sched_fair.c 25.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22 23
 */

/*
24 25
 * Targeted preemption latency for CPU-bound tasks:
 * (default: 20ms, units: nanoseconds)
26
 *
27
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
28 29 30
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
31
 *
I
Ingo Molnar 已提交
32 33
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
34
 */
35 36 37 38 39 40 41
const_debug unsigned int sysctl_sched_latency = 20000000ULL;

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
const_debug unsigned int sysctl_sched_child_runs_first = 1;
42 43 44 45 46

/*
 * Minimal preemption granularity for CPU-bound tasks:
 * (default: 2 msec, units: nanoseconds)
 */
47
const_debug unsigned int sysctl_sched_nr_latency = 20;
48

49 50 51 52 53 54 55 56
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

57 58
/*
 * SCHED_BATCH wake-up granularity.
I
Ingo Molnar 已提交
59
 * (default: 10 msec, units: nanoseconds)
60 61 62 63 64
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
I
Ingo Molnar 已提交
65
const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
66 67 68

/*
 * SCHED_OTHER wake-up granularity.
I
Ingo Molnar 已提交
69
 * (default: 10 msec, units: nanoseconds)
70 71 72 73 74
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
I
Ingo Molnar 已提交
75
const_debug unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
76 77 78 79 80

/**************************************************************
 * CFS operations on generic schedulable entities:
 */

81
#ifdef CONFIG_FAIR_GROUP_SCHED
82

83
/* cpu runqueue to which this cfs_rq is attached */
84 85
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
86
	return cfs_rq->rq;
87 88
}

89 90
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
91

92
#else	/* CONFIG_FAIR_GROUP_SCHED */
93

94 95 96
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
}

#define entity_is_task(se)	1

#endif	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}


/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

113
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
114
{
115 116
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
117 118 119 120 121
		min_vruntime = vruntime;

	return min_vruntime;
}

122
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
123 124 125 126 127 128 129 130
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

131
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
132
{
133
	return se->vruntime - cfs_rq->min_vruntime;
134 135
}

136 137 138
/*
 * Enqueue an entity into the rb-tree:
 */
139
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
140 141 142 143
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
144
	s64 key = entity_key(cfs_rq, se);
145 146 147 148 149 150 151 152 153 154 155 156
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
157
		if (key < entity_key(cfs_rq, entry)) {
158 159 160 161 162 163 164 165 166 167 168 169
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
	if (leftmost)
I
Ingo Molnar 已提交
170
		cfs_rq->rb_leftmost = &se->run_node;
171 172 173 174 175

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

176
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
177 178
{
	if (cfs_rq->rb_leftmost == &se->run_node)
I
Ingo Molnar 已提交
179
		cfs_rq->rb_leftmost = rb_next(&se->run_node);
I
Ingo Molnar 已提交
180

181 182 183 184 185 186 187 188 189 190 191 192 193
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct sched_entity *se = NULL;
	struct rb_node *parent;

	while (*link) {
		parent = *link;
		se = rb_entry(parent, struct sched_entity, run_node);
		link = &parent->rb_right;
	}

	return se;
}

209 210 211 212
/**************************************************************
 * Scheduling class statistics methods:
 */

213 214 215 216 217 218 219 220 221

/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
222 223 224
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
225
	unsigned long nr_latency = sysctl_sched_nr_latency;
226 227 228 229 230 231 232 233 234

	if (unlikely(nr_running > nr_latency)) {
		period *= nr_running;
		do_div(period, nr_latency);
	}

	return period;
}

235 236 237 238 239 240
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
 * s = p*w/rw
 */
P
Peter Zijlstra 已提交
241
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
242
{
243
	u64 slice = __sched_period(cfs_rq->nr_running);
244

245 246
	slice *= se->load.weight;
	do_div(slice, cfs_rq->load.weight);
247

248
	return slice;
249 250
}

251 252 253 254 255 256
/*
 * We calculate the vruntime slice.
 *
 * vs = s/w = p/rw
 */
static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
P
Peter Zijlstra 已提交
257
{
258
	u64 vslice = __sched_period(nr_running);
P
Peter Zijlstra 已提交
259

