sched_fair.c 30.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22 23
 */

/*
24 25
 * Targeted preemption latency for CPU-bound tasks:
 * (default: 20ms, units: nanoseconds)
26
 *
27 28 29 30
 * NOTE: this latency value is not the same as the concept of
 * 'timeslice length' - timeslices in CFS are of variable length.
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches field)
31 32 33 34
 *
 * On SMP systems the value of this is multiplied by the log2 of the
 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35
 * Targeted preemption latency for CPU-bound tasks:
36
 */
37 38 39 40 41 42
unsigned int sysctl_sched_latency __read_mostly = 20000000ULL;

/*
 * Minimal preemption granularity for CPU-bound tasks:
 * (default: 2 msec, units: nanoseconds)
 */
43
unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
44

45 46 47 48 49 50 51 52
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

53 54
/*
 * SCHED_BATCH wake-up granularity.
55
 * (default: 25 msec, units: nanoseconds)
56 57 58 59 60
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
61
unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly = 25000000UL;
62 63 64 65 66 67 68 69 70

/*
 * SCHED_OTHER wake-up granularity.
 * (default: 1 msec, units: nanoseconds)
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
71
unsigned int sysctl_sched_wakeup_granularity __read_mostly = 1000000UL;
72 73 74 75

unsigned int sysctl_sched_stat_granularity __read_mostly;

/*
76
 * Initialized in sched_init_granularity() [to 5 times the base granularity]:
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
 */
unsigned int sysctl_sched_runtime_limit __read_mostly;

/*
 * Debugging: various feature bits
 */
enum {
	SCHED_FEAT_FAIR_SLEEPERS	= 1,
	SCHED_FEAT_SLEEPER_AVG		= 2,
	SCHED_FEAT_SLEEPER_LOAD_AVG	= 4,
	SCHED_FEAT_PRECISE_CPU_LOAD	= 8,
	SCHED_FEAT_START_DEBIT		= 16,
	SCHED_FEAT_SKIP_INITIAL		= 32,
};

unsigned int sysctl_sched_features __read_mostly =
		SCHED_FEAT_FAIR_SLEEPERS	*1 |
I
Ingo Molnar 已提交
94
		SCHED_FEAT_SLEEPER_AVG		*0 |
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
		SCHED_FEAT_SLEEPER_LOAD_AVG	*1 |
		SCHED_FEAT_PRECISE_CPU_LOAD	*1 |
		SCHED_FEAT_START_DEBIT		*1 |
		SCHED_FEAT_SKIP_INITIAL		*0;

extern struct sched_class fair_sched_class;

/**************************************************************
 * CFS operations on generic schedulable entities:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* cpu runqueue to which this cfs_rq is attached */
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rq;
}

/* currently running entity (if any) on this cfs_rq */
static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
{
	return cfs_rq->curr;
}

/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)

static inline void
set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->curr = se;
}

#else	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
}

static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
{
	struct rq *rq = rq_of(cfs_rq);

	if (unlikely(rq->curr->sched_class != &fair_sched_class))
		return NULL;

	return &rq->curr->se;
}

#define entity_is_task(se)	1

static inline void
set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { }

#endif	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}


/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

/*
 * Enqueue an entity into the rb-tree:
 */
static inline void
__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	s64 key = se->fair_key;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
		if (key - entry->fair_key < 0) {
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
	if (leftmost)
		cfs_rq->rb_leftmost = &se->run_node;

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
205 206

	schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
207 208 209 210 211 212 213 214 215 216 217
}

static inline void
__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (cfs_rq->rb_leftmost == &se->run_node)
		cfs_rq->rb_leftmost = rb_next(&se->run_node);
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
218 219

	schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

/**************************************************************
 * Scheduling class statistics methods:
 */

