sched_fair.c 34.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_BATCH wake-up granularity.
66
 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
I
Ingo Molnar 已提交
72
unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
73 74 75

/*
 * SCHED_OTHER wake-up granularity.
76
 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
77 78 79 80 81
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
I
Ingo Molnar 已提交
82
unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
83

84 85
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

86 87 88 89
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

90
#ifdef CONFIG_FAIR_GROUP_SCHED
91

92
/* cpu runqueue to which this cfs_rq is attached */
93 94
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
95
	return cfs_rq->rq;
96 97
}

98 99
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
100

101
#else	/* CONFIG_FAIR_GROUP_SCHED */
102

103 104 105
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
}

#define entity_is_task(se)	1

#endif	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}


/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

122
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
123
{
124 125
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
126 127 128 129 130
		min_vruntime = vruntime;

	return min_vruntime;
}

131
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
132 133 134 135 136 137 138 139
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

140
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
141
{
142
	return se->vruntime - cfs_rq->min_vruntime;
143 144
}

145 146 147
/*
 * Enqueue an entity into the rb-tree:
 */
148
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
149 150 151 152
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
153
	s64 key = entity_key(cfs_rq, se);
154 155 156 157 158 159 160 161 162 163 164 165
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
166
		if (key < entity_key(cfs_rq, entry)) {
167 168 169 170 171 172 173 174 175 176 177 178
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
	if (leftmost)
I
Ingo Molnar 已提交
179
		cfs_rq->rb_leftmost = &se->run_node;
180 181 182 183 184

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

185
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
186 187
{
	if (cfs_rq->rb_leftmost == &se->run_node)
I
Ingo Molnar 已提交
188
		cfs_rq->rb_leftmost = rb_next(&se->run_node);
I
Ingo Molnar 已提交
189

190 191 192 193 194 195 196 197 198 199 200 201 202
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct sched_entity *se = NULL;
	struct rb_node *parent;

	while (*link) {
		parent = *link;
		se = rb_entry(parent, struct sched_entity, run_node);
		link = &parent->rb_right;
	}

	return se;
}

218 219 220 221
/**************************************************************
 * Scheduling class statistics methods:
 */

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
238 239 240 241 242 243 244 245 246

/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
247 248 249
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
250
	unsigned long nr_latency = sched_nr_latency;
251 252

	if (unlikely(nr_running > nr_latency)) {
253
		period = sysctl_sched_min_granularity;
254 255 256 257 258 259
		period *= nr_running;
	}

	return period;
}

260 261 262 263 264 265
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
 * s = p*w/rw
 */
P
Peter Zijlstra 已提交
266
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
267
{
268
	u64 slice = __sched_period(cfs_rq->nr_running);
269

270 271
	slice *= se->load.weight;
	do_div(slice, cfs_rq->load.weight);
272

273
	return slice;
274 275
}

276 277 278 279 280 281
/*
 * We calculate the vruntime slice.
 *
 * vs = s/w = p/rw
 */
static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
P
Peter Zijlstra 已提交
282
{
283
	u64 vslice = __sched_period(nr_running);
P
Peter Zijlstra 已提交
284

P
Peter Zijlstra 已提交
285
	vslice *= NICE_0_LOAD;
286
	do_div(vslice, rq_weight);
P
Peter Zijlstra 已提交
287

288 289
	return vslice;
}
290

291 292 293 294 295 296 297 298 299
static u64 sched_vslice(struct cfs_rq *cfs_rq)
{
	return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
}

static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	return __sched_vslice(cfs_rq->load.weight + se->load.weight,
			cfs_rq->nr_running + 1);
P
Peter Zijlstra 已提交
300 301
}

302 303 304 305 306
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
307 308
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
309
{
310
	unsigned long delta_exec_weighted;
P
Peter Zijlstra 已提交
311
	u64 vruntime;
312