260
	do_div(vslice, rq_weight);
P
Peter Zijlstra 已提交
261

262 263
	return vslice;
}
264

265 266 267 268 269 270 271 272 273
static u64 sched_vslice(struct cfs_rq *cfs_rq)
{
	return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
}

static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	return __sched_vslice(cfs_rq->load.weight + se->load.weight,
			cfs_rq->nr_running + 1);
P
Peter Zijlstra 已提交
274 275
}

276 277 278 279 280
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
281 282
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
283
{
284
	unsigned long delta_exec_weighted;
P
Peter Zijlstra 已提交
285
	u64 vruntime;
286

287
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
288 289

	curr->sum_exec_runtime += delta_exec;
290
	schedstat_add(cfs_rq, exec_clock, delta_exec);
I
Ingo Molnar 已提交
291 292 293 294 295 296
	delta_exec_weighted = delta_exec;
	if (unlikely(curr->load.weight != NICE_0_LOAD)) {
		delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
							&curr->load);
	}
	curr->vruntime += delta_exec_weighted;
297 298 299 300 301 302

	/*
	 * maintain cfs_rq->min_vruntime to be a monotonic increasing
	 * value tracking the leftmost vruntime in the tree.
	 */
	if (first_fair(cfs_rq)) {
P
Peter Zijlstra 已提交
303 304
		vruntime = min_vruntime(curr->vruntime,
				__pick_next_entity(cfs_rq)->vruntime);
305
	} else
P
Peter Zijlstra 已提交
306
		vruntime = curr->vruntime;
307 308

	cfs_rq->min_vruntime =
P
Peter Zijlstra 已提交
309
		max_vruntime(cfs_rq->min_vruntime, vruntime);
310 311
}

312
static void update_curr(struct cfs_rq *cfs_rq)
313
{
314
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
315
	u64 now = rq_of(cfs_rq)->clock;
316 317 318 319 320 321 322 323 324 325
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
326
	delta_exec = (unsigned long)(now - curr->exec_start);
327

I
Ingo Molnar 已提交
328 329
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
330 331 332
}

static inline void
333
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
334
{
335
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
336 337 338 339 340
}

/*
 * Task is being enqueued - update stats:
 */
341
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
342 343 344 345 346
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
347
	if (se != cfs_rq->curr)
348
		update_stats_wait_start(cfs_rq, se);
349 350 351
}

static void
352
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
353
{
354 355
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
I
Ingo Molnar 已提交
356
	schedstat_set(se->wait_start, 0);
357 358 359
}

static inline void
360
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
361 362 363 364 365
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
366
	if (se != cfs_rq->curr)
367
		update_stats_wait_end(cfs_rq, se);
368 369 370 371 372 373
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
374
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
375 376 377 378
{
	/*
	 * We are starting a new run period:
	 */
379
	se->exec_start = rq_of(cfs_rq)->clock;
380 381 382 383 384 385
}

/**************************************************
 * Scheduling class queueing methods:
 */

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

402
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
403 404 405
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
406
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
407 408 409 410 411 412 413 414 415 416 417

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
	}
	if (se->block_start) {
418
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
419 420 421 422 423 424 425 426 427

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
428 429 430 431 432 433 434

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
435 436
			struct task_struct *tsk = task_of(se);

I
Ingo Molnar 已提交
437 438 439
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
440 441 442 443
	}
#endif
}

P
Peter Zijlstra 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

457 458 459
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
P
Peter Zijlstra 已提交
460
	u64 vruntime;
461

P
Peter Zijlstra 已提交
462
	vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
463