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
/*
 * Calculate the preemption granularity needed to schedule every
 * runnable task once per sysctl_sched_latency amount of time.
 * (down to a sensible low limit on granularity)
 *
 * For example, if there are 2 tasks running and latency is 10 msecs,
 * we switch tasks every 5 msecs. If we have 3 tasks running, we have
 * to switch tasks every 3.33 msecs to get a 10 msecs observed latency
 * for each task. We do finer and finer scheduling up to until we
 * reach the minimum granularity value.
 *
 * To achieve this we use the following dynamic-granularity rule:
 *
 *    gran = lat/nr - lat/nr/nr
 *
 * This comes out of the following equations:
 *
 *    kA1 + gran = kB1
 *    kB2 + gran = kA2
 *    kA2 = kA1
 *    kB2 = kB1 - d + d/nr
 *    lat = d * nr
 *
 * Where 'k' is key, 'A' is task A (waiting), 'B' is task B (running),
 * '1' is start of time, '2' is end of time, 'd' is delay between
 * 1 and 2 (during which task B was running), 'nr' is number of tasks
 * running, 'lat' is the the period of each task. ('lat' is the
 * sched_latency that we aim for.)
 */
static long
sched_granularity(struct cfs_rq *cfs_rq)
{
	unsigned int gran = sysctl_sched_latency;
	unsigned int nr = cfs_rq->nr_running;

	if (nr > 1) {
		gran = gran/nr - gran/nr/nr;
273
		gran = max(gran, sysctl_sched_min_granularity);
274 275 276 277 278
	}

	return gran;
}

279 280 281 282 283 284 285 286 287
/*
 * We rescale the rescheduling granularity of tasks according to their
 * nice level, but only linearly, not exponentially:
 */
static long
niced_granularity(struct sched_entity *curr, unsigned long granularity)
{
	u64 tmp;

288 289
	if (likely(curr->load.weight == NICE_0_LOAD))
		return granularity;
290
	/*
291
	 * Positive nice levels get the same granularity as nice-0:
292
	 */
293 294 295 296
	if (likely(curr->load.weight < NICE_0_LOAD)) {
		tmp = curr->load.weight * (u64)granularity;
		return (long) (tmp >> NICE_0_SHIFT);
	}
297
	/*
298
	 * Negative nice level tasks get linearly finer
299 300
	 * granularity:
	 */
301
	tmp = curr->load.inv_weight * (u64)granularity;
302 303 304 305

	/*
	 * It will always fit into 'long':
	 */
306
	return (long) (tmp >> (WMULT_SHIFT-NICE_0_SHIFT));
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
}

static inline void
limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	long limit = sysctl_sched_runtime_limit;

	/*
	 * Niced tasks have the same history dynamic range as
	 * non-niced tasks:
	 */
	if (unlikely(se->wait_runtime > limit)) {
		se->wait_runtime = limit;
		schedstat_inc(se, wait_runtime_overruns);
		schedstat_inc(cfs_rq, wait_runtime_overruns);
	}
	if (unlikely(se->wait_runtime < -limit)) {
		se->wait_runtime = -limit;
		schedstat_inc(se, wait_runtime_underruns);
		schedstat_inc(cfs_rq, wait_runtime_underruns);
	}
}

static inline void
__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
{
	se->wait_runtime += delta;
	schedstat_add(se, sum_wait_runtime, delta);
	limit_wait_runtime(cfs_rq, se);
}

static void
add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
{
	schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
	__add_wait_runtime(cfs_rq, se, delta);
	schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
}

/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
351
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr)
352
{
I
Ingo Molnar 已提交
353
	unsigned long delta, delta_exec, delta_fair, delta_mine;
354 355 356 357
	struct load_weight *lw = &cfs_rq->load;
	unsigned long load = lw->weight;

	delta_exec = curr->delta_exec;
358
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
359 360 361 362

	curr->sum_exec_runtime += delta_exec;
	cfs_rq->exec_clock += delta_exec;

I
Ingo Molnar 已提交
363 364 365
	if (unlikely(!load))
		return;

366 367 368
	delta_fair = calc_delta_fair(delta_exec, lw);
	delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);

M
Mike Galbraith 已提交
369
	if (cfs_rq->sleeper_bonus > sysctl_sched_min_granularity) {
370
		delta = min((u64)delta_mine, cfs_rq->sleeper_bonus);
371 372
		delta = min(delta, (unsigned long)(
			(long)sysctl_sched_runtime_limit - curr->wait_runtime));
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
		cfs_rq->sleeper_bonus -= delta;
		delta_mine -= delta;
	}

	cfs_rq->fair_clock += delta_fair;
	/*
	 * We executed delta_exec amount of time on the CPU,
	 * but we were only entitled to delta_mine amount of
	 * time during that period (if nr_running == 1 then
	 * the two values are equal)
	 * [Note: delta_mine - delta_exec is negative]:
	 */
	add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
}