313
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
314 315

	curr->sum_exec_runtime += delta_exec;
316
	schedstat_add(cfs_rq, exec_clock, delta_exec);
I
Ingo Molnar 已提交
317 318 319 320 321 322
	delta_exec_weighted = delta_exec;
	if (unlikely(curr->load.weight != NICE_0_LOAD)) {
		delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
							&curr->load);
	}
	curr->vruntime += delta_exec_weighted;
323 324 325 326 327 328

	/*
	 * maintain cfs_rq->min_vruntime to be a monotonic increasing
	 * value tracking the leftmost vruntime in the tree.
	 */
	if (first_fair(cfs_rq)) {
P
Peter Zijlstra 已提交
329 330
		vruntime = min_vruntime(curr->vruntime,
				__pick_next_entity(cfs_rq)->vruntime);
331
	} else
P
Peter Zijlstra 已提交
332
		vruntime = curr->vruntime;
333 334

	cfs_rq->min_vruntime =
P
Peter Zijlstra 已提交
335
		max_vruntime(cfs_rq->min_vruntime, vruntime);
336 337
}

338
static void update_curr(struct cfs_rq *cfs_rq)
339
{
340
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
341
	u64 now = rq_of(cfs_rq)->clock;
342 343 344 345 346 347 348 349 350 351
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
352
	delta_exec = (unsigned long)(now - curr->exec_start);
353

I
Ingo Molnar 已提交
354 355
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
356 357 358 359 360 361

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
	}
362 363 364
}

static inline void
365
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
366
{
367
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
368 369 370 371 372
}

/*
 * Task is being enqueued - update stats:
 */
373
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
374 375 376 377 378
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
379
	if (se != cfs_rq->curr)
380
		update_stats_wait_start(cfs_rq, se);
381 382 383
}

static void
384
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
385
{
386 387
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
388 389 390
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
391
	schedstat_set(se->wait_start, 0);
392 393 394
}

static inline void
395
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
396 397 398 399 400
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
401
	if (se != cfs_rq->curr)
402
		update_stats_wait_end(cfs_rq, se);
403 404 405 406 407 408
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
409
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
410 411 412 413
{
	/*
	 * We are starting a new run period:
	 */
414
	se->exec_start = rq_of(cfs_rq)->clock;
415 416 417 418 419 420
}

/**************************************************
 * Scheduling class queueing methods:
 */

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

437
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
438 439 440
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
441
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
A
Arjan van de Ven 已提交
442
		struct task_struct *tsk = task_of(se);
443 444 445 446 447 448 449 450 451

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
452 453

		account_scheduler_latency(tsk, delta >> 10, 1);
454 455
	}
	if (se->block_start) {
456
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
A
Arjan van de Ven 已提交
457
		struct task_struct *tsk = task_of(se);
458 459 460 461 462 463 464 465 466

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
467 468 469 470 471 472 473

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
474

I
Ingo Molnar 已提交
475 476 477
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
A
Arjan van de Ven 已提交
478
		account_scheduler_latency(tsk, delta >> 10, 0);
479 480 481 482
	}
#endif
}

P
Peter Zijlstra 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

496 497 498
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
P
Peter Zijlstra 已提交
499
	u64 vruntime;
500

P
Peter Zijlstra 已提交
501
	vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
502

503
	if (sched_feat(TREE_AVG)) {
P
Peter Zijlstra 已提交
504 505
		struct sched_entity *last = __pick_last_entity(cfs_rq);
		if (last) {
P
Peter Zijlstra 已提交
506 507
			vruntime += last->vruntime;
			vruntime >>= 1;
P
Peter Zijlstra 已提交
508
		}
P
Peter Zijlstra 已提交
509
	} else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
510
		vruntime += sched_vslice(cfs_rq)/2;
P
Peter Zijlstra 已提交
511

512 513 514 515 516 517
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
518
	if (initial && sched_feat(START_DEBIT))
519
		vruntime += sched_vslice_add(cfs_rq, se);
520

