sched_fair.c 38.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77
static const struct sched_class fair_sched_class;

78 79 80 81
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

P
Peter Zijlstra 已提交
82 83 84 85 86
static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}

87
#ifdef CONFIG_FAIR_GROUP_SCHED
88

89
/* cpu runqueue to which this cfs_rq is attached */
90 91
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
92
	return cfs_rq->rq;
93 94
}

95 96
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
97

P
Peter Zijlstra 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

146
#else	/* CONFIG_FAIR_GROUP_SCHED */
147

148 149 150
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
151 152 153 154
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
155 156
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
157

P
Peter Zijlstra 已提交
158
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
159
{
P
Peter Zijlstra 已提交
160
	return &task_rq(p)->cfs;
161 162
}

P
Peter Zijlstra 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

198 199 200 201 202

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

203
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
204
{
205 206
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
207 208 209 210 211
		min_vruntime = vruntime;

	return min_vruntime;
}

212
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
213 214 215 216 217 218 219 220
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

221
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
222
{
223
	return se->vruntime - cfs_rq->min_vruntime;
224 225
}

226 227 228
/*
 * Enqueue an entity into the rb-tree:
 */
229
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
230 231 232 233
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
234
	s64 key = entity_key(cfs_rq, se);
235 236 237 238 239 240 241 242 243 244 245 246
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
247
		if (key < entity_key(cfs_rq, entry)) {
248 249 250 251 252 253 254 255 256 257 258
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
P
Peter Zijlstra 已提交
259
	if (leftmost) {
I
Ingo Molnar 已提交
260
		cfs_rq->rb_leftmost = &se->run_node;
P
Peter Zijlstra 已提交
261 262 263 264 265 266 267
		/*
		 * maintain cfs_rq->min_vruntime to be a monotonic increasing
		 * value tracking the leftmost vruntime in the tree.
		 */
		cfs_rq->min_vruntime =
			max_vruntime(cfs_rq->min_vruntime, se->vruntime);
	}
268 269 270 271 272

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

273
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
274
{
P
Peter Zijlstra 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;
		struct sched_entity *next;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;

		if (next_node) {
			next = rb_entry(next_node,
					struct sched_entity, run_node);
			cfs_rq->min_vruntime =
				max_vruntime(cfs_rq->min_vruntime,
					     next->vruntime);
		}
	}
I
Ingo Molnar 已提交
290

291 292 293
	if (cfs_rq->next == se)
		cfs_rq->next = NULL;

294 295 296 297 298 299 300 301 302 303 304 305 306
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

307 308
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
309
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
310

311 312
	if (!last)
		return NULL;
313 314

	return rb_entry(last, struct sched_entity, run_node);
315 316
}

317 318 319 320
/**************************************************************
 * Scheduling class statistics methods:
 */

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
337

338
/*
339
 * delta *= P[w / rw]
340 341 342 343 344 345 346 347 348 349 350 351 352
 */
static inline unsigned long
calc_delta_weight(unsigned long delta, struct sched_entity *se)
{
	for_each_sched_entity(se) {
		delta = calc_delta_mine(delta,
				se->load.weight, &cfs_rq_of(se)->load);
	}

	return delta;
}

/*
353
 * delta /= w
354 355 356 357
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
358 359
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
360 361 362 363

	return delta;
}

364 365 366 367 368 369 370 371
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
372 373 374
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
375
	unsigned long nr_latency = sched_nr_latency;
376 377

	if (unlikely(nr_running > nr_latency)) {
378
		period = sysctl_sched_min_granularity;
379 380 381 382 383 384
		period *= nr_running;
	}

	return period;
}

385 386 387 388
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
389
 * s = p*P[w/rw]
390
 */
P
Peter Zijlstra 已提交
391
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
392
{
393 394 395 396 397 398
	unsigned long nr_running = cfs_rq->nr_running;

	if (unlikely(!se->on_rq))
		nr_running++;

	return calc_delta_weight(__sched_period(nr_running), se);
399 400
}

401
/*
402
 * We calculate the vruntime slice of a to be inserted task
403
 *
404
 * vs = s/w
405
 */
406
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
407
{
408
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
409 410
}

411 412 413 414 415
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
416 417
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
418
{
419
	unsigned long delta_exec_weighted;
420