388
static void update_curr(struct cfs_rq *cfs_rq)
389 390 391 392 393 394 395 396 397 398 399 400
{
	struct sched_entity *curr = cfs_rq_curr(cfs_rq);
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
401
	delta_exec = (unsigned long)(rq_of(cfs_rq)->clock - curr->exec_start);
402 403 404 405

	curr->delta_exec += delta_exec;

	if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) {
406
		__update_curr(cfs_rq, curr);
407 408
		curr->delta_exec = 0;
	}
409
	curr->exec_start = rq_of(cfs_rq)->clock;
410 411 412
}

static inline void
413
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
414 415
{
	se->wait_start_fair = cfs_rq->fair_clock;
416
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
}

/*
 * We calculate fair deltas here, so protect against the random effects
 * of a multiplication overflow by capping it to the runtime limit:
 */
#if BITS_PER_LONG == 32
static inline unsigned long
calc_weighted(unsigned long delta, unsigned long weight, int shift)
{
	u64 tmp = (u64)delta * weight >> shift;

	if (unlikely(tmp > sysctl_sched_runtime_limit*2))
		return sysctl_sched_runtime_limit*2;
	return tmp;
}
#else
static inline unsigned long
calc_weighted(unsigned long delta, unsigned long weight, int shift)
{
	return delta * weight >> shift;
}
#endif

/*
 * Task is being enqueued - update stats:
 */
444
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
445 446 447 448 449 450 451 452
{
	s64 key;

	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
	if (se != cfs_rq_curr(cfs_rq))
453
		update_stats_wait_start(cfs_rq, se);
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
	/*
	 * Update the key:
	 */
	key = cfs_rq->fair_clock;

	/*
	 * Optimize the common nice 0 case:
	 */
	if (likely(se->load.weight == NICE_0_LOAD)) {
		key -= se->wait_runtime;
	} else {
		u64 tmp;

		if (se->wait_runtime < 0) {
			tmp = -se->wait_runtime;
			key += (tmp * se->load.inv_weight) >>
					(WMULT_SHIFT - NICE_0_SHIFT);
		} else {
			tmp = se->wait_runtime;
473 474
			key -= (tmp * se->load.inv_weight) >>
					(WMULT_SHIFT - NICE_0_SHIFT);
475 476 477 478 479 480 481 482 483 484
		}
	}

	se->fair_key = key;
}

/*
 * Note: must be called with a freshly updated rq->fair_clock.
 */
static inline void
485
__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
486 487 488
{
	unsigned long delta_fair = se->delta_fair_run;

489 490
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
491 492 493 494 495 496 497 498 499

	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta_fair = calc_weighted(delta_fair, se->load.weight,
							NICE_0_SHIFT);

	add_wait_runtime(cfs_rq, se, delta_fair);
}

static void
500
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
501 502 503
{
	unsigned long delta_fair;

504 505 506
	if (unlikely(!se->wait_start_fair))
		return;

507 508 509 510 511 512
	delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
			(u64)(cfs_rq->fair_clock - se->wait_start_fair));

	se->delta_fair_run += delta_fair;
	if (unlikely(abs(se->delta_fair_run) >=
				sysctl_sched_stat_granularity)) {
513
		__update_stats_wait_end(cfs_rq, se);
514 515 516 517
		se->delta_fair_run = 0;
	}

	se->wait_start_fair = 0;
I
Ingo Molnar 已提交
518
	schedstat_set(se->wait_start, 0);
519 520 521
}

static inline void
522
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
523
{
524
	update_curr(cfs_rq);
525 526 527 528 529
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
	if (se != cfs_rq_curr(cfs_rq))
530
		update_stats_wait_end(cfs_rq, se);
531 532 533 534 535 536
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
537
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
538 539 540 541
{
	/*
	 * We are starting a new run period:
	 */
542
	se->exec_start = rq_of(cfs_rq)->clock;
543 544 545 546 547 548
}

/*
 * We are descheduling a task - update its stats:
 */
static inline void
549
update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
550 551 552 553 554 555 556 557
{
	se->exec_start = 0;
}

/**************************************************
 * Scheduling class queueing methods:
 */

558
static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
559 560 561 562
{
	unsigned long load = cfs_rq->load.weight, delta_fair;
	long prev_runtime;

563 564 565 566 567 568 569
	/*
	 * Do not boost sleepers if there's too much bonus 'in flight'
	 * already:
	 */
	if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit))
		return;

