463

1464 1465 1466 1467
			/*
			 * If both cpu and prev_cpu are part of this domain,
			 * cpu is a valid SD_WAKE_AFFINE target.
			 */
1468
			if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
1469
				target = cpu;
1470 1471

			/*
1472 1473
			 * If there's an idle sibling in this domain, make that
			 * the wake_affine target instead of the current cpu.
1474
			 */
1475 1476
			if (tmp->flags & SD_PREFER_SIBLING)
				target = select_idle_sibling(p, tmp, target);
1477

1478
			if (target >= 0) {
1479 1480 1481 1482
				if (tmp->flags & SD_WAKE_AFFINE) {
					affine_sd = tmp;
					want_affine = 0;
				}
1483
				cpu = target;
1484
			}
1485 1486
		}

1487 1488 1489
		if (!want_sd && !want_affine)
			break;

1490
		if (!(tmp->flags & sd_flag))
1491 1492
			continue;

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
		if (want_sd)
			sd = tmp;
	}

	if (sched_feat(LB_SHARES_UPDATE)) {
		/*
		 * Pick the largest domain to update shares over
		 */
		tmp = sd;
		if (affine_sd && (!tmp ||
				  cpumask_weight(sched_domain_span(affine_sd)) >
				  cpumask_weight(sched_domain_span(sd))))
			tmp = affine_sd;

		if (tmp)
			update_shares(tmp);
1509
	}
1510

1511 1512
	if (affine_sd && wake_affine(affine_sd, p, sync))
		return cpu;
1513

1514
	while (sd) {
1515
		int load_idx = sd->forkexec_idx;
1516
		struct sched_group *group;
1517
		int weight;
1518

1519
		if (!(sd->flags & sd_flag)) {
1520 1521 1522
			sd = sd->child;
			continue;
		}
1523

1524 1525
		if (sd_flag & SD_BALANCE_WAKE)
			load_idx = sd->wake_idx;
1526

1527
		group = find_idlest_group(sd, p, cpu, load_idx);
1528 1529 1530 1531
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
1532

1533
		new_cpu = find_idlest_cpu(group, p, cpu);
1534 1535 1536 1537
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
1538
		}
1539 1540 1541 1542 1543 1544 1545 1546

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
		weight = cpumask_weight(sched_domain_span(sd));
		sd = NULL;
		for_each_domain(cpu, tmp) {
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
				break;
1547
			if (tmp->flags & sd_flag)
1548 1549 1550
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
1551 1552
	}

1553
	return new_cpu;
1554 1555 1556
}
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
/*
 * Adaptive granularity
 *
 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
 * with the limit of wakeup_gran -- when it never does a wakeup.
 *
 * So the smaller avg_wakeup is the faster we want this task to preempt,
 * but we don't want to treat the preemptee unfairly and therefore allow it
 * to run for at least the amount of time we'd like to run.
 *
 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
 *
 * NOTE: we use *nr_running to scale with load, this nicely matches the
 *       degrading latency on load.
 */
static unsigned long
adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
{
	u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
	u64 gran = 0;

	if (this_run < expected_wakeup)
		gran = expected_wakeup - this_run;

	return min_t(s64, gran, sysctl_sched_wakeup_granularity);
}

static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1587 1588 1589
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

P
Peter Zijlstra 已提交
1590 1591 1592
	if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
		gran = adaptive_gran(curr, se);

1593
	/*
P
Peter Zijlstra 已提交
1594 1595
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
1596
	 */
P
Peter Zijlstra 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	if (sched_feat(ASYM_GRAN)) {
		/*
		 * By using 'se' instead of 'curr' we penalize light tasks, so
		 * they get preempted easier. That is, if 'se' < 'curr' then
		 * the resulting gran will be larger, therefore penalizing the
		 * lighter, if otoh 'se' > 'curr' then the resulting gran will
		 * be smaller, again penalizing the lighter task.
		 *
		 * This is especially important for buddies when the leftmost
		 * task is higher priority than the buddy.
		 */
		if (unlikely(se->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, se);
	} else {
		if (unlikely(curr->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, curr);
	}
1614 1615 1616 1617

	return gran;
}

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
1640
	gran = wakeup_gran(curr, se);
1641 1642 1643 1644 1645 1646
	if (vdiff > gran)
		return 1;

	return 0;
}

1647 1648
static void set_last_buddy(struct sched_entity *se)
{
1649 1650 1651 1652
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->last = se;
	}
1653 1654 1655 1656
}

static void set_next_buddy(struct sched_entity *se)
{
1657 1658 1659 1660
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->next = se;
	}
1661 1662
}