464
	if (sched_feat(TREE_AVG)) {
P
Peter Zijlstra 已提交
465 466
		struct sched_entity *last = __pick_last_entity(cfs_rq);
		if (last) {
P
Peter Zijlstra 已提交
467 468
			vruntime += last->vruntime;
			vruntime >>= 1;
P
Peter Zijlstra 已提交
469
		}
P
Peter Zijlstra 已提交
470
	} else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
471
		vruntime += sched_vslice(cfs_rq)/2;
P
Peter Zijlstra 已提交
472 473

	if (initial && sched_feat(START_DEBIT))
474
		vruntime += sched_vslice_add(cfs_rq, se);
475

I
Ingo Molnar 已提交
476
	if (!initial) {
477 478
		if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se) &&
				task_of(se)->policy != SCHED_BATCH)
479 480
			vruntime -= sysctl_sched_latency;

481
		vruntime = max_t(s64, vruntime, se->vruntime);
482 483
	}

P
Peter Zijlstra 已提交
484 485
	se->vruntime = vruntime;

486 487
}

488
static void
489
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
490 491
{
	/*
492
	 * Update run-time statistics of the 'current'.
493
	 */
494
	update_curr(cfs_rq);
495

I
Ingo Molnar 已提交
496
	if (wakeup) {
497
		place_entity(cfs_rq, se, 0);
498
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
499
	}
500

501
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
502
	check_spread(cfs_rq, se);
503 504
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
505
	account_entity_enqueue(cfs_rq, se);
506 507 508
}

static void
509
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
510
{
511 512 513 514 515
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

516
	update_stats_dequeue(cfs_rq, se);
517
	if (sleep) {
518
		se->peer_preempt = 0;
P
Peter Zijlstra 已提交
519
#ifdef CONFIG_SCHEDSTATS
520 521 522 523
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
524
				se->sleep_start = rq_of(cfs_rq)->clock;
525
			if (tsk->state & TASK_UNINTERRUPTIBLE)
526
				se->block_start = rq_of(cfs_rq)->clock;
527
		}
528
#endif
P
Peter Zijlstra 已提交
529 530
	}

531
	if (se != cfs_rq->curr)
532 533
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
534 535 536 537 538
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
539
static void
I
Ingo Molnar 已提交
540
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
541
{
542 543
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
544
	ideal_runtime = sched_slice(cfs_rq, curr);
545
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
546 547
	if (delta_exec > ideal_runtime ||
			(sched_feat(PREEMPT_RESTRICT) && curr->peer_preempt))
548
		resched_task(rq_of(cfs_rq)->curr);
549
	curr->peer_preempt = 0;
550 551
}

552
static void
553
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
554
{
555 556 557 558 559 560 561 562 563 564 565
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

566
	update_stats_curr_start(cfs_rq, se);
567
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
568 569 570 571 572 573
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
574
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
575 576 577 578
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
579
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
580 581
}

582
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
583
{
D
Dmitry Adamushko 已提交
584
	struct sched_entity *se = NULL;
585

D
Dmitry Adamushko 已提交
586 587 588 589
	if (first_fair(cfs_rq)) {
		se = __pick_next_entity(cfs_rq);
		set_next_entity(cfs_rq, se);
	}
590 591 592 593

	return se;
}

594
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
595 596 597 598 599 600
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
601
		update_curr(cfs_rq);
602

P
Peter Zijlstra 已提交
603
	check_spread(cfs_rq, prev);
604
	if (prev->on_rq) {
605
		update_stats_wait_start(cfs_rq, prev);
606 607 608
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
609
	cfs_rq->curr = NULL;
610 611 612 613 614
}

static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
	/*
615
	 * Update run-time statistics of the 'current'.
616
	 */
617
	update_curr(cfs_rq);
618

619
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
620
		check_preempt_tick(cfs_rq, curr);
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
}

/**************************************************
 * CFS operations on tasks:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
S
Srivatsa Vaddagiri 已提交
655
	return cfs_rq->tg->cfs_rq[this_cpu];
656 657 658 659 660 661
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