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG)
		load = rq_of(cfs_rq)->cpu_load[2];

	delta_fair = se->delta_fair_sleep;

	/*
	 * Fix up delta_fair with the effect of us running
	 * during the whole sleep period:
	 */
	if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG)
		delta_fair = div64_likely32((u64)delta_fair * load,
						load + se->load.weight);

	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta_fair = calc_weighted(delta_fair, se->load.weight,
							NICE_0_SHIFT);

	prev_runtime = se->wait_runtime;
	__add_wait_runtime(cfs_rq, se, delta_fair);
	delta_fair = se->wait_runtime - prev_runtime;

	/*
	 * Track the amount of bonus we've given to sleepers:
	 */
	cfs_rq->sleeper_bonus += delta_fair;
}

597
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
598 599 600 601 602 603 604 605 606 607 608 609 610 611
{
	struct task_struct *tsk = task_of(se);
	unsigned long delta_fair;

	if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
			 !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS))
		return;

	delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
		(u64)(cfs_rq->fair_clock - se->sleep_start_fair));

	se->delta_fair_sleep += delta_fair;
	if (unlikely(abs(se->delta_fair_sleep) >=
				sysctl_sched_stat_granularity)) {
612
		__enqueue_sleeper(cfs_rq, se);
613 614 615 616 617 618 619
		se->delta_fair_sleep = 0;
	}

	se->sleep_start_fair = 0;

#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
620
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
621 622 623 624 625 626 627 628 629 630 631

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
	}
	if (se->block_start) {
632
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
633 634 635 636 637 638 639 640 641 642 643 644 645 646

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
	}
#endif
}

static void
647
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
648 649 650 651
{
	/*
	 * Update the fair clock.
	 */
652
	update_curr(cfs_rq);
653 654

	if (wakeup)
655
		enqueue_sleeper(cfs_rq, se);
656

657
	update_stats_enqueue(cfs_rq, se);
658 659 660 661
	__enqueue_entity(cfs_rq, se);
}

static void
662
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
663
{
664
	update_stats_dequeue(cfs_rq, se);
665 666 667 668 669 670 671
	if (sleep) {
		se->sleep_start_fair = cfs_rq->fair_clock;
#ifdef CONFIG_SCHEDSTATS
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
672
				se->sleep_start = rq_of(cfs_rq)->clock;
673
			if (tsk->state & TASK_UNINTERRUPTIBLE)
674
				se->block_start = rq_of(cfs_rq)->clock;
675 676 677 678 679 680 681 682 683
		}
#endif
	}
	__dequeue_entity(cfs_rq, se);
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
684
static void
685 686 687 688
__check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
			  struct sched_entity *curr, unsigned long granularity)
{
	s64 __delta = curr->fair_key - se->fair_key;
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
	unsigned long ideal_runtime, delta_exec;

	/*
	 * ideal_runtime is compared against sum_exec_runtime, which is
	 * walltime, hence do not scale.
	 */
	ideal_runtime = max(sysctl_sched_latency / cfs_rq->nr_running,
			(unsigned long)sysctl_sched_min_granularity);

	/*
	 * If we executed more than what the latency constraint suggests,
	 * reduce the rescheduling granularity. This way the total latency
	 * of how much a task is not scheduled converges to
	 * sysctl_sched_latency:
	 */
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	if (delta_exec > ideal_runtime)
		granularity = 0;
707 708 709 710 711

	/*
	 * Take scheduling granularity into account - do not
	 * preempt the current task unless the best task has
	 * a larger than sched_granularity fairness advantage:
712 713
	 *
	 * scale granularity as key space is in fair_clock.
714
	 */
715
	if (__delta > niced_granularity(curr, granularity))
716 717 718 719
		resched_task(rq_of(cfs_rq)->curr);
}

static inline void
720
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
721 722 723 724 725 726 727 728
{
	/*
	 * Any task has to be enqueued before it get to execute on
	 * a CPU. So account for the time it spent waiting on the
	 * runqueue. (note, here we rely on pick_next_task() having
	 * done a put_prev_task_fair() shortly before this, which
	 * updated rq->fair_clock - used by update_stats_wait_end())
	 */
729
	update_stats_wait_end(cfs_rq, se);
730
	update_stats_curr_start(cfs_rq, se);
731
	set_cfs_rq_curr(cfs_rq, se);
732
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
733 734
}

735
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
736 737 738
{
	struct sched_entity *se = __pick_next_entity(cfs_rq);

