sched_fair.c 44.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77
static const struct sched_class fair_sched_class;

78 79 80 81
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

82
#ifdef CONFIG_FAIR_GROUP_SCHED
83

84
/* cpu runqueue to which this cfs_rq is attached */
85 86
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
87
	return cfs_rq->rq;
88 89
}

90 91
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
92

93 94 95 96 97 98 99 100
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

192 193 194 195 196 197
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
198

199 200 201
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
202 203 204 205
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
206 207
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
208

P
Peter Zijlstra 已提交
209
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
210
{
P
Peter Zijlstra 已提交
211
	return &task_rq(p)->cfs;
212 213
}

P
Peter Zijlstra 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

247 248 249 250 251
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
252 253
#endif	/* CONFIG_FAIR_GROUP_SCHED */

254 255 256 257 258

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

259
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
260
{
261 262
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
263 264 265 266 267
		min_vruntime = vruntime;

	return min_vruntime;
}

268
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
269 270 271 272 273 274 275 276
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

277 278 279 280 281 282
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

283
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
284
{
285
	return se->vruntime - cfs_rq->min_vruntime;
286 287
}

288 289 290 291 292 293 294 295 296 297 298 299
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
300
		if (!cfs_rq->curr)
301 302 303 304 305 306 307 308
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
}

309 310 311
/*
 * Enqueue an entity into the rb-tree:
 */
312
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
313 314 315 316
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
317
	s64 key = entity_key(cfs_rq, se);
318 319 320 321 322 323 324 325 326 327 328 329
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
330
		if (key < entity_key(cfs_rq, entry)) {
331 332 333 334 335 336 337 338 339 340 341
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
342
	if (leftmost)
I
Ingo Molnar 已提交
343
		cfs_rq->rb_leftmost = &se->run_node;
344 345 346 347 348

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

349
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
350
{
P
Peter Zijlstra 已提交
351 352 353 354 355 356
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
357

358 359 360 361 362
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
363 364 365 366 367 368
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
369 370
}

371
static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
372
{
373
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
374

375 376
	if (!last)
		return NULL;
377 378

	return rb_entry(last, struct sched_entity, run_node);
379 380
}

381 382 383 384
/**************************************************************
 * Scheduling class statistics methods:
 */

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
401

402
/*
403
 * delta /= w
404 405 406 407
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
408 409
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
410 411 412 413

	return delta;
}

414 415 416 417 418 419 420 421
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
422 423 424
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
425
	unsigned long nr_latency = sched_nr_latency;
426 427

	if (unlikely(nr_running > nr_latency)) {
428
		period = sysctl_sched_min_granularity;
429 430 431 432 433 434
		period *= nr_running;
	}

	return period;
}

435 436 437 438
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
439
 * s = p*P[w/rw]
440
 */
P
Peter Zijlstra 已提交
441
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
442
{
M
Mike Galbraith 已提交
443
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
444

M
Mike Galbraith 已提交
445
	for_each_sched_entity(se) {
L
Lin Ming 已提交
446
		struct load_weight *load;
447
		struct load_weight lw;
L
Lin Ming 已提交
448 449 450

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
451

M
Mike Galbraith 已提交
452
		if (unlikely(!se->on_rq)) {
453
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
454 455 456 457 458 459 460

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
461 462
}

463
/*
464
 * We calculate the vruntime slice of a to be inserted task
465
 *
466
 * vs = s/w
467
 */
468
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
469
{
470
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
471 472
}

473 474 475 476 477
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
478 479
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
480
{
481
	unsigned long delta_exec_weighted;
482

483
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
484 485

	curr->sum_exec_runtime += delta_exec;
486
	schedstat_add(cfs_rq, exec_clock, delta_exec);
487
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
488
	curr->vruntime += delta_exec_weighted;
489
	update_min_vruntime(cfs_rq);
490 491
}

492
static void update_curr(struct cfs_rq *cfs_rq)
493
{
494
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
495
	u64 now = rq_of(cfs_rq)->clock;
496 497 498 499 500 501 502 503 504 505
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
506
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
507 508
	if (!delta_exec)
		return;
509