421
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
422 423

	curr->sum_exec_runtime += delta_exec;
424
	schedstat_add(cfs_rq, exec_clock, delta_exec);
425
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
426
	curr->vruntime += delta_exec_weighted;
427 428
}

429
static void update_curr(struct cfs_rq *cfs_rq)
430
{
431
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
432
	u64 now = rq_of(cfs_rq)->clock;
433 434 435 436 437 438 439 440 441 442
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
443
	delta_exec = (unsigned long)(now - curr->exec_start);
444

I
Ingo Molnar 已提交
445 446
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
447 448 449 450 451

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
452
		account_group_exec_runtime(curtask, delta_exec);
453
	}
454 455 456
}

static inline void
457
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
458
{
459
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
460 461 462 463 464
}

/*
 * Task is being enqueued - update stats:
 */
465
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
466 467 468 469 470
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
471
	if (se != cfs_rq->curr)
472
		update_stats_wait_start(cfs_rq, se);
473 474 475
}

static void
476
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
477
{
478 479
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
480 481 482
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
483
	schedstat_set(se->wait_start, 0);
484 485 486
}

static inline void
487
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
488 489 490 491 492
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
493
	if (se != cfs_rq->curr)
494
		update_stats_wait_end(cfs_rq, se);
495 496 497 498 499 500
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
501
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
502 503 504 505
{
	/*
	 * We are starting a new run period:
	 */
506
	se->exec_start = rq_of(cfs_rq)->clock;
507 508 509 510 511 512
}

/**************************************************
 * Scheduling class queueing methods:
 */

513 514 515 516 517 518 519 520 521 522 523 524 525
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

526 527 528 529
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
530 531
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
532
	if (entity_is_task(se)) {
533
		add_cfs_task_weight(cfs_rq, se->load.weight);
534 535
		list_add(&se->group_node, &cfs_rq->tasks);
	}
536 537 538 539 540 541 542 543
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
544 545
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
546
	if (entity_is_task(se)) {
547
		add_cfs_task_weight(cfs_rq, -se->load.weight);
548 549
		list_del_init(&se->group_node);
	}
550 551 552 553
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

554
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
555 556 557
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
558
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
A
Arjan van de Ven 已提交
559
		struct task_struct *tsk = task_of(se);
560 561 562 563 564 565 566 567 568

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
569 570

		account_scheduler_latency(tsk, delta >> 10, 1);
571 572
	}
	if (se->block_start) {
573
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
A
Arjan van de Ven 已提交
574
		struct task_struct *tsk = task_of(se);
575 576 577 578 579 580 581 582 583

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
584 585 586 587 588 589 590

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
591

I
Ingo Molnar 已提交
592 593 594
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
A
Arjan van de Ven 已提交
595
		account_scheduler_latency(tsk, delta >> 10, 0);
596 597 598 599
	}
#endif
}

P
Peter Zijlstra 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

613 614 615
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
P
Peter Zijlstra 已提交
616
	u64 vruntime;
617

P
Peter Zijlstra 已提交
618 619 620 621 622
	if (first_fair(cfs_rq)) {
		vruntime = min_vruntime(cfs_rq->min_vruntime,
				__pick_next_entity(cfs_rq)->vruntime);
	} else
		vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
623

624 625 626 627 628 629
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
630
	if (initial && sched_feat(START_DEBIT))
631
		vruntime += sched_vslice(cfs_rq, se);
632

I
Ingo Molnar 已提交
633
	if (!initial) {
634
		/* sleeps upto a single latency don't count. */
635 636 637 638 639 640 641 642 643 644 645
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
			unsigned long thresh = sysctl_sched_latency;

			/*
			 * convert the sleeper threshold into virtual time
			 */
			if (sched_feat(NORMALIZED_SLEEPER))
				thresh = calc_delta_fair(thresh, se);

			vruntime -= thresh;
		}
646

647 648
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
649 650
	}

P
Peter Zijlstra 已提交
651
	se->vruntime = vruntime;
652 653
}

654
static void
655
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
656 657
{
	/*
658
	 * Update run-time statistics of the 'current'.
659
	 */
660
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
661
	account_entity_enqueue(cfs_rq, se);
662

I
Ingo Molnar 已提交
663
	if (wakeup) {
664
		place_entity(cfs_rq, se, 0);
665
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
666
	}
667