1663 1664 1665
/*
 * Preempt the current task with a newly woken task if needed:
 */
1666
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1667 1668
{
	struct task_struct *curr = rq->curr;
1669
	struct sched_entity *se = &curr->se, *pse = &p->se;
1670
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1671
	int sync = wake_flags & WF_SYNC;
1672
	int scale = cfs_rq->nr_running >= sched_nr_latency;
1673

1674 1675
	if (unlikely(rt_prio(p->prio)))
		goto preempt;
1676

P
Peter Zijlstra 已提交
1677 1678 1679
	if (unlikely(p->sched_class != &fair_sched_class))
		return;

I
Ingo Molnar 已提交
1680 1681 1682
	if (unlikely(se == pse))
		return;

1683
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
M
Mike Galbraith 已提交
1684
		set_next_buddy(pse);
P
Peter Zijlstra 已提交
1685

1686 1687 1688 1689 1690 1691 1692
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 */
	if (test_tsk_need_resched(curr))
		return;

1693
	/*
1694
	 * Batch and idle tasks do not preempt (their preemption is driven by
1695 1696
	 * the tick):
	 */
1697
	if (unlikely(p->policy != SCHED_NORMAL))
1698
		return;
1699

1700
	/* Idle tasks are by definition preempted by everybody. */
1701 1702
	if (unlikely(curr->policy == SCHED_IDLE))
		goto preempt;
1703

1704 1705
	if (sched_feat(WAKEUP_SYNC) && sync)
		goto preempt;
1706

1707 1708 1709 1710 1711
	if (sched_feat(WAKEUP_OVERLAP) &&
			se->avg_overlap < sysctl_sched_migration_cost &&
			pse->avg_overlap < sysctl_sched_migration_cost)
		goto preempt;

1712 1713 1714
	if (!sched_feat(WAKEUP_PREEMPT))
		return;

1715
	update_curr(cfs_rq);
1716
	find_matching_se(&se, &pse);
1717
	BUG_ON(!pse);
1718 1719
	if (wakeup_preempt_entity(se, pse) == 1)
		goto preempt;
1720

1721
	return;
1722

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
1739 1740
}

1741
static struct task_struct *pick_next_task_fair(struct rq *rq)
1742
{
P
Peter Zijlstra 已提交
1743
	struct task_struct *p;
1744 1745 1746
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

1747
	if (!cfs_rq->nr_running)
1748 1749 1750
		return NULL;

	do {
1751
		se = pick_next_entity(cfs_rq);
1752
		set_next_entity(cfs_rq, se);
1753 1754 1755
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1756 1757 1758 1759
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1760 1761 1762 1763 1764
}

/*
 * Account for a descheduled task:
 */
1765
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1766 1767 1768 1769 1770 1771
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1772
		put_prev_entity(cfs_rq, se);
1773 1774 1775
	}
}

1776
#ifdef CONFIG_SMP
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1788
static struct task_struct *
1789
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1790
{
D
Dhaval Giani 已提交
1791 1792
	struct task_struct *p = NULL;
	struct sched_entity *se;
1793

1794 1795 1796
	if (next == &cfs_rq->tasks)
		return NULL;

1797 1798 1799
	se = list_entry(next, struct sched_entity, group_node);
	p = task_of(se);
	cfs_rq->balance_iterator = next->next;
1800

1801 1802 1803 1804 1805 1806 1807
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1808
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1809 1810 1811 1812 1813 1814
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1815
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1816 1817
}

1818 1819 1820 1821 1822
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1823
{
1824
	struct rq_iterator cfs_rq_iterator;
1825

