sched_fair.c 35.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77 78 79
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

80
#ifdef CONFIG_FAIR_GROUP_SCHED
81

82
/* cpu runqueue to which this cfs_rq is attached */
83 84
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
85
	return cfs_rq->rq;
86 87
}

88 89
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
90

91
#else	/* CONFIG_FAIR_GROUP_SCHED */
92

93 94 95
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
}

#define entity_is_task(se)	1

#endif	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}


/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

112
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
113
{
114 115
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
116 117 118 119 120
		min_vruntime = vruntime;

	return min_vruntime;
}

121
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
122 123 124 125 126 127 128 129
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

130
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
131
{
132
	return se->vruntime - cfs_rq->min_vruntime;
133 134
}

135 136 137
/*
 * Enqueue an entity into the rb-tree:
 */
138
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
139 140 141 142
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
143
	s64 key = entity_key(cfs_rq, se);
144 145 146 147 148 149 150 151 152 153 154 155
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
156
		if (key < entity_key(cfs_rq, entry)) {
157 158 159 160 161 162 163 164 165 166 167
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
P
Peter Zijlstra 已提交
168
	if (leftmost) {
I
Ingo Molnar 已提交
169
		cfs_rq->rb_leftmost = &se->run_node;
P
Peter Zijlstra 已提交
170 171 172 173 174 175 176
		/*
		 * maintain cfs_rq->min_vruntime to be a monotonic increasing
		 * value tracking the leftmost vruntime in the tree.
		 */
		cfs_rq->min_vruntime =
			max_vruntime(cfs_rq->min_vruntime, se->vruntime);
	}
177 178 179 180 181

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

182
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
183
{
P
Peter Zijlstra 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;
		struct sched_entity *next;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;

		if (next_node) {
			next = rb_entry(next_node,
					struct sched_entity, run_node);
			cfs_rq->min_vruntime =
				max_vruntime(cfs_rq->min_vruntime,
					     next->vruntime);
		}
	}
I
Ingo Molnar 已提交
199

200 201 202
	if (cfs_rq->next == se)
		cfs_rq->next = NULL;

203 204 205 206 207 208 209 210 211 212 213 214 215
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

216 217
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
218
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
219

220 221
	if (!last)
		return NULL;
222 223

	return rb_entry(last, struct sched_entity, run_node);
224 225
}

226 227 228 229
/**************************************************************
 * Scheduling class statistics methods:
 */

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
246 247 248 249 250 251 252 253 254

/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
255 256 257
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
258
	unsigned long nr_latency = sched_nr_latency;
259 260

	if (unlikely(nr_running > nr_latency)) {
261
		period = sysctl_sched_min_granularity;
262 263 264 265 266 267
		period *= nr_running;
	}

	return period;
}

268 269 270 271 272 273
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
 * s = p*w/rw
 */
P
Peter Zijlstra 已提交
274
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
275
{
I
Ingo Molnar 已提交
276 277
	return calc_delta_mine(__sched_period(cfs_rq->nr_running),
			       se->load.weight, &cfs_rq->load);
278 279
}

280 281 282 283 284 285
/*
 * We calculate the vruntime slice.
 *
 * vs = s/w = p/rw
 */
static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
P
Peter Zijlstra 已提交
286
{
287
	u64 vslice = __sched_period(nr_running);
P
Peter Zijlstra 已提交
288

P
Peter Zijlstra 已提交
289
	vslice *= NICE_0_LOAD;
290
	do_div(vslice, rq_weight);
P
Peter Zijlstra 已提交
291

292 293
	return vslice;
}
294

295 296 297 298
static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	return __sched_vslice(cfs_rq->load.weight + se->load.weight,
			cfs_rq->nr_running + 1);
P
Peter Zijlstra 已提交
299 300
}

301 302 303 304 305
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
306 307
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
308
{
309
	unsigned long delta_exec_weighted;
310

311
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
312 313

	curr->sum_exec_runtime += delta_exec;
314
	schedstat_add(cfs_rq, exec_clock, delta_exec);
I
Ingo Molnar 已提交
315 316 317 318 319 320
	delta_exec_weighted = delta_exec;
	if (unlikely(curr->load.weight != NICE_0_LOAD)) {
		delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
							&curr->load);
	}
	curr->vruntime += delta_exec_weighted;
321 322
}

323
static void update_curr(struct cfs_rq *cfs_rq)
324
{
325
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
326
	u64 now = rq_of(cfs_rq)->clock;
327 328 329 330 331 332 333 334 335 336
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
337
	delta_exec = (unsigned long)(now - curr->exec_start);
338