668
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
669
	check_spread(cfs_rq, se);
670 671
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
672 673 674
}

static void
675
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
676
{
677 678 679 680 681
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

682
	update_stats_dequeue(cfs_rq, se);
683
	if (sleep) {
P
Peter Zijlstra 已提交
684
#ifdef CONFIG_SCHEDSTATS
685 686 687 688
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
689
				se->sleep_start = rq_of(cfs_rq)->clock;
690
			if (tsk->state & TASK_UNINTERRUPTIBLE)
691
				se->block_start = rq_of(cfs_rq)->clock;
692
		}
693
#endif
P
Peter Zijlstra 已提交
694 695
	}

696
	if (se != cfs_rq->curr)
697 698
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
699 700 701 702 703
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
704
static void
I
Ingo Molnar 已提交
705
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
706
{
707 708
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
709
	ideal_runtime = sched_slice(cfs_rq, curr);
710
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
I
Ingo Molnar 已提交
711
	if (delta_exec > ideal_runtime)
712 713 714
		resched_task(rq_of(cfs_rq)->curr);
}

715
static void
716
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
717
{
718 719 720 721 722 723 724 725 726 727 728
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

729
	update_stats_curr_start(cfs_rq, se);
730
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
731 732 733 734 735 736
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
737
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
738 739 740 741
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
742
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
743 744
}

745 746 747
static struct sched_entity *
pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
748 749
	struct rq *rq = rq_of(cfs_rq);
	u64 pair_slice = rq->clock - cfs_rq->pair_start;
750

751
	if (!cfs_rq->next || pair_slice > sysctl_sched_min_granularity) {
752
		cfs_rq->pair_start = rq->clock;
753
		return se;
754
	}
755 756 757 758

	return cfs_rq->next;
}

759
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
760
{
D
Dmitry Adamushko 已提交
761
	struct sched_entity *se = NULL;
762

D
Dmitry Adamushko 已提交
763 764
	if (first_fair(cfs_rq)) {
		se = __pick_next_entity(cfs_rq);
765
		se = pick_next(cfs_rq, se);
D
Dmitry Adamushko 已提交
766 767
		set_next_entity(cfs_rq, se);
	}
768 769 770 771

	return se;
}

772
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
773 774 775 776 777 778
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
779
		update_curr(cfs_rq);
780

P
Peter Zijlstra 已提交
781
	check_spread(cfs_rq, prev);
782
	if (prev->on_rq) {
783
		update_stats_wait_start(cfs_rq, prev);
784 785 786
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
787
	cfs_rq->curr = NULL;
788 789
}

P
Peter Zijlstra 已提交
790 791
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
792 793
{
	/*
794
	 * Update run-time statistics of the 'current'.
795
	 */
796
	update_curr(cfs_rq);
797

P
Peter Zijlstra 已提交
798 799 800 801 802
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
803 804 805 806
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
807 808 809 810 811 812 813 814
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

815
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
816
		check_preempt_tick(cfs_rq, curr);
817 818 819 820 821 822
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
846
		if (rq->curr != p)
847
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
848

849
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
850 851
	}
}
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
868
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
869 870 871 872
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
873 874 875 876

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
877 878
#endif

879 880 881 882 883
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
884
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
885 886
{
	struct cfs_rq *cfs_rq;
887
	struct sched_entity *se = &p->se;
888 889

	for_each_sched_entity(se) {
890
		if (se->on_rq)
891 892
			break;
		cfs_rq = cfs_rq_of(se);
893
		enqueue_entity(cfs_rq, se, wakeup);
894
		wakeup = 1;
895
	}
P
Peter Zijlstra 已提交
896

897
	hrtick_update(rq);
898 899 900 901 902 903 904
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
905
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
906 907
{
	struct cfs_rq *cfs_rq;
908
	struct sched_entity *se = &p->se;
909 910 911

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
912
		dequeue_entity(cfs_rq, se, sleep);
913
		/* Don't dequeue parent if it has other entities besides us */
914
		if (cfs_rq->load.weight)
915
			break;
916
		sleep = 1;
917
	}
P
Peter Zijlstra 已提交
918

919
	hrtick_update(rq);
920 921 922
}

/*
923 924 925
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
926
 */
927
static void yield_task_fair(struct rq *rq)
928
{
929 930 931
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
932 933

