sched_fair.c 23.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22 23
 */

/*
24 25
 * Targeted preemption latency for CPU-bound tasks:
 * (default: 20ms, units: nanoseconds)
26
 *
27 28 29 30
 * NOTE: this latency value is not the same as the concept of
 * 'timeslice length' - timeslices in CFS are of variable length.
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches field)
31 32 33 34
 *
 * On SMP systems the value of this is multiplied by the log2 of the
 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35
 * Targeted preemption latency for CPU-bound tasks:
36
 */
37 38 39 40 41 42 43
const_debug unsigned int sysctl_sched_latency = 20000000ULL;

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
const_debug unsigned int sysctl_sched_child_runs_first = 1;
44 45 46 47 48

/*
 * Minimal preemption granularity for CPU-bound tasks:
 * (default: 2 msec, units: nanoseconds)
 */
49
unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
50

51 52 53 54 55 56 57 58
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

59 60
/*
 * SCHED_BATCH wake-up granularity.
61
 * (default: 25 msec, units: nanoseconds)
62 63 64 65 66
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
67
const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
68 69 70 71 72 73 74 75 76

/*
 * SCHED_OTHER wake-up granularity.
 * (default: 1 msec, units: nanoseconds)
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
I
Ingo Molnar 已提交
77
const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
78 79 80 81 82 83 84 85 86

unsigned int sysctl_sched_runtime_limit __read_mostly;

extern struct sched_class fair_sched_class;

/**************************************************************
 * CFS operations on generic schedulable entities:
 */

87
#ifdef CONFIG_FAIR_GROUP_SCHED
88

89
/* cpu runqueue to which this cfs_rq is attached */
90 91
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
92
	return cfs_rq->rq;
93 94
}

95 96
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
97

98
#else	/* CONFIG_FAIR_GROUP_SCHED */
99

100 101 102
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
}

#define entity_is_task(se)	1

#endif	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}


/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

I
Ingo Molnar 已提交
119 120 121 122 123 124 125 126
static inline void
set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
{
	struct sched_entity *se;

	cfs_rq->rb_leftmost = leftmost;
	if (leftmost) {
		se = rb_entry(leftmost, struct sched_entity, run_node);
127 128 129 130
		if ((se->vruntime > cfs_rq->min_vruntime) ||
		    (cfs_rq->min_vruntime > (1ULL << 61) &&
		     se->vruntime < (1ULL << 50)))
			cfs_rq->min_vruntime = se->vruntime;
I
Ingo Molnar 已提交
131 132 133
	}
}

134 135 136 137 138
s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	return se->fair_key - cfs_rq->min_vruntime;
}

139 140 141
/*
 * Enqueue an entity into the rb-tree:
 */
142
static void
143 144 145 146 147
__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
148
	s64 key = entity_key(cfs_rq, se);
149 150 151 152 153 154 155 156 157 158 159 160
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
161
		if (key < entity_key(cfs_rq, entry)) {
162 163 164 165 166 167 168 169 170 171 172 173
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
	if (leftmost)
I
Ingo Molnar 已提交
174
		set_leftmost(cfs_rq, &se->run_node);
175 176 177 178 179 180 181 182

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

183
static void
184 185 186
__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (cfs_rq->rb_leftmost == &se->run_node)
I
Ingo Molnar 已提交
187 188
		set_leftmost(cfs_rq, rb_next(&se->run_node));

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct sched_entity *se = NULL;
	struct rb_node *parent;

	while (*link) {
		parent = *link;
		se = rb_entry(parent, struct sched_entity, run_node);
		link = &parent->rb_right;
	}

	return se;
}

220 221 222 223
/**************************************************************
 * Scheduling class statistics methods:
 */

224 225 226 227 228 229 230 231 232 233 234 235 236 237
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
	unsigned long nr_latency =
		sysctl_sched_latency / sysctl_sched_min_granularity;

	if (unlikely(nr_running > nr_latency)) {
		period *= nr_running;
		do_div(period, nr_latency);
	}

	return period;
}

P
Peter Zijlstra 已提交
238
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
239
{
P
Peter Zijlstra 已提交
240
	u64 period = __sched_period(cfs_rq->nr_running);
241

P
Peter Zijlstra 已提交
242 243
	period *= se->load.weight;
	do_div(period, cfs_rq->load.weight);
244

P
Peter Zijlstra 已提交
245
	return period;
246 247 248 249 250 251 252
}

/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
253 254
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
255
{
256
	unsigned long delta_exec_weighted;
257