662 663 664
/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
665
{
666
	if (se->cfs_rq == pse->cfs_rq)
667 668 669 670 671
		return 1;

	return 0;
}

672 673 674 675 676
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
#else	/* CONFIG_FAIR_GROUP_SCHED */

#define for_each_sched_entity(se) \
		for (; se; se = NULL)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

709 710
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
711 712 713 714
{
	return 1;
}

715 716 717 718 719
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

720 721 722 723 724 725 726
#endif	/* CONFIG_FAIR_GROUP_SCHED */

/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
727
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
728 729 730 731 732 733 734 735
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		if (se->on_rq)
			break;
		cfs_rq = cfs_rq_of(se);
736
		enqueue_entity(cfs_rq, se, wakeup);
737
		wakeup = 1;
738 739 740 741 742 743 744 745
	}
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
746
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
747 748 749 750 751 752
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
753
		dequeue_entity(cfs_rq, se, sleep);
754 755 756
		/* Don't dequeue parent if it has other entities besides us */
		if (cfs_rq->load.weight)
			break;
757
		sleep = 1;
758 759 760 761
	}
}

/*
762 763 764
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
765
 */
766
static void yield_task_fair(struct rq *rq)
767
{
S
Srivatsa Vaddagiri 已提交
768
	struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
769
	struct sched_entity *rightmost, *se = &rq->curr->se;
770 771

	/*
772 773 774 775 776 777 778 779
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

	if (likely(!sysctl_sched_compat_yield)) {
		__update_rq_clock(rq);
		/*
780
		 * Update run-time statistics of the 'current'.
781
		 */
D
Dmitry Adamushko 已提交
782
		update_curr(cfs_rq);
783 784 785 786 787

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
788
	 */
D
Dmitry Adamushko 已提交
789
	rightmost = __pick_last_entity(cfs_rq);
790 791 792
	/*
	 * Already in the rightmost position?
	 */
D
Dmitry Adamushko 已提交
793
	if (unlikely(rightmost->vruntime < se->vruntime))
794 795 796 797
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
798 799
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
800
	 */
801
	se->vruntime = rightmost->vruntime + 1;
802 803 804 805 806
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
I
Ingo Molnar 已提交
807
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
808 809
{
	struct task_struct *curr = rq->curr;
810
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
811
	struct sched_entity *se = &curr->se, *pse = &p->se;
812
	s64 delta, gran;
813 814

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
815
		update_rq_clock(rq);
816
		update_curr(cfs_rq);
817 818 819
		resched_task(curr);
		return;
	}
820 821 822 823 824 825
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
826

827 828 829 830 831
	if (sched_feat(WAKEUP_PREEMPT)) {
		while (!is_same_group(se, pse)) {
			se = parent_entity(se);
			pse = parent_entity(pse);
		}
832

833 834 835 836
		delta = se->vruntime - pse->vruntime;
		gran = sysctl_sched_wakeup_granularity;
		if (unlikely(se->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, &se->load);
837

838 839 840 841 842 843
		if (delta > gran) {
			int now = !sched_feat(PREEMPT_RESTRICT);

			if (now || p->prio < curr->prio || !se->peer_preempt++)
				resched_task(curr);
		}
844
	}
845 846
}

847
static struct task_struct *pick_next_task_fair(struct rq *rq)
848 849 850 851 852 853 854 855
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
856
		se = pick_next_entity(cfs_rq);
857 858 859 860 861 862 863 864 865
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	return task_of(se);
}

/*
 * Account for a descheduled task:
 */
866
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
867 868 869 870 871 872
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
873
		put_prev_entity(cfs_rq, se);
874 875 876 877 878 879 880 881 882 883 884 885 886 887
	}
}

/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
888
static struct task_struct *
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
{
	struct task_struct *p;

	if (!curr)
		return NULL;

	p = rb_entry(curr, struct task_struct, se.run_node);
	cfs_rq->rb_load_balance_curr = rb_next(curr);