	/*
934 935 936 937 938
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

939
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
940
		update_rq_clock(rq);
941
		/*
942
		 * Update run-time statistics of the 'current'.
943
		 */
D
Dmitry Adamushko 已提交
944
		update_curr(cfs_rq);
945 946 947 948 949

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
950
	 */
D
Dmitry Adamushko 已提交
951
	rightmost = __pick_last_entity(cfs_rq);
952 953 954
	/*
	 * Already in the rightmost position?
	 */
955
	if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
956 957 958 959
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
960 961
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
962
	 */
963
	se->vruntime = rightmost->vruntime + 1;
964 965
}

966 967 968 969 970
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
971 972
 * Domains may include CPUs that are not usable for migration,
 * hence we need to mask them out (cpu_active_map)
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
992
	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
993 994 995
		return cpu;

	for_each_domain(cpu, sd) {
996 997 998
		if ((sd->flags & SD_WAKE_IDLE)
		    || ((sd->flags & SD_WAKE_IDLE_FAR)
			&& !task_hot(p, task_rq(p)->clock, sd))) {
999
			cpus_and(tmp, sd->span, p->cpus_allowed);
1000
			cpus_and(tmp, tmp, cpu_active_map);
1001
			for_each_cpu_mask_nr(i, tmp) {
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
1016
#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1017 1018 1019 1020 1021 1022 1023
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
1024

1025
#ifdef CONFIG_FAIR_GROUP_SCHED
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 *
 * The problem is that perfectly aligning the shares is rather expensive, hence
 * we try to avoid doing that too often - see update_shares(), which ratelimits
 * this change.
 *
 * We compensate this by not only taking the current delta into account, but
 * also considering the delta between when the shares were last adjusted and
 * now.
 *
 * We still saw a performance dip, some tracing learned us that between
 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 * significantly. Therefore try to bias the error in direction of failing
 * the affine wakeup.
 *
 */
1047 1048
static long effective_load(struct task_group *tg, int cpu,
		long wl, long wg)
1049
{
P
Peter Zijlstra 已提交
1050
	struct sched_entity *se = tg->se[cpu];
1051 1052 1053 1054

	if (!tg->parent)
		return wl;

1055 1056 1057 1058 1059 1060 1061
	/*
	 * By not taking the decrease of shares on the other cpu into
	 * account our error leans towards reducing the affine wakeups.
	 */
	if (!wl && sched_feat(ASYM_EFF_LOAD))
		return wl;

P
Peter Zijlstra 已提交
1062
	for_each_sched_entity(se) {
1063
		long S, rw, s, a, b;
1064 1065 1066 1067 1068 1069 1070 1071 1072
		long more_w;

		/*
		 * Instead of using this increment, also add the difference
		 * between when the shares were last updated and now.
		 */
		more_w = se->my_q->load.weight - se->my_q->rq_weight;
		wl += more_w;
		wg += more_w;
P
Peter Zijlstra 已提交
1073 1074 1075

		S = se->my_q->tg->shares;
		s = se->my_q->shares;
1076
		rw = se->my_q->rq_weight;
1077

1078 1079
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1080

1081 1082 1083 1084 1085
		wl = s*(a-b);

		if (likely(b))
			wl /= b;

1086 1087 1088 1089 1090 1091 1092
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1093 1094
		wg = 0;
	}
1095

P
Peter Zijlstra 已提交
1096
	return wl;
1097
}
P
Peter Zijlstra 已提交
1098

1099
#else
P
Peter Zijlstra 已提交
1100

1101 1102
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1103
{
1104
	return wl;
1105
}
P
Peter Zijlstra 已提交
1106

1107 1108
#endif

1109
static int
1110
wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
I
Ingo Molnar 已提交
1111 1112
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
1113 1114
	    unsigned int imbalance)
{
I
Ingo Molnar 已提交
1115
	struct task_struct *curr = this_rq->curr;
1116
	struct task_group *tg;
1117 1118
	unsigned long tl = this_load;
	unsigned long tl_per_task;
1119
	unsigned long weight;
1120
	int balanced;
1121

1122
	if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1123 1124
		return 0;

1125 1126 1127 1128 1129
	if (!sync && sched_feat(SYNC_WAKEUPS) &&
	    curr->se.avg_overlap < sysctl_sched_migration_cost &&
	    p->se.avg_overlap < sysctl_sched_migration_cost)
		sync = 1;