739
	set_next_entity(cfs_rq, se);
740 741 742 743

	return se;
}

744
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
745 746 747 748 749 750
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
751
		update_curr(cfs_rq);
752

753
	update_stats_curr_end(cfs_rq, prev);
754 755

	if (prev->on_rq)
756
		update_stats_wait_start(cfs_rq, prev);
757 758 759 760 761 762
	set_cfs_rq_curr(cfs_rq, NULL);
}

static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
	struct sched_entity *next;
I
Ingo Molnar 已提交
763

764 765 766 767
	/*
	 * Dequeue and enqueue the task to update its
	 * position within the tree:
	 */
768
	dequeue_entity(cfs_rq, curr, 0);
769
	enqueue_entity(cfs_rq, curr, 0);
770 771 772 773 774 775 776 777

	/*
	 * Reschedule if another task tops the current one.
	 */
	next = __pick_next_entity(cfs_rq);
	if (next == curr)
		return;

778 779
	__check_preempt_curr_fair(cfs_rq, next, curr,
			sched_granularity(cfs_rq));
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
}

/**************************************************
 * CFS operations on tasks:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	/* A later patch will take group into account */
	return &cpu_rq(this_cpu)->cfs;
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) tasks belong to the same group ? */
static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
{
	if (curr->se.cfs_rq == p->se.cfs_rq)
		return 1;

	return 0;
}

#else	/* CONFIG_FAIR_GROUP_SCHED */

#define for_each_sched_entity(se) \
		for (; se; se = NULL)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
{
	return 1;
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
875
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
876 877 878 879 880 881 882 883
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		if (se->on_rq)
			break;
		cfs_rq = cfs_rq_of(se);
884
		enqueue_entity(cfs_rq, se, wakeup);
885 886 887 888 889 890 891 892
	}
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
893
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
894 895 896 897 898 899
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
900
		dequeue_entity(cfs_rq, se, sleep);
901 902 903 904 905 906 907
		/* Don't dequeue parent if it has other entities besides us */
		if (cfs_rq->load.weight)
			break;
	}
}

/*
908 909 910
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
911 912 913 914
 */
static void yield_task_fair(struct rq *rq, struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
915 916 917
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct sched_entity *rightmost, *se = &p->se;
	struct rb_node *parent;
918 919

	/*
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

	if (likely(!sysctl_sched_compat_yield)) {
		__update_rq_clock(rq);
		/*
		 * Dequeue and enqueue the task to update its
		 * position within the tree:
		 */
		dequeue_entity(cfs_rq, &p->se, 0);
		enqueue_entity(cfs_rq, &p->se, 0);

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
938
	 */
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
	do {
		parent = *link;
		link = &parent->rb_right;
	} while (*link);

	rightmost = rb_entry(parent, struct sched_entity, run_node);
	/*
	 * Already in the rightmost position?
	 */
	if (unlikely(rightmost == se))
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
	 */
	se->fair_key = rightmost->fair_key + 1;

	if (cfs_rq->rb_leftmost == &se->run_node)
		cfs_rq->rb_leftmost = rb_next(&se->run_node);
	/*
	 * Relink the task to the rightmost position:
	 */
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
964 965 966 967 968 969 970 971 972 973 974 975
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	unsigned long gran;

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
976
		update_rq_clock(rq);
977
		update_curr(cfs_rq);
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
		resched_task(curr);
		return;
	}

	gran = sysctl_sched_wakeup_granularity;
	/*
	 * Batch tasks prefer throughput over latency:
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		gran = sysctl_sched_batch_wakeup_granularity;

	if (is_same_group(curr, p))
		__check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
}

993
static struct task_struct *pick_next_task_fair(struct rq *rq)
994 995 996 997 998 999 1000 1001
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1002
		se = pick_next_entity(cfs_rq);
1003 1004 1005 1006 1007 1008 1009 1010 1011
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	return task_of(se);
}

/*
 * Account for a descheduled task:
 */
1012
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1013 1014 1015 1016 1017 1018
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1019
		put_prev_entity(cfs_rq, se);
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	}
}

/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
static inline struct task_struct *
__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
{
	struct task_struct *p;

	if (!curr)
		return NULL;

	p = rb_entry(curr, struct task_struct, se.run_node);
	cfs_rq->rb_load_balance_curr = rb_next(curr);