I
Ingo Molnar 已提交
339 340
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
341 342 343 344 345 346

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
	}
347 348 349
}

static inline void
350
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
351
{
352
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
353 354 355 356 357
}

/*
 * Task is being enqueued - update stats:
 */
358
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
359 360 361 362 363
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
364
	if (se != cfs_rq->curr)
365
		update_stats_wait_start(cfs_rq, se);
366 367 368
}

static void
369
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
370
{
371 372
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
373 374 375
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
376
	schedstat_set(se->wait_start, 0);
377 378 379
}

static inline void
380
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
381 382 383 384 385
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
386
	if (se != cfs_rq->curr)
387
		update_stats_wait_end(cfs_rq, se);
388 389 390 391 392 393
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
394
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
395 396 397 398
{
	/*
	 * We are starting a new run period:
	 */
399
	se->exec_start = rq_of(cfs_rq)->clock;
400 401 402 403 404 405
}

/**************************************************
 * Scheduling class queueing methods:
 */

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

422
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
423 424 425
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
426
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
A
Arjan van de Ven 已提交
427
		struct task_struct *tsk = task_of(se);
428 429 430 431 432 433 434 435 436

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
437 438

		account_scheduler_latency(tsk, delta >> 10, 1);
439 440
	}
	if (se->block_start) {
441
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
A
Arjan van de Ven 已提交
442
		struct task_struct *tsk = task_of(se);
443 444 445 446 447 448 449 450 451

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
452 453 454 455 456 457 458

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
459

I
Ingo Molnar 已提交
460 461 462
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
A
Arjan van de Ven 已提交
463
		account_scheduler_latency(tsk, delta >> 10, 0);
464 465 466 467
	}
#endif
}

P
Peter Zijlstra 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

481 482 483
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
P
Peter Zijlstra 已提交
484
	u64 vruntime;
485

P
Peter Zijlstra 已提交
486 487 488 489 490
	if (first_fair(cfs_rq)) {
		vruntime = min_vruntime(cfs_rq->min_vruntime,
				__pick_next_entity(cfs_rq)->vruntime);
	} else
		vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
491

492 493 494 495 496 497
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
498
	if (initial && sched_feat(START_DEBIT))
499
		vruntime += sched_vslice_add(cfs_rq, se);
500

I
Ingo Molnar 已提交
501
	if (!initial) {
502
		/* sleeps upto a single latency don't count. */
503
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
P
Peter Zijlstra 已提交
504 505 506 507 508
			if (sched_feat(NORMALIZED_SLEEPER))
				vruntime -= calc_delta_fair(sysctl_sched_latency,
						&cfs_rq->load);
			else
				vruntime -= sysctl_sched_latency;
509
		}
510

511 512
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
513 514
	}

P
Peter Zijlstra 已提交
515
	se->vruntime = vruntime;
516 517
}

518
static void
519
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
520 521
{
	/*
522
	 * Update run-time statistics of the 'current'.
523
	 */
524
	update_curr(cfs_rq);
525

I
Ingo Molnar 已提交
526
	if (wakeup) {
527
		place_entity(cfs_rq, se, 0);
528
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
529
	}
530

531
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
532
	check_spread(cfs_rq, se);
533 534
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
535
	account_entity_enqueue(cfs_rq, se);
536 537
}

I
Ingo Molnar 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (!se->last_wakeup)
		return;

	update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
	se->last_wakeup = 0;
}

553
static void
554
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
555
{
556 557 558 559 560
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

561
	update_stats_dequeue(cfs_rq, se);
562
	if (sleep) {
I
Ingo Molnar 已提交
563
		update_avg_stats(cfs_rq, se);
P
Peter Zijlstra 已提交
564
#ifdef CONFIG_SCHEDSTATS
565 566 567 568
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
569
				se->sleep_start = rq_of(cfs_rq)->clock;
570
			if (tsk->state & TASK_UNINTERRUPTIBLE)
571
				se->block_start = rq_of(cfs_rq)->clock;
572
		}
573
#endif
P
Peter Zijlstra 已提交
574 575
	}

576
	if (se != cfs_rq->curr)
577 578
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
579 580 581 582 583
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
584
static void
I
Ingo Molnar 已提交
585
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
586
{
587 588
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
589
	ideal_runtime = sched_slice(cfs_rq, curr);
590
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
I
Ingo Molnar 已提交
591
	if (delta_exec > ideal_runtime)
592 593 594
		resched_task(rq_of(cfs_rq)->curr);
}

595
static void
596
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
597
{
598 599 600 601 602 603 604 605 606 607 608
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