1130 1131 1132 1133 1134
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1135 1136 1137 1138 1139 1140 1141
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

		tl += effective_load(tg, this_cpu, -weight, -weight);
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
1142

1143 1144
	tg = task_group(p);
	weight = p->se.load.weight;
1145

1146 1147
	balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1148

1149
	/*
I
Ingo Molnar 已提交
1150 1151 1152
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1153
	 */
1154 1155
	if (sync && balanced)
		return 1;
1156 1157 1158 1159

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1160 1161
	if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
			tl_per_task)) {
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1175 1176 1177
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1178
	int prev_cpu, this_cpu, new_cpu;
1179
	unsigned long load, this_load;
1180
	struct rq *this_rq;
1181 1182
	unsigned int imbalance;
	int idx;
1183

1184 1185
	prev_cpu	= task_cpu(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1186
	this_rq		= cpu_rq(this_cpu);
1187
	new_cpu		= prev_cpu;
1188

1189 1190
	if (prev_cpu == this_cpu)
		goto out;
1191 1192 1193 1194
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1195
	for_each_domain(this_cpu, sd) {
1196
		if (cpu_isset(prev_cpu, sd->span)) {
1197 1198 1199 1200 1201 1202
			this_sd = sd;
			break;
		}
	}

	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1203
		goto out;
1204 1205 1206 1207

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1208
	if (!this_sd)
1209
		goto out;
1210

1211 1212 1213 1214
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1215
	load = source_load(prev_cpu, idx);
1216 1217
	this_load = target_load(this_cpu, idx);

1218
	if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
I
Ingo Molnar 已提交
1219 1220 1221
				     load, this_load, imbalance))
		return this_cpu;

1222 1223 1224 1225 1226 1227 1228 1229
	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1230
			return this_cpu;
1231 1232 1233
		}
	}

1234
out:
1235 1236 1237 1238
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

1239 1240 1241 1242 1243
static unsigned long wakeup_gran(struct sched_entity *se)
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
1244 1245
	 * More easily preempt - nice tasks, while not making it harder for
	 * + nice tasks.
1246
	 */
P
Peter Zijlstra 已提交
1247
	if (sched_feat(ASYM_GRAN))
P
Peter Zijlstra 已提交
1248
		gran = calc_delta_mine(gran, NICE_0_LOAD, &se->load);
1249 1250 1251 1252

	return gran;
}

1253 1254 1255
/*
 * Preempt the current task with a newly woken task if needed:
 */
1256
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1257 1258
{
	struct task_struct *curr = rq->curr;
1259
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1260
	struct sched_entity *se = &curr->se, *pse = &p->se;
P
Peter Zijlstra 已提交
1261
	s64 delta_exec;
1262 1263

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
1264
		update_rq_clock(rq);
1265
		update_curr(cfs_rq);
1266 1267 1268
		resched_task(curr);
		return;
	}
1269

I
Ingo Molnar 已提交
1270 1271 1272
	if (unlikely(se == pse))
		return;

P
Peter Zijlstra 已提交
1273 1274
	cfs_rq_of(pse)->next = pse;

1275 1276 1277 1278 1279 1280 1281
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 */
	if (test_tsk_need_resched(curr))
		return;

1282 1283 1284 1285 1286 1287
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
1288

1289 1290
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1291

1292 1293 1294
	if (sched_feat(WAKEUP_OVERLAP) && (sync ||
			(se->avg_overlap < sysctl_sched_migration_cost &&
			 pse->avg_overlap < sysctl_sched_migration_cost))) {
1295 1296 1297 1298
		resched_task(curr);
		return;
	}

P
Peter Zijlstra 已提交
1299 1300
	delta_exec = se->sum_exec_runtime - se->prev_sum_exec_runtime;
	if (delta_exec > wakeup_gran(pse))
1301
		resched_task(curr);
1302 1303
}

1304
static struct task_struct *pick_next_task_fair(struct rq *rq)
1305
{
P
Peter Zijlstra 已提交
1306
	struct task_struct *p;
1307 1308 1309 1310 1311 1312 1313
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1314
		se = pick_next_entity(cfs_rq);
1315 1316 1317
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1318 1319 1320 1321
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1322 1323 1324 1325 1326
}