I
Ingo Molnar 已提交
521
	if (!initial) {
522
		/* sleeps upto a single latency don't count. */
523
		if (sched_feat(NEW_FAIR_SLEEPERS))
524 525
			vruntime -= sysctl_sched_latency;

526 527
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
528 529
	}

P
Peter Zijlstra 已提交
530
	se->vruntime = vruntime;
531 532
}

533
static void
534
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
535 536
{
	/*
537
	 * Update run-time statistics of the 'current'.
538
	 */
539
	update_curr(cfs_rq);
540

I
Ingo Molnar 已提交
541
	if (wakeup) {
542
		place_entity(cfs_rq, se, 0);
543
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
544
	}
545

546
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
547
	check_spread(cfs_rq, se);
548 549
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
550
	account_entity_enqueue(cfs_rq, se);
551 552 553
}

static void
554
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
555
{
556 557 558 559 560
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

561
	update_stats_dequeue(cfs_rq, se);
562
	if (sleep) {
P
Peter Zijlstra 已提交
563
#ifdef CONFIG_SCHEDSTATS
564 565 566 567
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
568
				se->sleep_start = rq_of(cfs_rq)->clock;
569
			if (tsk->state & TASK_UNINTERRUPTIBLE)
570
				se->block_start = rq_of(cfs_rq)->clock;
571
		}
572
#endif
P
Peter Zijlstra 已提交
573 574
	}

575
	if (se != cfs_rq->curr)
576 577
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
578 579 580 581 582
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
583
static void
I
Ingo Molnar 已提交
584
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
585
{
586 587
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
588
	ideal_runtime = sched_slice(cfs_rq, curr);
589
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
I
Ingo Molnar 已提交
590
	if (delta_exec > ideal_runtime)
591 592 593
		resched_task(rq_of(cfs_rq)->curr);
}

594
static void
595
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
596
{
597 598 599 600 601 602 603 604 605 606 607
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

608
	update_stats_curr_start(cfs_rq, se);
609
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
610 611 612 613 614 615
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
616
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
617 618 619 620
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
621
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
622 623
}

624
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
625
{
D
Dmitry Adamushko 已提交
626
	struct sched_entity *se = NULL;
627

D
Dmitry Adamushko 已提交
628 629 630 631
	if (first_fair(cfs_rq)) {
		se = __pick_next_entity(cfs_rq);
		set_next_entity(cfs_rq, se);
	}
632 633 634 635

	return se;
}

636
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
637 638 639 640 641 642
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
643
		update_curr(cfs_rq);
644

P
Peter Zijlstra 已提交
645
	check_spread(cfs_rq, prev);
646
	if (prev->on_rq) {
647
		update_stats_wait_start(cfs_rq, prev);
648 649 650
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
651
	cfs_rq->curr = NULL;
652 653
}

P
Peter Zijlstra 已提交
654 655
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
656 657
{
	/*
658
	 * Update run-time statistics of the 'current'.
659
	 */
660
	update_curr(cfs_rq);
661

P
Peter Zijlstra 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
	if (queued)
		return resched_task(rq_of(cfs_rq)->curr);
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

677
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
678
		check_preempt_tick(cfs_rq, curr);
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
}

/**************************************************
 * CFS operations on tasks:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
S
Srivatsa Vaddagiri 已提交
713
	return cfs_rq->tg->cfs_rq[this_cpu];
714 715 716 717
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
718
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
719

720 721 722
/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
723
{
724
	if (se->cfs_rq == pse->cfs_rq)
725 726 727 728 729
		return 1;

	return 0;
}

730 731 732 733 734
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

735 736
#define GROUP_IMBALANCE_PCT	20

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
#else	/* CONFIG_FAIR_GROUP_SCHED */

#define for_each_sched_entity(se) \
		for (; se; se = NULL)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

769 770
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
771 772 773 774
{
	return 1;
}

775 776 777 778 779
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

780 781
#endif	/* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	int requeue = rq->curr == p;
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
		if (!requeue)
			delta = max(10000LL, delta);

		hrtick_start(rq, delta, requeue);
	}
}
#else
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
#endif