I
Ingo Molnar 已提交
510 511
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
512 513 514 515 516

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
517
		account_group_exec_runtime(curtask, delta_exec);
518
	}
519 520 521
}

static inline void
522
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
523
{
524
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
525 526 527 528 529
}

/*
 * Task is being enqueued - update stats:
 */
530
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
531 532 533 534 535
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
536
	if (se != cfs_rq->curr)
537
		update_stats_wait_start(cfs_rq, se);
538 539 540
}

static void
541
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
542
{
543 544
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
545 546 547
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
548
	schedstat_set(se->wait_start, 0);
549 550 551
}

static inline void
552
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
553 554 555 556 557
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
558
	if (se != cfs_rq->curr)
559
		update_stats_wait_end(cfs_rq, se);
560 561 562 563 564 565
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
566
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
567 568 569 570
{
	/*
	 * We are starting a new run period:
	 */
571
	se->exec_start = rq_of(cfs_rq)->clock;
572 573 574 575 576 577
}

/**************************************************
 * Scheduling class queueing methods:
 */

578 579 580 581 582 583 584 585 586 587 588 589 590
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

591 592 593 594
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
595 596
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
597
	if (entity_is_task(se)) {
598
		add_cfs_task_weight(cfs_rq, se->load.weight);
599 600
		list_add(&se->group_node, &cfs_rq->tasks);
	}
601 602 603 604 605 606 607 608
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
609 610
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
611
	if (entity_is_task(se)) {
612
		add_cfs_task_weight(cfs_rq, -se->load.weight);
613 614
		list_del_init(&se->group_node);
	}
615 616 617 618
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

619
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
620 621
{
#ifdef CONFIG_SCHEDSTATS
622 623 624 625 626
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

627
	if (se->sleep_start) {
628
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
629 630 631 632 633 634 635 636 637

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
638

639 640
		if (tsk)
			account_scheduler_latency(tsk, delta >> 10, 1);
641 642
	}
	if (se->block_start) {
643
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
644 645 646 647 648 649 650 651 652

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
653

654 655 656 657 658 659 660 661 662 663 664 665
		if (tsk) {
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
666
		}
667 668 669 670
	}
#endif
}

P
Peter Zijlstra 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

684 685 686
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
687
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
688

689 690 691 692 693 694
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
695
	if (initial && sched_feat(START_DEBIT))
696
		vruntime += sched_vslice(cfs_rq, se);
697

I
Ingo Molnar 已提交
698
	if (!initial) {
699
		/* sleeps upto a single latency don't count. */
700 701 702 703
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
			unsigned long thresh = sysctl_sched_latency;

			/*
704 705 706 707
			 * Convert the sleeper threshold into virtual time.
			 * SCHED_IDLE is a special sub-class.  We care about
			 * fairness only relative to other SCHED_IDLE tasks,
			 * all of which have the same weight.
708
			 */
709
			if (sched_feat(NORMALIZED_SLEEPER) &&
710 711
					(!entity_is_task(se) ||
					 task_of(se)->policy != SCHED_IDLE))
712 713 714 715
				thresh = calc_delta_fair(thresh, se);

			vruntime -= thresh;
		}
716

717 718
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
719 720
	}

P
Peter Zijlstra 已提交
721
	se->vruntime = vruntime;
722 723
}

724
static void
725
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
726 727
{
	/*
728
	 * Update run-time statistics of the 'current'.
729
	 */
730
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
731
	account_entity_enqueue(cfs_rq, se);
732

I
Ingo Molnar 已提交
733
	if (wakeup) {
734
		place_entity(cfs_rq, se, 0);
735
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
736
	}
737

738
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
739
	check_spread(cfs_rq, se);
740 741
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
742 743
}

P
Peter Zijlstra 已提交
744
static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
745 746 747 748 749 750 751 752
{
	if (cfs_rq->last == se)
		cfs_rq->last = NULL;

	if (cfs_rq->next == se)
		cfs_rq->next = NULL;
}

P
Peter Zijlstra 已提交
753 754 755 756 757 758
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	for_each_sched_entity(se)
		__clear_buddies(cfs_rq_of(se), se);
}