609
	update_stats_curr_start(cfs_rq, se);
610
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
611 612 613 614 615 616
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
617
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
618 619 620 621
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
622
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
623 624
}

625 626 627
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

628 629 630 631 632 633
static struct sched_entity *
pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (!cfs_rq->next)
		return se;

634
	if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
635 636 637 638 639
		return se;

	return cfs_rq->next;
}

640
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
641
{
D
Dmitry Adamushko 已提交
642
	struct sched_entity *se = NULL;
643

D
Dmitry Adamushko 已提交
644 645
	if (first_fair(cfs_rq)) {
		se = __pick_next_entity(cfs_rq);
646
		se = pick_next(cfs_rq, se);
D
Dmitry Adamushko 已提交
647 648
		set_next_entity(cfs_rq, se);
	}
649 650 651 652

	return se;
}

653
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
654 655 656 657 658 659
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
660
		update_curr(cfs_rq);
661

P
Peter Zijlstra 已提交
662
	check_spread(cfs_rq, prev);
663
	if (prev->on_rq) {
664
		update_stats_wait_start(cfs_rq, prev);
665 666 667
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
668
	cfs_rq->curr = NULL;
669 670
}

P
Peter Zijlstra 已提交
671 672
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
673 674
{
	/*
675
	 * Update run-time statistics of the 'current'.
676
	 */
677
	update_curr(cfs_rq);
678

P
Peter Zijlstra 已提交
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
	if (queued)
		return resched_task(rq_of(cfs_rq)->curr);
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

694
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
695
		check_preempt_tick(cfs_rq, curr);
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
}

/**************************************************
 * CFS operations on tasks:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
S
Srivatsa Vaddagiri 已提交
730
	return cfs_rq->tg->cfs_rq[this_cpu];
731 732 733 734
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
735
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
736

737 738 739
/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
740
{
741
	if (se->cfs_rq == pse->cfs_rq)
742 743 744 745 746
		return 1;

	return 0;
}

747 748 749 750 751
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
#else	/* CONFIG_FAIR_GROUP_SCHED */

#define for_each_sched_entity(se) \
		for (; se; se = NULL)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

784 785
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
786 787 788 789
{
	return 1;
}

790 791 792 793 794
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

795 796
#endif	/* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	int requeue = rq->curr == p;
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
		if (!requeue)
			delta = max(10000LL, delta);

		hrtick_start(rq, delta, requeue);
	}
}
#else
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
#endif

834 835 836 837 838
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
839
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
840 841
{
	struct cfs_rq *cfs_rq;
842
	struct sched_entity *se = &p->se;
843 844

	for_each_sched_entity(se) {
845
		if (se->on_rq)
846 847
			break;
		cfs_rq = cfs_rq_of(se);
848
		enqueue_entity(cfs_rq, se, wakeup);
849
		wakeup = 1;
850
	}
P
Peter Zijlstra 已提交
851 852

	hrtick_start_fair(rq, rq->curr);
853 854 855 856 857 858 859
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
860
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
861 862
{
	struct cfs_rq *cfs_rq;
863
	struct sched_entity *se = &p->se;
864 865 866

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
867
		dequeue_entity(cfs_rq, se, sleep);
868
		/* Don't dequeue parent if it has other entities besides us */
869
		if (cfs_rq->load.weight)
870
			break;
871
		sleep = 1;
872
	}
P
Peter Zijlstra 已提交
873 874

	hrtick_start_fair(rq, rq->curr);
875 876 877
}

/*
878 879 880
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
881
 */
882
static void yield_task_fair(struct rq *rq)
883
{
884 885 886
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
887 888

	/*
889 890 891 892 893
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

894
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
895 896
		__update_rq_clock(rq);
		/*
897
		 * Update run-time statistics of the 'current'.
898
		 */
D
Dmitry Adamushko 已提交
899
		update_curr(cfs_rq);
900 901 902 903 904

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
905
	 */
D
Dmitry Adamushko 已提交
906
	rightmost = __pick_last_entity(cfs_rq);
907 908 909
	/*
	 * Already in the rightmost position?
	 */
910
	if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
911 912 913 914
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
915 916
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
917
	 */
918
	se->vruntime = rightmost->vruntime + 1;
919 920
}

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
			cpus_and(tmp, sd->span, p->cpus_allowed);
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
#else
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
974

I
Ingo Molnar 已提交
975 976
static const struct sched_class fair_sched_class;