1826 1827 1828
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1829

1830 1831 1832
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1833 1834
}

1835
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1836
static unsigned long
1837
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1838
		  unsigned long max_load_move,
1839 1840
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1841 1842
{
	long rem_load_move = max_load_move;
1843 1844
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1845

1846
	rcu_read_lock();
1847
	update_h_load(busiest_cpu);
1848

1849
	list_for_each_entry_rcu(tg, &task_groups, list) {
1850
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1851 1852
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
S
Srivatsa Vaddagiri 已提交
1853
		u64 rem_load, moved_load;
1854

1855 1856 1857
		/*
		 * empty group
		 */
1858
		if (!busiest_cfs_rq->task_weight)
1859 1860
			continue;

S
Srivatsa Vaddagiri 已提交
1861 1862
		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);
1863

1864
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1865
				rem_load, sd, idle, all_pinned, this_best_prio,
1866
				tg->cfs_rq[busiest_cpu]);
1867

1868
		if (!moved_load)
1869 1870
			continue;

1871
		moved_load *= busiest_h_load;
S
Srivatsa Vaddagiri 已提交
1872
		moved_load = div_u64(moved_load, busiest_weight + 1);
1873

1874 1875
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1876 1877
			break;
	}
1878
	rcu_read_unlock();
1879

P
Peter Williams 已提交
1880
	return max_load_move - rem_load_move;
1881
}
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1894

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928

static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
}

1929
#endif /* CONFIG_SMP */
1930

1931 1932 1933
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1934
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1935 1936 1937 1938 1939 1940
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1941
		entity_tick(cfs_rq, se, queued);
1942 1943 1944 1945
	}
}

/*
P
Peter Zijlstra 已提交
1946 1947 1948
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
1949
 */
P
Peter Zijlstra 已提交
1950
static void task_fork_fair(struct task_struct *p)
1951
{
P
Peter Zijlstra 已提交
1952
	struct cfs_rq *cfs_rq = task_cfs_rq(current);
1953
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1954
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
1955 1956 1957 1958
	struct rq *rq = this_rq();
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
1959

P
Peter Zijlstra 已提交
1960 1961
	if (unlikely(task_cpu(p) != this_cpu))
		__set_task_cpu(p, this_cpu);
1962

1963
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1964

1965 1966
	if (curr)
		se->vruntime = curr->vruntime;
1967
	place_entity(cfs_rq, se, 1);
1968

P
Peter Zijlstra 已提交
1969
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
1970
		/*
1971 1972 1973
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1974
		swap(curr->vruntime, se->vruntime);
1975
		resched_task(rq->curr);
1976
	}
1977

P
Peter Zijlstra 已提交
1978
	spin_unlock_irqrestore(&rq->lock, flags);
1979 1980
}

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
1997
		check_preempt_curr(rq, p, 0);
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
2014
		check_preempt_curr(rq, p, 0);
2015 2016
}

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

2040
unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));

	return rr_interval;
}

2055 2056 2057
/*
 * All the scheduling class methods:
 */
2058 2059
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
2060 2061 2062 2063
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
2064
	.check_preempt_curr	= check_preempt_wakeup,
2065 2066 2067 2068

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

2069
#ifdef CONFIG_SMP
L
Li Zefan 已提交
2070 2071
	.select_task_rq		= select_task_rq_fair,

2072
	.load_balance		= load_balance_fair,
2073
	.move_one_task		= move_one_task_fair,
2074 2075
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
2076
#endif
2077

2078
	.set_curr_task          = set_curr_task_fair,
2079
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
2080
	.task_fork		= task_fork_fair,
2081 2082 2083

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
2084

2085 2086
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
2087 2088 2089
#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
2090 2091 2092
};

#ifdef CONFIG_SCHED_DEBUG
2093
static void print_cfs_stats(struct seq_file *m, int cpu)
2094 2095 2096
{
	struct cfs_rq *cfs_rq;

2097
	rcu_read_lock();
2098
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
2099
		print_cfs_rq(m, cpu, cfs_rq);
2100
	rcu_read_unlock();
2101 2102
}
#endif