819 820 821 822 823
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
824
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
825 826
{
	struct cfs_rq *cfs_rq;
827 828 829
	struct sched_entity *se = &p->se,
			    *topse = NULL;	/* Highest schedulable entity */
	int incload = 1;
830 831

	for_each_sched_entity(se) {
832 833 834
		topse = se;
		if (se->on_rq) {
			incload = 0;
835
			break;
836
		}
837
		cfs_rq = cfs_rq_of(se);
838
		enqueue_entity(cfs_rq, se, wakeup);
839
		wakeup = 1;
840
	}
841 842 843 844 845 846
	/* Increment cpu load if we just enqueued the first task of a group on
	 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
	 * at the highest grouping level.
	 */
	if (incload)
		inc_cpu_load(rq, topse->load.weight);
P
Peter Zijlstra 已提交
847 848

	hrtick_start_fair(rq, rq->curr);
849 850 851 852 853 854 855
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
856
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
857 858
{
	struct cfs_rq *cfs_rq;
859 860 861
	struct sched_entity *se = &p->se,
			    *topse = NULL; 	/* Highest schedulable entity */
	int decload = 1;
862 863

	for_each_sched_entity(se) {
864
		topse = se;
865
		cfs_rq = cfs_rq_of(se);
866
		dequeue_entity(cfs_rq, se, sleep);
867
		/* Don't dequeue parent if it has other entities besides us */
868 869 870
		if (cfs_rq->load.weight) {
			if (parent_entity(se))
				decload = 0;
871
			break;
872
		}
873
		sleep = 1;
874
	}
875 876 877 878 879 880
	/* Decrement cpu load if we just dequeued the last task of a group on
	 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
	 * at the highest grouping level.
	 */
	if (decload)
		dec_cpu_load(rq, topse->load.weight);
P
Peter Zijlstra 已提交
881 882

	hrtick_start_fair(rq, rq->curr);
883 884 885
}

/*
886 887 888
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
889
 */
890
static void yield_task_fair(struct rq *rq)
891
{
892 893 894
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
895 896

	/*
897 898 899 900 901
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

902
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
903 904
		__update_rq_clock(rq);
		/*
905
		 * Update run-time statistics of the 'current'.
906
		 */
D
Dmitry Adamushko 已提交
907
		update_curr(cfs_rq);
908 909 910 911 912

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
913
	 */
D
Dmitry Adamushko 已提交
914
	rightmost = __pick_last_entity(cfs_rq);
915 916 917
	/*
	 * Already in the rightmost position?
	 */
D
Dmitry Adamushko 已提交
918
	if (unlikely(rightmost->vruntime < se->vruntime))
919 920 921 922
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
923 924
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
925
	 */
926
	se->vruntime = rightmost->vruntime + 1;
927 928
}

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
			cpus_and(tmp, sd->span, p->cpus_allowed);
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
#else
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	int cpu, this_cpu;
	struct rq *rq;
	struct sched_domain *sd, *this_sd = NULL;
	int new_cpu;

	cpu      = task_cpu(p);
	rq       = task_rq(p);
	this_cpu = smp_processor_id();
	new_cpu  = cpu;

994 995 996
	if (cpu == this_cpu)
		goto out_set_cpu;

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			this_sd = sd;
			break;
		}
	}

	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
		goto out_set_cpu;

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
		unsigned long load, this_load;

		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);

		new_cpu = this_cpu; /* Wake to this CPU if we can */

		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
			unsigned long tl_per_task;

			/*
			 * Attract cache-cold tasks on sync wakeups:
			 */
			if (sync && !task_hot(p, rq->clock, this_sd))
				goto out_set_cpu;

			schedstat_inc(p, se.nr_wakeups_affine_attempts);
			tl_per_task = cpu_avg_load_per_task(this_cpu);