759
static void
760
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
761
{
762 763 764 765 766
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

767
	update_stats_dequeue(cfs_rq, se);
768
	if (sleep) {
P
Peter Zijlstra 已提交
769
#ifdef CONFIG_SCHEDSTATS
770 771 772 773
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
774
				se->sleep_start = rq_of(cfs_rq)->clock;
775
			if (tsk->state & TASK_UNINTERRUPTIBLE)
776
				se->block_start = rq_of(cfs_rq)->clock;
777
		}
778
#endif
P
Peter Zijlstra 已提交
779 780
	}

P
Peter Zijlstra 已提交
781
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
782

783
	if (se != cfs_rq->curr)
784 785
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
786
	update_min_vruntime(cfs_rq);
787 788 789 790 791
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
792
static void
I
Ingo Molnar 已提交
793
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
794
{
795 796
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
797
	ideal_runtime = sched_slice(cfs_rq, curr);
798
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
799
	if (delta_exec > ideal_runtime) {
800
		resched_task(rq_of(cfs_rq)->curr);
801 802 803 804 805 806
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
	}
807 808
}

809
static void
810
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
811
{
812 813 814 815 816 817 818 819 820 821 822
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

823
	update_stats_curr_start(cfs_rq, se);
824
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
825 826 827 828 829 830
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
831
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
832 833 834 835
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
836
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
837 838
}

839 840 841
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

842
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
843
{
844 845
	struct sched_entity *se = __pick_next_entity(cfs_rq);

P
Peter Zijlstra 已提交
846 847
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
		return cfs_rq->next;
848

P
Peter Zijlstra 已提交
849 850 851 852
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
		return cfs_rq->last;

	return se;
853 854
}

855
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
856 857 858 859 860 861
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
862
		update_curr(cfs_rq);
863

P
Peter Zijlstra 已提交
864
	check_spread(cfs_rq, prev);
865
	if (prev->on_rq) {
866
		update_stats_wait_start(cfs_rq, prev);
867 868 869
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
870
	cfs_rq->curr = NULL;
871 872
}

P
Peter Zijlstra 已提交
873 874
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
875 876
{
	/*
877
	 * Update run-time statistics of the 'current'.
878
	 */
879
	update_curr(cfs_rq);
880

P
Peter Zijlstra 已提交
881 882 883 884 885
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
886 887 888 889
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
890 891 892 893 894 895 896 897
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

898
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
899
		check_preempt_tick(cfs_rq, curr);
900 901 902 903 904 905
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
929
		if (rq->curr != p)
930
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
931

932
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
933 934
	}
}
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
951
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
952 953 954 955
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
956 957 958 959

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
960 961
#endif

962 963 964 965 966
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
967
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
968 969
{
	struct cfs_rq *cfs_rq;
970
	struct sched_entity *se = &p->se;
971 972

	for_each_sched_entity(se) {
973
		if (se->on_rq)
974 975
			break;
		cfs_rq = cfs_rq_of(se);
976
		enqueue_entity(cfs_rq, se, wakeup);
977
		wakeup = 1;
978
	}
P
Peter Zijlstra 已提交
979

980
	hrtick_update(rq);
981 982 983 984 985 986 987
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
988
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
989 990
{
	struct cfs_rq *cfs_rq;
991
	struct sched_entity *se = &p->se;
992 993 994

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
995
		dequeue_entity(cfs_rq, se, sleep);
996
		/* Don't dequeue parent if it has other entities besides us */
997
		if (cfs_rq->load.weight)
998
			break;
999
		sleep = 1;
1000
	}
P
Peter Zijlstra 已提交
1001

1002
	hrtick_update(rq);
1003 1004 1005
}

/*
1006 1007 1008
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
1009
 */
1010
static void yield_task_fair(struct rq *rq)
1011
{
1012 1013 1014
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
1015 1016

	/*
1017 1018 1019 1020 1021
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

P
Peter Zijlstra 已提交
1022 1023
	clear_buddies(cfs_rq, se);