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
}

1062
#ifdef CONFIG_FAIR_GROUP_SCHED
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
{
	struct sched_entity *curr;
	struct task_struct *p;

	if (!cfs_rq->nr_running)
		return MAX_PRIO;

	curr = __pick_next_entity(cfs_rq);
	p = task_of(curr);

	return p->prio;
}
1076
#endif
1077

P
Peter Williams 已提交
1078
static unsigned long
1079
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1080 1081 1082
		  unsigned long max_nr_move, unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
{
	struct cfs_rq *busy_cfs_rq;
	unsigned long load_moved, total_nr_moved = 0, nr_moved;
	long rem_load_move = max_load_move;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1093
#ifdef CONFIG_FAIR_GROUP_SCHED
1094
		struct cfs_rq *this_cfs_rq;
1095
		long imbalance;
1096 1097 1098 1099
		unsigned long maxload;

		this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);

1100
		imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1101 1102 1103 1104 1105 1106 1107 1108
		/* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
		if (imbalance <= 0)
			continue;

		/* Don't pull more than imbalance/2 */
		imbalance /= 2;
		maxload = min(rem_load_move, imbalance);

1109 1110
		*this_best_prio = cfs_rq_best_prio(this_cfs_rq);
#else
1111
# define maxload rem_load_move
1112
#endif
1113 1114 1115 1116 1117 1118
		/* pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		nr_moved = balance_tasks(this_rq, this_cpu, busiest,
				max_nr_move, maxload, sd, idle, all_pinned,
1119
				&load_moved, this_best_prio, &cfs_rq_iterator);
1120 1121 1122 1123 1124 1125 1126 1127 1128

		total_nr_moved += nr_moved;
		max_nr_move -= nr_moved;
		rem_load_move -= load_moved;

		if (max_nr_move <= 0 || rem_load_move <= 0)
			break;
	}

P
Peter Williams 已提交
1129
	return max_load_move - rem_load_move;
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
}

/*
 * scheduler tick hitting a task of our scheduling class:
 */
static void task_tick_fair(struct rq *rq, struct task_struct *curr)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		entity_tick(cfs_rq, se);
	}
}

/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1153
static void task_new_fair(struct rq *rq, struct task_struct *p)
1154 1155
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1156
	struct sched_entity *se = &p->se, *curr = cfs_rq_curr(cfs_rq);
1157 1158 1159

	sched_info_queued(p);

1160
	update_curr(cfs_rq);
1161
	update_stats_enqueue(cfs_rq, se);
1162 1163 1164 1165 1166
	/*
	 * Child runs first: we let it run before the parent
	 * until it reschedules once. We set up the key so that
	 * it will preempt the parent:
	 */
I
Ingo Molnar 已提交
1167
	se->fair_key = curr->fair_key -
1168
		niced_granularity(curr, sched_granularity(cfs_rq)) - 1;
1169 1170 1171 1172 1173
	/*
	 * The first wait is dominated by the child-runs-first logic,
	 * so do not credit it with that waiting time yet:
	 */
	if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL)
I
Ingo Molnar 已提交
1174
		se->wait_start_fair = 0;
1175 1176 1177 1178 1179

	/*
	 * The statistical average of wait_runtime is about
	 * -granularity/2, so initialize the task with that:
	 */
1180
	if (sysctl_sched_features & SCHED_FEAT_START_DEBIT)
I
Ingo Molnar 已提交
1181
		se->wait_runtime = -(sched_granularity(cfs_rq) / 2);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

	__enqueue_entity(cfs_rq, se);
}

#ifdef CONFIG_FAIR_GROUP_SCHED
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
1194
	struct sched_entity *se = &rq->curr->se;
I
Ingo Molnar 已提交
1195

1196 1197
	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
}
#else
static void set_curr_task_fair(struct rq *rq)
{
}
#endif

/*
 * All the scheduling class methods:
 */
struct sched_class fair_sched_class __read_mostly = {
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

	.check_preempt_curr	= check_preempt_curr_fair,

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

	.load_balance		= load_balance_fair,

	.set_curr_task          = set_curr_task_fair,
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
};

#ifdef CONFIG_SCHED_DEBUG
1226
static void print_cfs_stats(struct seq_file *m, int cpu)
1227 1228 1229
{
	struct cfs_rq *cfs_rq;

1230
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1231
		print_cfs_rq(m, cpu, cfs_rq);
1232 1233
}
#endif