258
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
259 260

	curr->sum_exec_runtime += delta_exec;
261
	schedstat_add(cfs_rq, exec_clock, delta_exec);
I
Ingo Molnar 已提交
262 263 264 265 266 267
	delta_exec_weighted = delta_exec;
	if (unlikely(curr->load.weight != NICE_0_LOAD)) {
		delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
							&curr->load);
	}
	curr->vruntime += delta_exec_weighted;
268 269
}

270
static void update_curr(struct cfs_rq *cfs_rq)
271
{
272
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
273
	u64 now = rq_of(cfs_rq)->clock;
274 275 276 277 278 279 280 281 282 283
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
284
	delta_exec = (unsigned long)(now - curr->exec_start);
285

I
Ingo Molnar 已提交
286 287
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
288 289 290
}

static inline void
291
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
292
{
293
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
294 295 296
}

static inline unsigned long
I
Ingo Molnar 已提交
297
calc_weighted(unsigned long delta, struct sched_entity *se)
298
{
I
Ingo Molnar 已提交
299
	unsigned long weight = se->load.weight;
300

I
Ingo Molnar 已提交
301 302 303 304
	if (unlikely(weight != NICE_0_LOAD))
		return (u64)delta * se->load.weight >> NICE_0_SHIFT;
	else
		return delta;
305 306 307 308 309
}

/*
 * Task is being enqueued - update stats:
 */
310
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
311 312 313 314 315
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
316
	if (se != cfs_rq->curr)
317
		update_stats_wait_start(cfs_rq, se);
318 319 320
	/*
	 * Update the key:
	 */
I
Ingo Molnar 已提交
321
	se->fair_key = se->vruntime;
322 323 324
}

static void
325
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
326
{
327 328
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
I
Ingo Molnar 已提交
329
	schedstat_set(se->wait_start, 0);
330 331 332
}

static inline void
333
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
334
{
335
	update_curr(cfs_rq);
336 337 338 339
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
340
	if (se != cfs_rq->curr)
341
		update_stats_wait_end(cfs_rq, se);
342 343 344 345 346 347
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
348
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
349 350 351 352
{
	/*
	 * We are starting a new run period:
	 */
353
	se->exec_start = rq_of(cfs_rq)->clock;
354 355 356 357 358 359
}

/*
 * We are descheduling a task - update its stats:
 */
static inline void
360
update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
361 362 363 364 365 366 367 368
{
	se->exec_start = 0;
}

/**************************************************
 * Scheduling class queueing methods:
 */

369
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
370 371 372
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
373
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
374 375 376 377 378 379 380 381 382 383 384

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
	}
	if (se->block_start) {
385
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
386 387 388 389 390 391 392 393 394

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
395 396 397 398 399 400 401

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
402 403
			struct task_struct *tsk = task_of(se);

I
Ingo Molnar 已提交
404 405 406
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
407 408 409 410
	}
#endif
}

411 412 413 414 415 416
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
	u64 min_runtime, latency;

	min_runtime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429

	if (sched_feat(USE_TREE_AVG)) {
		struct sched_entity *last = __pick_last_entity(cfs_rq);
		if (last) {
			min_runtime = __pick_next_entity(cfs_rq)->vruntime;
			min_runtime += last->vruntime;
			min_runtime >>= 1;
		}
	} else if (sched_feat(APPROX_AVG))
		min_runtime += sysctl_sched_latency/2;

	if (initial && sched_feat(START_DEBIT))
		min_runtime += sched_slice(cfs_rq, se);
430 431 432 433 434 435 436 437 438 439 440 441

	if (!initial && sched_feat(NEW_FAIR_SLEEPERS)) {
		latency = sysctl_sched_latency;
		if (min_runtime > latency)
			min_runtime -= latency;
		else
			min_runtime = 0;
	}

	se->vruntime = max(se->vruntime, min_runtime);
}

442
static void
443
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
444 445 446 447
{
	/*
	 * Update the fair clock.
	 */
448
	update_curr(cfs_rq);
449

I
Ingo Molnar 已提交
450
	if (wakeup) {
451
		place_entity(cfs_rq, se, 0);
452
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
453
	}
454