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
}

916
#ifdef CONFIG_FAIR_GROUP_SCHED
917 918 919 920 921 922 923 924
static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
{
	struct sched_entity *curr;
	struct task_struct *p;

	if (!cfs_rq->nr_running)
		return MAX_PRIO;

925 926 927 928
	curr = cfs_rq->curr;
	if (!curr)
		curr = __pick_next_entity(cfs_rq);

929 930 931 932
	p = task_of(curr);

	return p->prio;
}
933
#endif
934

P
Peter Williams 已提交
935
static unsigned long
936
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
937 938 939
		  unsigned long max_nr_move, unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
940 941 942 943 944 945 946 947 948 949
{
	struct cfs_rq *busy_cfs_rq;
	unsigned long load_moved, total_nr_moved = 0, nr_moved;
	long rem_load_move = max_load_move;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
950
#ifdef CONFIG_FAIR_GROUP_SCHED
951
		struct cfs_rq *this_cfs_rq;
952
		long imbalance;
953 954 955 956
		unsigned long maxload;

		this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);

957
		imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
958 959 960 961 962 963 964 965
		/* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
		if (imbalance <= 0)
			continue;

		/* Don't pull more than imbalance/2 */
		imbalance /= 2;
		maxload = min(rem_load_move, imbalance);

966 967
		*this_best_prio = cfs_rq_best_prio(this_cfs_rq);
#else
968
# define maxload rem_load_move
969
#endif
970 971 972 973 974 975
		/* pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		nr_moved = balance_tasks(this_rq, this_cpu, busiest,
				max_nr_move, maxload, sd, idle, all_pinned,
976
				&load_moved, this_best_prio, &cfs_rq_iterator);
977 978 979 980 981 982 983 984 985

		total_nr_moved += nr_moved;
		max_nr_move -= nr_moved;
		rem_load_move -= load_moved;

		if (max_nr_move <= 0 || rem_load_move <= 0)
			break;
	}

P
Peter Williams 已提交
986
	return max_load_move - rem_load_move;
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
}

/*
 * scheduler tick hitting a task of our scheduling class:
 */
static void task_tick_fair(struct rq *rq, struct task_struct *curr)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		entity_tick(cfs_rq, se);
	}
}

1003 1004
#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)

1005 1006 1007 1008 1009 1010 1011
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1012
static void task_new_fair(struct rq *rq, struct task_struct *p)
1013 1014
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1015
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1016
	int this_cpu = smp_processor_id();
1017 1018 1019

	sched_info_queued(p);

1020
	update_curr(cfs_rq);
1021
	place_entity(cfs_rq, se, 1);
1022

1023
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1024
			curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1025
		/*
1026 1027 1028
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1029 1030
		swap(curr->vruntime, se->vruntime);
	}
1031

I
Ingo Molnar 已提交
1032
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
1033 1034
	check_spread(cfs_rq, se);
	check_spread(cfs_rq, curr);
1035
	__enqueue_entity(cfs_rq, se);
1036
	account_entity_enqueue(cfs_rq, se);
1037
	se->peer_preempt = 0;
1038
	resched_task(rq->curr);
1039 1040
}

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

1054 1055 1056
/*
 * All the scheduling class methods:
 */
1057 1058
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1059 1060 1061 1062
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
1063
	.check_preempt_curr	= check_preempt_wakeup,
1064 1065 1066 1067 1068 1069

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

	.load_balance		= load_balance_fair,

1070
	.set_curr_task          = set_curr_task_fair,
1071 1072 1073 1074 1075
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
};

#ifdef CONFIG_SCHED_DEBUG
1076
static void print_cfs_stats(struct seq_file *m, int cpu)
1077 1078 1079
{
	struct cfs_rq *cfs_rq;

S
Srivatsa Vaddagiri 已提交
1080 1081 1082
#ifdef CONFIG_FAIR_GROUP_SCHED
	print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
#endif
1083
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1084
		print_cfs_rq(m, cpu, cfs_rq);
1085 1086
}
#endif