/*
 * Account for a descheduled task:
 */
1327
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1328 1329 1330 1331 1332 1333
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1334
		put_prev_entity(cfs_rq, se);
1335 1336 1337
	}
}

1338
#ifdef CONFIG_SMP
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1350
static struct task_struct *
1351
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1352
{
D
Dhaval Giani 已提交
1353 1354
	struct task_struct *p = NULL;
	struct sched_entity *se;
1355

1356 1357 1358
	if (next == &cfs_rq->tasks)
		return NULL;

1359 1360 1361
	se = list_entry(next, struct sched_entity, group_node);
	p = task_of(se);
	cfs_rq->balance_iterator = next->next;
1362

1363 1364 1365 1366 1367 1368 1369
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1370
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1371 1372 1373 1374 1375 1376
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1377
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1378 1379
}

1380 1381 1382 1383 1384
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1385
{
1386
	struct rq_iterator cfs_rq_iterator;
1387

1388 1389 1390
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1391

1392 1393 1394
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1395 1396
}

1397
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1398
static unsigned long
1399
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1400
		  unsigned long max_load_move,
1401 1402
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1403 1404
{
	long rem_load_move = max_load_move;
1405 1406
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1407

1408
	rcu_read_lock();
1409
	update_h_load(busiest_cpu);
1410

1411
	list_for_each_entry_rcu(tg, &task_groups, list) {
1412
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1413 1414
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
S
Srivatsa Vaddagiri 已提交
1415
		u64 rem_load, moved_load;
1416

1417 1418 1419
		/*
		 * empty group
		 */
1420
		if (!busiest_cfs_rq->task_weight)
1421 1422
			continue;

S
Srivatsa Vaddagiri 已提交
1423 1424
		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);
1425

1426
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1427
				rem_load, sd, idle, all_pinned, this_best_prio,
1428
				tg->cfs_rq[busiest_cpu]);
1429

1430
		if (!moved_load)
1431 1432
			continue;

1433
		moved_load *= busiest_h_load;
S
Srivatsa Vaddagiri 已提交
1434
		moved_load = div_u64(moved_load, busiest_weight + 1);
1435

1436 1437
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1438 1439
			break;
	}
1440
	rcu_read_unlock();
1441

P
Peter Williams 已提交
1442
	return max_load_move - rem_load_move;
1443
}
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1456

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1480
#endif /* CONFIG_SMP */
1481

1482 1483 1484
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1485
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1486 1487 1488 1489 1490 1491
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1492
		entity_tick(cfs_rq, se, queued);
1493 1494 1495
	}
}

1496
#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1497

1498 1499 1500 1501 1502 1503 1504
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1505
static void task_new_fair(struct rq *rq, struct task_struct *p)
1506 1507
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1508
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1509
	int this_cpu = smp_processor_id();
1510 1511 1512

	sched_info_queued(p);

1513
	update_curr(cfs_rq);
1514
	place_entity(cfs_rq, se, 1);
1515

1516
	/* 'curr' will be NULL if the child belongs to a different group */
1517
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1518
			curr && curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1519
		/*
1520 1521 1522
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1523
		swap(curr->vruntime, se->vruntime);
1524
		resched_task(rq->curr);
1525
	}
1526

1527
	enqueue_task_fair(rq, p, 0);
1528 1529
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
1546
		check_preempt_curr(rq, p, 0);
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
1563
		check_preempt_curr(rq, p, 0);
1564 1565
}

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1589 1590 1591
/*
 * All the scheduling class methods:
 */
1592 1593
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1594 1595 1596 1597
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
1598
	.check_preempt_curr	= check_preempt_wakeup,
1599 1600 1601 1602

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1603
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1604 1605
	.select_task_rq		= select_task_rq_fair,

1606
	.load_balance		= load_balance_fair,
1607
	.move_one_task		= move_one_task_fair,
1608
#endif
1609

1610
	.set_curr_task          = set_curr_task_fair,
1611 1612
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1613 1614 1615

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1616 1617 1618 1619

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1620 1621 1622
};

#ifdef CONFIG_SCHED_DEBUG
1623
static void print_cfs_stats(struct seq_file *m, int cpu)
1624 1625 1626
{
	struct cfs_rq *cfs_rq;

1627
	rcu_read_lock();
1628
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1629
		print_cfs_rq(m, cpu, cfs_rq);
1630
	rcu_read_unlock();
1631 1632
}
#endif