977
static int
I
Ingo Molnar 已提交
978 979 980
wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
981 982
	    unsigned int imbalance)
{
I
Ingo Molnar 已提交
983
	struct task_struct *curr = this_rq->curr;
984 985 986 987 988 989 990
	unsigned long tl = this_load;
	unsigned long tl_per_task;

	if (!(this_sd->flags & SD_WAKE_AFFINE))
		return 0;

	/*
I
Ingo Molnar 已提交
991 992 993
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
994
	 */
I
Ingo Molnar 已提交
995 996 997 998 999
	if (sync && curr->sched_class == &fair_sched_class) {
		if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
				p->se.avg_overlap < sysctl_sched_migration_cost)
			return 1;
	}
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
	if (sync)
		tl -= current->se.load.weight;

1012
	if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
			100*(tl + p->se.load.weight) <= imbalance*load) {
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1027 1028 1029
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1030
	int prev_cpu, this_cpu, new_cpu;
1031
	unsigned long load, this_load;
I
Ingo Molnar 已提交
1032
	struct rq *rq, *this_rq;
1033 1034
	unsigned int imbalance;
	int idx;
1035

1036 1037 1038
	prev_cpu	= task_cpu(p);
	rq		= task_rq(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1039
	this_rq		= cpu_rq(this_cpu);
1040
	new_cpu		= prev_cpu;
1041

1042 1043 1044 1045
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1046
	for_each_domain(this_cpu, sd) {
1047
		if (cpu_isset(prev_cpu, sd->span)) {
1048 1049 1050 1051 1052 1053
			this_sd = sd;
			break;
		}
	}

	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1054
		goto out;
1055 1056 1057 1058

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1059
	if (!this_sd)
1060
		goto out;
1061

1062 1063 1064 1065
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1066
	load = source_load(prev_cpu, idx);
1067 1068
	this_load = target_load(this_cpu, idx);

I
Ingo Molnar 已提交
1069 1070 1071 1072 1073
	if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
				     load, this_load, imbalance))
		return this_cpu;

	if (prev_cpu == this_cpu)
1074
		goto out;
1075 1076 1077 1078 1079 1080 1081 1082 1083

	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1084
			return this_cpu;
1085 1086 1087
		}
	}

1088
out:
1089 1090 1091 1092
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
static unsigned long wakeup_gran(struct sched_entity *se)
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
	 * More easily preempt - nice tasks, while not making
	 * it harder for + nice tasks.
	 */
	if (unlikely(se->load.weight > NICE_0_LOAD))
		gran = calc_delta_fair(gran, &se->load);

	return gran;
}

/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff < 0)
		return -1;

	gran = wakeup_gran(curr);
	if (vdiff > gran)
		return 1;

	return 0;
}
1135

D
Dhaval Giani 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

1147 1148 1149
/*
 * Preempt the current task with a newly woken task if needed:
 */
I
Ingo Molnar 已提交
1150
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1151 1152
{
	struct task_struct *curr = rq->curr;
1153
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1154
	struct sched_entity *se = &curr->se, *pse = &p->se;
D
Dhaval Giani 已提交
1155
	int se_depth, pse_depth;
1156 1157

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
1158
		update_rq_clock(rq);
1159
		update_curr(cfs_rq);
1160 1161 1162
		resched_task(curr);
		return;
	}
1163

I
Ingo Molnar 已提交
1164 1165 1166 1167
	se->last_wakeup = se->sum_exec_runtime;
	if (unlikely(se == pse))
		return;

1168 1169
	cfs_rq_of(pse)->next = pse;

1170 1171 1172 1173 1174 1175
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
1176

1177 1178
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1179

D
Dhaval Giani 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(se);
	pse_depth = depth_se(pse);

	while (se_depth > pse_depth) {
		se_depth--;
		se = parent_entity(se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		pse = parent_entity(pse);
	}

1201 1202 1203
	while (!is_same_group(se, pse)) {
		se = parent_entity(se);
		pse = parent_entity(pse);
1204
	}
1205

1206
	if (wakeup_preempt_entity(se, pse) == 1)
1207
		resched_task(curr);
1208 1209
}

1210
static struct task_struct *pick_next_task_fair(struct rq *rq)
1211
{
P
Peter Zijlstra 已提交
1212
	struct task_struct *p;
1213 1214 1215 1216 1217 1218 1219
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1220
		se = pick_next_entity(cfs_rq);
1221 1222 1223
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1224 1225 1226 1227
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1228 1229 1230 1231 1232
}

/*
 * Account for a descheduled task:
 */
1233
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1234 1235 1236 1237 1238 1239
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1240
		put_prev_entity(cfs_rq, se);
1241 1242 1243
	}
}