455
	update_stats_enqueue(cfs_rq, se);
456 457 458 459
	__enqueue_entity(cfs_rq, se);
}

static void
460
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
461
{
462
	update_stats_dequeue(cfs_rq, se);
463 464 465 466 467 468
	if (sleep) {
#ifdef CONFIG_SCHEDSTATS
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
469
				se->sleep_start = rq_of(cfs_rq)->clock;
470
			if (tsk->state & TASK_UNINTERRUPTIBLE)
471
				se->block_start = rq_of(cfs_rq)->clock;
472 473 474 475 476 477 478 479 480
		}
#endif
	}
	__dequeue_entity(cfs_rq, se);
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
481
static void
I
Ingo Molnar 已提交
482
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
483
{
484 485
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
486
	ideal_runtime = sched_slice(cfs_rq, curr);
487 488
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	if (delta_exec > ideal_runtime)
489 490 491 492
		resched_task(rq_of(cfs_rq)->curr);
}

static inline void
493
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
494 495 496 497
{
	/*
	 * Any task has to be enqueued before it get to execute on
	 * a CPU. So account for the time it spent waiting on the
498
	 * runqueue.
499
	 */
500
	update_stats_wait_end(cfs_rq, se);
501
	update_stats_curr_start(cfs_rq, se);
502
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
503 504 505 506 507 508
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
509
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
510 511 512 513
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
514
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
515 516
}

517
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
518 519 520
{
	struct sched_entity *se = __pick_next_entity(cfs_rq);

521
	set_next_entity(cfs_rq, se);
522 523 524 525

	return se;
}

526
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
527 528 529 530 531 532
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
533
		update_curr(cfs_rq);
534

535
	update_stats_curr_end(cfs_rq, prev);
536 537

	if (prev->on_rq)
538
		update_stats_wait_start(cfs_rq, prev);
539
	cfs_rq->curr = NULL;
540 541 542 543 544 545 546 547
}

static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
	/*
	 * Dequeue and enqueue the task to update its
	 * position within the tree:
	 */
548
	dequeue_entity(cfs_rq, curr, 0);
549
	enqueue_entity(cfs_rq, curr, 0);
550

I
Ingo Molnar 已提交
551 552
	if (cfs_rq->nr_running > 1)
		check_preempt_tick(cfs_rq, curr);
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
}

/**************************************************
 * CFS operations on tasks:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	/* A later patch will take group into account */
	return &cpu_rq(this_cpu)->cfs;
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) tasks belong to the same group ? */
static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
{
	if (curr->se.cfs_rq == p->se.cfs_rq)
		return 1;

	return 0;
}

#else	/* CONFIG_FAIR_GROUP_SCHED */

#define for_each_sched_entity(se) \
		for (; se; se = NULL)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
{
	return 1;
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
648
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
649 650 651 652 653 654 655 656
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		if (se->on_rq)
			break;
		cfs_rq = cfs_rq_of(se);
657
		enqueue_entity(cfs_rq, se, wakeup);
658 659 660 661 662 663 664 665
	}
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
666
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
667 668 669 670 671 672
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
673
		dequeue_entity(cfs_rq, se, sleep);
674 675 676 677 678 679 680
		/* Don't dequeue parent if it has other entities besides us */
		if (cfs_rq->load.weight)
			break;
	}
}

/*
681 682 683
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
684 685 686 687
 */
static void yield_task_fair(struct rq *rq, struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
688 689 690
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct sched_entity *rightmost, *se = &p->se;
	struct rb_node *parent;
691 692

	/*
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

	if (likely(!sysctl_sched_compat_yield)) {
		__update_rq_clock(rq);
		/*
		 * Dequeue and enqueue the task to update its
		 * position within the tree:
		 */
		dequeue_entity(cfs_rq, &p->se, 0);
		enqueue_entity(cfs_rq, &p->se, 0);

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
711
	 */
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
	do {
		parent = *link;
		link = &parent->rb_right;
	} while (*link);

	rightmost = rb_entry(parent, struct sched_entity, run_node);
	/*
	 * Already in the rightmost position?
	 */
	if (unlikely(rightmost == se))
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
	 */
	se->fair_key = rightmost->fair_key + 1;

	if (cfs_rq->rb_leftmost == &se->run_node)
		cfs_rq->rb_leftmost = rb_next(&se->run_node);
	/*
	 * Relink the task to the rightmost position:
	 */
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
737 738 739 740 741
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
I
Ingo Molnar 已提交
742
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
743 744 745 746 747
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
748
		update_rq_clock(rq);
749
		update_curr(cfs_rq);
750 751 752
		resched_task(curr);
		return;
	}
I
Ingo Molnar 已提交
753 754
	if (is_same_group(curr, p)) {
		s64 delta = curr->se.vruntime - p->se.vruntime;
755

I
Ingo Molnar 已提交
756 757 758
		if (delta > (s64)sysctl_sched_wakeup_granularity)
			resched_task(curr);
	}
759 760
}