			/*
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
			 */
			if (sync)
				tl -= current->se.load.weight;

			if ((tl <= load &&
				tl + target_load(cpu, idx) <= tl_per_task) ||
			       100*(tl + p->se.load.weight) <= imbalance*load) {
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				schedstat_inc(p, se.nr_wakeups_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				schedstat_inc(p, se.nr_wakeups_passive);
				goto out_set_cpu;
			}
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */


1077 1078 1079
/*
 * Preempt the current task with a newly woken task if needed:
 */
I
Ingo Molnar 已提交
1080
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1081 1082
{
	struct task_struct *curr = rq->curr;
1083
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1084
	struct sched_entity *se = &curr->se, *pse = &p->se;
1085
	unsigned long gran;
1086 1087

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
1088
		update_rq_clock(rq);
1089
		update_curr(cfs_rq);
1090 1091 1092
		resched_task(curr);
		return;
	}
1093 1094 1095 1096 1097 1098
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
1099

1100 1101
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1102

1103 1104 1105
	while (!is_same_group(se, pse)) {
		se = parent_entity(se);
		pse = parent_entity(pse);
1106
	}
1107 1108

	gran = sysctl_sched_wakeup_granularity;
1109 1110 1111 1112 1113
	/*
	 * More easily preempt - nice tasks, while not making
	 * it harder for + nice tasks.
	 */
	if (unlikely(se->load.weight > NICE_0_LOAD))
1114 1115
		gran = calc_delta_fair(gran, &se->load);

1116
	if (pse->vruntime + gran < se->vruntime)
1117
		resched_task(curr);
1118 1119
}

1120
static struct task_struct *pick_next_task_fair(struct rq *rq)
1121
{
P
Peter Zijlstra 已提交
1122
	struct task_struct *p;
1123 1124 1125 1126 1127 1128 1129
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1130
		se = pick_next_entity(cfs_rq);
1131 1132 1133
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1134 1135 1136 1137
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1138 1139 1140 1141 1142
}

/*
 * Account for a descheduled task:
 */
1143
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1144 1145 1146 1147 1148 1149
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1150
		put_prev_entity(cfs_rq, se);
1151 1152 1153
	}
}

1154
#ifdef CONFIG_SMP
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1166
static struct task_struct *
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
{
	struct task_struct *p;

	if (!curr)
		return NULL;

	p = rb_entry(curr, struct task_struct, se.run_node);
	cfs_rq->rb_load_balance_curr = rb_next(curr);

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
}

P
Peter Williams 已提交
1194
static unsigned long
1195
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1196
		  unsigned long max_load_move,
1197 1198
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1199 1200 1201 1202
{
	struct cfs_rq *busy_cfs_rq;
	long rem_load_move = max_load_move;
	struct rq_iterator cfs_rq_iterator;
1203
	unsigned long load_moved;
1204 1205 1206 1207 1208

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1209
#ifdef CONFIG_FAIR_GROUP_SCHED
1210 1211 1212 1213
		struct cfs_rq *this_cfs_rq = busy_cfs_rq->tg->cfs_rq[this_cpu];
		unsigned long maxload, task_load, group_weight;
		unsigned long thisload, per_task_load;
		struct sched_entity *se = busy_cfs_rq->tg->se[busiest->cpu];
1214

1215 1216
		task_load = busy_cfs_rq->load.weight;
		group_weight = se->load.weight;
1217

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
		/*
		 * 'group_weight' is contributed by tasks of total weight
		 * 'task_load'. To move 'rem_load_move' worth of weight only,
		 * we need to move a maximum task load of:
		 *
		 * 	maxload = (remload / group_weight) * task_load;
		 */
		maxload = (rem_load_move * task_load) / group_weight;

		if (!maxload || !task_load)
1228 1229
			continue;