1024
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1025
		update_rq_clock(rq);
1026
		/*
1027
		 * Update run-time statistics of the 'current'.
1028
		 */
D
Dmitry Adamushko 已提交
1029
		update_curr(cfs_rq);
1030 1031 1032 1033 1034

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
1035
	 */
D
Dmitry Adamushko 已提交
1036
	rightmost = __pick_last_entity(cfs_rq);
1037 1038 1039
	/*
	 * Already in the rightmost position?
	 */
1040
	if (unlikely(!rightmost || entity_before(rightmost, se)))
1041 1042 1043 1044
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
1045 1046
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
1047
	 */
1048
	se->vruntime = rightmost->vruntime + 1;
1049 1050
}

1051 1052 1053 1054 1055
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
1056
 * Domains may include CPUs that are not usable for migration,
1057
 * hence we need to mask them out (rq->rd->online)
1058 1059 1060 1061
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1062 1063 1064

#define cpu_rd_active(cpu, rq) cpumask_test_cpu(cpu, rq->rd->online)

1065 1066 1067 1068
static int wake_idle(int cpu, struct task_struct *p)
{
	struct sched_domain *sd;
	int i;
1069 1070
	unsigned int chosen_wakeup_cpu;
	int this_cpu;
1071
	struct rq *task_rq = task_rq(p);
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

	/*
	 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
	 * are idle and this is not a kernel thread and this task's affinity
	 * allows it to be moved to preferred cpu, then just move!
	 */

	this_cpu = smp_processor_id();
	chosen_wakeup_cpu =
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;

	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
		idle_cpu(cpu) && idle_cpu(this_cpu) &&
		p->mm && !(p->flags & PF_KTHREAD) &&
		cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
		return chosen_wakeup_cpu;
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
1098
	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1099 1100 1101
		return cpu;

	for_each_domain(cpu, sd) {
1102 1103
		if ((sd->flags & SD_WAKE_IDLE)
		    || ((sd->flags & SD_WAKE_IDLE_FAR)
1104
			&& !task_hot(p, task_rq->clock, sd))) {
1105 1106
			for_each_cpu_and(i, sched_domain_span(sd),
					 &p->cpus_allowed) {
1107
				if (cpu_rd_active(i, task_rq) && idle_cpu(i)) {
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
1121
#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1122 1123 1124 1125 1126 1127 1128
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
1129

1130
#ifdef CONFIG_FAIR_GROUP_SCHED
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 *
 * The problem is that perfectly aligning the shares is rather expensive, hence
 * we try to avoid doing that too often - see update_shares(), which ratelimits
 * this change.
 *
 * We compensate this by not only taking the current delta into account, but
 * also considering the delta between when the shares were last adjusted and
 * now.
 *
 * We still saw a performance dip, some tracing learned us that between
 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 * significantly. Therefore try to bias the error in direction of failing
 * the affine wakeup.
 *
 */
1152 1153
static long effective_load(struct task_group *tg, int cpu,
		long wl, long wg)
1154
{
P
Peter Zijlstra 已提交
1155
	struct sched_entity *se = tg->se[cpu];
1156 1157 1158 1159

	if (!tg->parent)
		return wl;

1160 1161 1162 1163 1164 1165 1166
	/*
	 * By not taking the decrease of shares on the other cpu into
	 * account our error leans towards reducing the affine wakeups.
	 */
	if (!wl && sched_feat(ASYM_EFF_LOAD))
		return wl;

P
Peter Zijlstra 已提交
1167
	for_each_sched_entity(se) {
1168
		long S, rw, s, a, b;
1169 1170 1171 1172 1173 1174 1175 1176 1177
		long more_w;

		/*
		 * Instead of using this increment, also add the difference
		 * between when the shares were last updated and now.
		 */
		more_w = se->my_q->load.weight - se->my_q->rq_weight;
		wl += more_w;
		wg += more_w;
P
Peter Zijlstra 已提交
1178 1179 1180

		S = se->my_q->tg->shares;
		s = se->my_q->shares;
1181
		rw = se->my_q->rq_weight;
1182