761
static struct task_struct *pick_next_task_fair(struct rq *rq)
762 763 764 765 766 767 768 769
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
770
		se = pick_next_entity(cfs_rq);
771 772 773 774 775 776 777 778 779
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	return task_of(se);
}

/*
 * Account for a descheduled task:
 */
780
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
781 782 783 784 785 786
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
787
		put_prev_entity(cfs_rq, se);
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	}
}

/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
static inline struct task_struct *
__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
{
	struct task_struct *p;

	if (!curr)
		return NULL;

	p = rb_entry(curr, struct task_struct, se.run_node);
	cfs_rq->rb_load_balance_curr = rb_next(curr);

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
}

830
#ifdef CONFIG_FAIR_GROUP_SCHED
831 832 833 834 835 836 837 838 839 840 841 842 843
static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
{
	struct sched_entity *curr;
	struct task_struct *p;

	if (!cfs_rq->nr_running)
		return MAX_PRIO;

	curr = __pick_next_entity(cfs_rq);
	p = task_of(curr);

	return p->prio;
}
844
#endif
845

P
Peter Williams 已提交
846
static unsigned long
847
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
848 849 850
		  unsigned long max_nr_move, unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
851 852 853 854 855 856 857 858 859 860
{
	struct cfs_rq *busy_cfs_rq;
	unsigned long load_moved, total_nr_moved = 0, nr_moved;
	long rem_load_move = max_load_move;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
861
#ifdef CONFIG_FAIR_GROUP_SCHED
862
		struct cfs_rq *this_cfs_rq;
863
		long imbalance;
864 865 866 867
		unsigned long maxload;

		this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);

868
		imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
869 870 871 872 873 874 875 876
		/* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
		if (imbalance <= 0)
			continue;

		/* Don't pull more than imbalance/2 */
		imbalance /= 2;
		maxload = min(rem_load_move, imbalance);

877 878
		*this_best_prio = cfs_rq_best_prio(this_cfs_rq);
#else
879
# define maxload rem_load_move
880
#endif
881 882 883 884 885 886
		/* pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		nr_moved = balance_tasks(this_rq, this_cpu, busiest,
				max_nr_move, maxload, sd, idle, all_pinned,
887
				&load_moved, this_best_prio, &cfs_rq_iterator);
888 889 890 891 892 893 894 895 896

		total_nr_moved += nr_moved;
		max_nr_move -= nr_moved;
		rem_load_move -= load_moved;

		if (max_nr_move <= 0 || rem_load_move <= 0)
			break;
	}

P
Peter Williams 已提交
897
	return max_load_move - rem_load_move;
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
}

/*
 * scheduler tick hitting a task of our scheduling class:
 */
static void task_tick_fair(struct rq *rq, struct task_struct *curr)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		entity_tick(cfs_rq, se);
	}
}

914 915
#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)

916 917 918 919 920 921 922
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
923
static void task_new_fair(struct rq *rq, struct task_struct *p)
924 925
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
926
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
927 928 929

	sched_info_queued(p);

930
	update_curr(cfs_rq);
931
	place_entity(cfs_rq, se, 1);
932 933 934 935 936 937 938 939

	if (sysctl_sched_child_runs_first &&
			curr->vruntime < se->vruntime) {

		dequeue_entity(cfs_rq, curr, 0);
		swap(curr->vruntime, se->vruntime);
		enqueue_entity(cfs_rq, curr, 0);
	}
940

I
Ingo Molnar 已提交
941
	update_stats_enqueue(cfs_rq, se);
942
	__enqueue_entity(cfs_rq, se);
943
	resched_task(rq->curr);
944 945 946 947 948 949 950 951 952 953
}

#ifdef CONFIG_FAIR_GROUP_SCHED
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
954
	struct sched_entity *se = &rq->curr->se;
I
Ingo Molnar 已提交
955

956 957
	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
}
#else
static void set_curr_task_fair(struct rq *rq)
{
}
#endif

/*
 * All the scheduling class methods:
 */
struct sched_class fair_sched_class __read_mostly = {
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
973
	.check_preempt_curr	= check_preempt_wakeup,
974 975 976 977 978 979 980 981 982 983 984 985

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

	.load_balance		= load_balance_fair,

	.set_curr_task          = set_curr_task_fair,
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
};

#ifdef CONFIG_SCHED_DEBUG
986
static void print_cfs_stats(struct seq_file *m, int cpu)
987 988 989
{
	struct cfs_rq *cfs_rq;

990
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
991
		print_cfs_rq(m, cpu, cfs_rq);
992 993
}
#endif