1230 1231 1232 1233 1234 1235 1236 1237
		per_task_load = task_load / busy_cfs_rq->nr_running;
		/*
		 * balance_tasks will try to forcibly move atleast one task if
		 * possible (because of SCHED_LOAD_SCALE_FUZZ). Avoid that if
		 * maxload is less than GROUP_IMBALANCE_FUZZ% the per_task_load.
		 */
		 if (100 * maxload < GROUP_IMBALANCE_PCT * per_task_load)
			continue;
1238

1239 1240 1241
		/* Disable priority-based load balance */
		*this_best_prio = 0;
		thisload = this_cfs_rq->load.weight;
1242
#else
1243
# define maxload rem_load_move
1244
#endif
1245 1246
		/*
		 * pass busy_cfs_rq argument into
1247 1248 1249
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
1250
		load_moved = balance_tasks(this_rq, this_cpu, busiest,
1251 1252 1253
					       maxload, sd, idle, all_pinned,
					       this_best_prio,
					       &cfs_rq_iterator);
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
#ifdef CONFIG_FAIR_GROUP_SCHED
		/*
		 * load_moved holds the task load that was moved. The
		 * effective (group) weight moved would be:
		 * 	load_moved_eff = load_moved/task_load * group_weight;
		 */
		load_moved = (group_weight * load_moved) / task_load;

		/* Adjust shares on both cpus to reflect load_moved */
		group_weight -= load_moved;
		set_se_shares(se, group_weight);

		se = busy_cfs_rq->tg->se[this_cpu];
		if (!thisload)
			group_weight = load_moved;
		else
			group_weight = se->load.weight + load_moved;
		set_se_shares(se, group_weight);
#endif

		rem_load_move -= load_moved;

1277
		if (rem_load_move <= 0)
1278 1279 1280
			break;
	}

P
Peter Williams 已提交
1281
	return max_load_move - rem_load_move;
1282 1283
}

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1307
#endif
1308

1309 1310 1311
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1312
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1313 1314 1315 1316 1317 1318
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1319
		entity_tick(cfs_rq, se, queued);
1320 1321 1322
	}
}

1323
#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1324

1325 1326 1327 1328 1329 1330 1331
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1332
static void task_new_fair(struct rq *rq, struct task_struct *p)
1333 1334
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1335
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1336
	int this_cpu = smp_processor_id();
1337 1338 1339

	sched_info_queued(p);

1340
	update_curr(cfs_rq);
1341
	place_entity(cfs_rq, se, 1);
1342

1343
	/* 'curr' will be NULL if the child belongs to a different group */
1344
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1345
			curr && curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1346
		/*
1347 1348 1349
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1350 1351
		swap(curr->vruntime, se->vruntime);
	}
1352

1353
	enqueue_task_fair(rq, p, 0);
1354
	resched_task(rq->curr);
1355 1356
}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
		check_preempt_curr(rq, p);
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
		check_preempt_curr(rq, p);
}

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

1406 1407 1408
/*
 * All the scheduling class methods:
 */
1409 1410
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1411 1412 1413
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
1414 1415 1416
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_fair,
#endif /* CONFIG_SMP */
1417

I
Ingo Molnar 已提交
1418
	.check_preempt_curr	= check_preempt_wakeup,
1419 1420 1421 1422

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1423
#ifdef CONFIG_SMP
1424
	.load_balance		= load_balance_fair,
1425
	.move_one_task		= move_one_task_fair,
1426
#endif
1427

1428
	.set_curr_task          = set_curr_task_fair,
1429 1430
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1431 1432 1433

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
1434 1435 1436
};

#ifdef CONFIG_SCHED_DEBUG
1437
static void print_cfs_stats(struct seq_file *m, int cpu)
1438 1439 1440
{
	struct cfs_rq *cfs_rq;

S
Srivatsa Vaddagiri 已提交
1441 1442 1443
#ifdef CONFIG_FAIR_GROUP_SCHED
	print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
#endif
1444
	rcu_read_lock();
1445
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1446
		print_cfs_rq(m, cpu, cfs_rq);
1447
	rcu_read_unlock();
1448 1449
}
#endif