1244
#ifdef CONFIG_SMP
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1256
static struct task_struct *
1257 1258
__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
{
D
Dhaval Giani 已提交
1259 1260
	struct task_struct *p = NULL;
	struct sched_entity *se;
1261 1262 1263 1264

	if (!curr)
		return NULL;

D
Dhaval Giani 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	/* Skip over entities that are not tasks */
	do {
		se = rb_entry(curr, struct sched_entity, run_node);
		curr = rb_next(curr);
	} while (curr && !entity_is_task(se));

	cfs_rq->rb_load_balance_curr = curr;

	if (entity_is_task(se))
		p = task_of(se);
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
#ifdef CONFIG_FAIR_GROUP_SCHED
static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
{
	struct sched_entity *curr;
	struct task_struct *p;

	if (!cfs_rq->nr_running || !first_fair(cfs_rq))
		return MAX_PRIO;

	curr = cfs_rq->curr;
	if (!curr)
		curr = __pick_next_entity(cfs_rq);

	p = task_of(curr);

	return p->prio;
}
#endif

P
Peter Williams 已提交
1312
static unsigned long
1313
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1314
		  unsigned long max_load_move,
1315 1316
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1317 1318 1319 1320 1321 1322 1323 1324 1325
{
	struct cfs_rq *busy_cfs_rq;
	long rem_load_move = max_load_move;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1326
#ifdef CONFIG_FAIR_GROUP_SCHED
1327 1328 1329
		struct cfs_rq *this_cfs_rq;
		long imbalance;
		unsigned long maxload;
1330

1331
		this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
1332

1333 1334 1335
		imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
		/* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
		if (imbalance <= 0)
1336 1337
			continue;

1338 1339 1340
		/* Don't pull more than imbalance/2 */
		imbalance /= 2;
		maxload = min(rem_load_move, imbalance);
1341

1342
		*this_best_prio = cfs_rq_best_prio(this_cfs_rq);
1343
#else
1344
# define maxload rem_load_move
1345
#endif
1346 1347
		/*
		 * pass busy_cfs_rq argument into
1348 1349 1350
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
1351
		rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
1352 1353 1354
					       maxload, sd, idle, all_pinned,
					       this_best_prio,
					       &cfs_rq_iterator);
1355

1356
		if (rem_load_move <= 0)
1357 1358 1359
			break;
	}

P
Peter Williams 已提交
1360
	return max_load_move - rem_load_move;
1361 1362
}

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1386
#endif
1387

1388 1389 1390
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1391
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1392 1393 1394 1395 1396 1397
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1398
		entity_tick(cfs_rq, se, queued);
1399 1400 1401
	}
}

1402
#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1403

1404 1405 1406 1407 1408 1409 1410
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1411
static void task_new_fair(struct rq *rq, struct task_struct *p)
1412 1413
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1414
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1415
	int this_cpu = smp_processor_id();
1416 1417 1418

	sched_info_queued(p);

1419
	update_curr(cfs_rq);
1420
	place_entity(cfs_rq, se, 1);
1421

1422
	/* 'curr' will be NULL if the child belongs to a different group */
1423
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1424
			curr && curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1425
		/*
1426 1427 1428
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1429 1430
		swap(curr->vruntime, se->vruntime);
	}
1431

1432
	enqueue_task_fair(rq, p, 0);
1433
	resched_task(rq->curr);
1434 1435
}

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
		check_preempt_curr(rq, p);
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
		check_preempt_curr(rq, p);
}

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1495 1496 1497
/*
 * All the scheduling class methods:
 */
1498 1499
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1500 1501 1502
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
1503 1504 1505
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_fair,
#endif /* CONFIG_SMP */
1506

I
Ingo Molnar 已提交
1507
	.check_preempt_curr	= check_preempt_wakeup,
1508 1509 1510 1511

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1512
#ifdef CONFIG_SMP
1513
	.load_balance		= load_balance_fair,
1514
	.move_one_task		= move_one_task_fair,
1515
#endif
1516

1517
	.set_curr_task          = set_curr_task_fair,
1518 1519
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1520 1521 1522

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1523 1524 1525 1526

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1527 1528 1529
};

#ifdef CONFIG_SCHED_DEBUG
1530
static void print_cfs_stats(struct seq_file *m, int cpu)
1531 1532 1533
{
	struct cfs_rq *cfs_rq;

1534
	rcu_read_lock();
1535
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1536
		print_cfs_rq(m, cpu, cfs_rq);
1537
	rcu_read_unlock();
1538 1539
}
#endif