1183 1184
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1185

1186 1187 1188 1189 1190
		wl = s*(a-b);

		if (likely(b))
			wl /= b;

1191 1192 1193 1194 1195 1196 1197
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1198 1199
		wg = 0;
	}
1200

P
Peter Zijlstra 已提交
1201
	return wl;
1202
}
P
Peter Zijlstra 已提交
1203

1204
#else
P
Peter Zijlstra 已提交
1205

1206 1207
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1208
{
1209
	return wl;
1210
}
P
Peter Zijlstra 已提交
1211

1212 1213
#endif

1214
static int
1215
wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
I
Ingo Molnar 已提交
1216 1217
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
1218 1219
	    unsigned int imbalance)
{
1220 1221
	struct task_struct *curr = this_rq->curr;
	struct task_group *tg;
1222 1223
	unsigned long tl = this_load;
	unsigned long tl_per_task;
1224
	unsigned long weight;
1225
	int balanced;
1226

1227
	if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1228 1229
		return 0;

1230 1231 1232 1233
	if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
			p->se.avg_overlap > sysctl_sched_migration_cost))
		sync = 0;

1234 1235 1236 1237 1238
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1239 1240 1241 1242 1243 1244 1245
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

		tl += effective_load(tg, this_cpu, -weight, -weight);
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
1246

1247 1248
	tg = task_group(p);
	weight = p->se.load.weight;
1249

1250 1251
	balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1252

1253
	/*
I
Ingo Molnar 已提交
1254 1255 1256
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1257
	 */
1258 1259
	if (sync && balanced)
		return 1;
1260 1261 1262 1263

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1264 1265
	if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
			tl_per_task)) {
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1279 1280 1281
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1282
	int prev_cpu, this_cpu, new_cpu;
1283
	unsigned long load, this_load;
1284
	struct rq *this_rq;
1285 1286
	unsigned int imbalance;
	int idx;
1287

1288 1289
	prev_cpu	= task_cpu(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1290
	this_rq		= cpu_rq(this_cpu);
1291
	new_cpu		= prev_cpu;
1292

1293 1294
	if (prev_cpu == this_cpu)
		goto out;
1295 1296 1297 1298
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1299
	for_each_domain(this_cpu, sd) {
1300
		if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
1301 1302 1303 1304 1305
			this_sd = sd;
			break;
		}
	}

1306
	if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
1307
		goto out;
1308 1309 1310 1311

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1312
	if (!this_sd)
1313
		goto out;
1314

1315 1316 1317 1318
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1319
	load = source_load(prev_cpu, idx);
1320 1321
	this_load = target_load(this_cpu, idx);

1322
	if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
I
Ingo Molnar 已提交
1323 1324 1325
				     load, this_load, imbalance))
		return this_cpu;

1326 1327 1328 1329 1330 1331 1332 1333
	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1334
			return this_cpu;
1335 1336 1337
		}
	}

1338
out:
1339 1340 1341 1342
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
/*
 * Adaptive granularity
 *
 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
 * with the limit of wakeup_gran -- when it never does a wakeup.
 *
 * So the smaller avg_wakeup is the faster we want this task to preempt,
 * but we don't want to treat the preemptee unfairly and therefore allow it
 * to run for at least the amount of time we'd like to run.
 *
 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
 *
 * NOTE: we use *nr_running to scale with load, this nicely matches the
 *       degrading latency on load.
 */
static unsigned long
adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
{
	u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
	u64 gran = 0;

	if (this_run < expected_wakeup)
		gran = expected_wakeup - this_run;

	return min_t(s64, gran, sysctl_sched_wakeup_granularity);
}

static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1373 1374 1375
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

P
Peter Zijlstra 已提交
1376 1377 1378
	if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
		gran = adaptive_gran(curr, se);

1379
	/*
P
Peter Zijlstra 已提交
1380 1381
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
1382
	 */
P
Peter Zijlstra 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	if (sched_feat(ASYM_GRAN)) {
		/*
		 * By using 'se' instead of 'curr' we penalize light tasks, so
		 * they get preempted easier. That is, if 'se' < 'curr' then
		 * the resulting gran will be larger, therefore penalizing the
		 * lighter, if otoh 'se' > 'curr' then the resulting gran will
		 * be smaller, again penalizing the lighter task.
		 *
		 * This is especially important for buddies when the leftmost
		 * task is higher priority than the buddy.
		 */
		if (unlikely(se->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, se);
	} else {
		if (unlikely(curr->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, curr);
	}
1400 1401 1402 1403

	return gran;
}

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
1426
	gran = wakeup_gran(curr, se);
1427 1428 1429 1430 1431 1432
	if (vdiff > gran)
		return 1;

	return 0;
}

1433 1434
static void set_last_buddy(struct sched_entity *se)
{
1435 1436 1437 1438
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->last = se;
	}
1439 1440 1441 1442
}

static void set_next_buddy(struct sched_entity *se)
{
1443 1444 1445 1446
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->next = se;
	}
1447 1448
}

1449 1450 1451
/*
 * Preempt the current task with a newly woken task if needed:
 */
1452
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1453 1454
{
	struct task_struct *curr = rq->curr;
1455
	struct sched_entity *se = &curr->se, *pse = &p->se;
1456
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1457

1458
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1459

1460
	if (unlikely(rt_prio(p->prio))) {
1461 1462 1463
		resched_task(curr);
		return;
	}
1464

P
Peter Zijlstra 已提交
1465 1466 1467
	if (unlikely(p->sched_class != &fair_sched_class))
		return;

I
Ingo Molnar 已提交
1468 1469 1470
	if (unlikely(se == pse))
		return;

P
Peter Zijlstra 已提交
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
	/*
	 * Only set the backward buddy when the current task is still on the
	 * rq. This can happen when a wakeup gets interleaved with schedule on
	 * the ->pre_schedule() or idle_balance() point, either of which can
	 * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class, for
	 * obvious reasons its a bad idea to schedule back to the idle thread.
	 */
	if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1481 1482
		set_last_buddy(se);
	set_next_buddy(pse);
P
Peter Zijlstra 已提交
1483

1484 1485 1486 1487 1488 1489 1490
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 */
	if (test_tsk_need_resched(curr))
		return;

1491
	/*
1492
	 * Batch and idle tasks do not preempt (their preemption is driven by
1493 1494
	 * the tick):
	 */
1495
	if (unlikely(p->policy != SCHED_NORMAL))
1496
		return;
1497

1498 1499 1500
	/* Idle tasks are by definition preempted by everybody. */
	if (unlikely(curr->policy == SCHED_IDLE)) {
		resched_task(curr);
1501
		return;
1502
	}
1503

1504 1505
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1506

1507 1508 1509
	if (sched_feat(WAKEUP_OVERLAP) && (sync ||
			(se->avg_overlap < sysctl_sched_migration_cost &&
			 pse->avg_overlap < sysctl_sched_migration_cost))) {
1510 1511 1512 1513
		resched_task(curr);
		return;
	}

1514 1515
	find_matching_se(&se, &pse);

1516
	BUG_ON(!pse);
1517

1518 1519
	if (wakeup_preempt_entity(se, pse) == 1)
		resched_task(curr);
1520 1521
}

1522
static struct task_struct *pick_next_task_fair(struct rq *rq)
1523
{
P
Peter Zijlstra 已提交
1524
	struct task_struct *p;
1525 1526 1527 1528 1529 1530 1531
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1532
		se = pick_next_entity(cfs_rq);
1533 1534 1535 1536
		/*
		 * If se was a buddy, clear it so that it will have to earn
		 * the favour again.
		 */
P
Peter Zijlstra 已提交
1537
		__clear_buddies(cfs_rq, se);
1538
		set_next_entity(cfs_rq, se);
1539 1540 1541
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1542 1543 1544 1545
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1546 1547 1548 1549 1550
}

/*
 * Account for a descheduled task:
 */
1551
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1552 1553 1554 1555 1556 1557
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1558
		put_prev_entity(cfs_rq, se);
1559 1560 1561
	}
}

1562
#ifdef CONFIG_SMP
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1574
static struct task_struct *
1575
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1576
{
D
Dhaval Giani 已提交
1577 1578
	struct task_struct *p = NULL;
	struct sched_entity *se;
1579

1580 1581 1582
	if (next == &cfs_rq->tasks)
		return NULL;

1583 1584 1585
	se = list_entry(next, struct sched_entity, group_node);
	p = task_of(se);
	cfs_rq->balance_iterator = next->next;
1586

1587 1588 1589 1590 1591 1592 1593
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1594
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1595 1596 1597 1598 1599 1600
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1601
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1602 1603
}

1604 1605 1606 1607 1608
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1609
{
1610
	struct rq_iterator cfs_rq_iterator;
1611

1612 1613 1614
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1615

1616 1617 1618
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1619 1620
}

1621
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1622
static unsigned long
1623
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1624
		  unsigned long max_load_move,
1625 1626
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1627 1628
{
	long rem_load_move = max_load_move;
1629 1630
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1631

1632
	rcu_read_lock();
1633
	update_h_load(busiest_cpu);
1634

1635
	list_for_each_entry_rcu(tg, &task_groups, list) {
1636
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1637 1638
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
S
Srivatsa Vaddagiri 已提交
1639
		u64 rem_load, moved_load;
1640

1641 1642 1643
		/*
		 * empty group
		 */
1644
		if (!busiest_cfs_rq->task_weight)
1645 1646
			continue;

S
Srivatsa Vaddagiri 已提交
1647 1648
		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);
1649

1650
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1651
				rem_load, sd, idle, all_pinned, this_best_prio,
1652
				tg->cfs_rq[busiest_cpu]);
1653

1654
		if (!moved_load)
1655 1656
			continue;

1657
		moved_load *= busiest_h_load;
S
Srivatsa Vaddagiri 已提交
1658
		moved_load = div_u64(moved_load, busiest_weight + 1);
1659

1660 1661
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1662 1663
			break;
	}
1664
	rcu_read_unlock();
1665

P
Peter Williams 已提交
1666
	return max_load_move - rem_load_move;
1667
}
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1680

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1704
#endif /* CONFIG_SMP */
1705

1706 1707 1708
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1709
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1710 1711 1712 1713 1714 1715
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1716
		entity_tick(cfs_rq, se, queued);
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	}
}

/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1727
static void task_new_fair(struct rq *rq, struct task_struct *p)
1728 1729
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1730
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1731
	int this_cpu = smp_processor_id();
1732 1733 1734

	sched_info_queued(p);

1735
	update_curr(cfs_rq);
1736
	place_entity(cfs_rq, se, 1);
1737

1738
	/* 'curr' will be NULL if the child belongs to a different group */
1739
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1740
			curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
1741
		/*
1742 1743 1744
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1745
		swap(curr->vruntime, se->vruntime);
1746
		resched_task(rq->curr);
1747
	}
1748

1749
	enqueue_task_fair(rq, p, 0);
1750 1751
}

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
1768
		check_preempt_curr(rq, p, 0);
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
1785
		check_preempt_curr(rq, p, 0);
1786 1787
}

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1811 1812 1813
/*
 * All the scheduling class methods:
 */
1814 1815
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1816 1817 1818 1819
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
1820
	.check_preempt_curr	= check_preempt_wakeup,
1821 1822 1823 1824

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1825
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1826 1827
	.select_task_rq		= select_task_rq_fair,

1828
	.load_balance		= load_balance_fair,
1829
	.move_one_task		= move_one_task_fair,
1830
#endif
1831

1832
	.set_curr_task          = set_curr_task_fair,
1833 1834
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1835 1836 1837

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1838 1839 1840 1841

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1842 1843 1844
};

#ifdef CONFIG_SCHED_DEBUG
1845
static void print_cfs_stats(struct seq_file *m, int cpu)
1846 1847 1848
{
	struct cfs_rq *cfs_rq;

1849
	rcu_read_lock();
1850
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1851
		print_cfs_rq(m, cpu, cfs_rq);
1852
	rcu_read_unlock();
1853 1854
}
#endif