sched_fair.c 35.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77 78 79
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

P
Peter Zijlstra 已提交
80 81 82 83 84
static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}

85
#ifdef CONFIG_FAIR_GROUP_SCHED
86

87
/* cpu runqueue to which this cfs_rq is attached */
88 89
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
90
	return cfs_rq->rq;
91 92
}

93 94
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
95

P
Peter Zijlstra 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

144
#else	/* CONFIG_FAIR_GROUP_SCHED */
145

146 147 148
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
149 150 151 152
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
153 154
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
155

P
Peter Zijlstra 已提交
156
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
157
{
P
Peter Zijlstra 已提交
158
	return &task_rq(p)->cfs;
159 160
}

P
Peter Zijlstra 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

196 197 198 199 200

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

201
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
202
{
203 204
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
205 206 207 208 209
		min_vruntime = vruntime;

	return min_vruntime;
}

210
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
211 212 213 214 215 216 217 218
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

219
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
220
{
221
	return se->vruntime - cfs_rq->min_vruntime;
222 223
}

224 225 226
/*
 * Enqueue an entity into the rb-tree:
 */
227
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
228 229 230 231
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
232
	s64 key = entity_key(cfs_rq, se);
233 234 235 236 237 238 239 240 241 242 243 244
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
245
		if (key < entity_key(cfs_rq, entry)) {
246 247 248 249 250 251 252 253 254 255 256
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
P
Peter Zijlstra 已提交
257
	if (leftmost) {
I
Ingo Molnar 已提交
258
		cfs_rq->rb_leftmost = &se->run_node;
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265
		/*
		 * maintain cfs_rq->min_vruntime to be a monotonic increasing
		 * value tracking the leftmost vruntime in the tree.
		 */
		cfs_rq->min_vruntime =
			max_vruntime(cfs_rq->min_vruntime, se->vruntime);
	}
266 267 268 269 270

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

271
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
272
{
P
Peter Zijlstra 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;
		struct sched_entity *next;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;

		if (next_node) {
			next = rb_entry(next_node,
					struct sched_entity, run_node);
			cfs_rq->min_vruntime =
				max_vruntime(cfs_rq->min_vruntime,
					     next->vruntime);
		}
	}
I
Ingo Molnar 已提交
288

289 290 291
	if (cfs_rq->next == se)
		cfs_rq->next = NULL;

292 293 294 295 296 297 298 299 300 301 302 303 304
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

305 306
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
307
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
308

309 310
	if (!last)
		return NULL;
311 312

	return rb_entry(last, struct sched_entity, run_node);
313 314
}

315 316 317 318
/**************************************************************
 * Scheduling class statistics methods:
 */

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
335 336 337 338 339 340 341 342 343

/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
344 345 346
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
347
	unsigned long nr_latency = sched_nr_latency;
348 349

	if (unlikely(nr_running > nr_latency)) {
350
		period = sysctl_sched_min_granularity;
351 352 353 354 355 356
		period *= nr_running;
	}

	return period;
}

357 358 359 360 361 362
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
 * s = p*w/rw
 */
P
Peter Zijlstra 已提交
363
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
364
{
365 366 367 368 369 370 371 372 373 374 375
	u64 slice = __sched_period(cfs_rq->nr_running);

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		slice *= se->load.weight;
		do_div(slice, cfs_rq->load.weight);
	}


	return slice;
376 377
}

378
/*
379
 * We calculate the vruntime slice of a to be inserted task
380
 *
381
 * vs = s/w = p/rw
382
 */
383
static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
384
{
385
	unsigned long nr_running = cfs_rq->nr_running;
386 387
	unsigned long weight;
	u64 vslice;
P
Peter Zijlstra 已提交
388

389 390
	if (!se->on_rq)
		nr_running++;
P
Peter Zijlstra 已提交
391

392
	vslice = __sched_period(nr_running);
393

394
	for_each_sched_entity(se) {
395
		cfs_rq = cfs_rq_of(se);
396

397 398 399
		weight = cfs_rq->load.weight;
		if (!se->on_rq)
			weight += se->load.weight;
400

401 402
		vslice *= NICE_0_LOAD;
		do_div(vslice, weight);
403 404
	}

405
	return vslice;
P
Peter Zijlstra 已提交
406 407
}

408 409 410 411 412
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
413 414
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
415
{
416
	unsigned long delta_exec_weighted;
417

418
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
419 420

	curr->sum_exec_runtime += delta_exec;
421
	schedstat_add(cfs_rq, exec_clock, delta_exec);
422 423 424 425 426
	delta_exec_weighted = delta_exec;
	if (unlikely(curr->load.weight != NICE_0_LOAD)) {
		delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
							&curr->load);
	}
I
Ingo Molnar 已提交
427
	curr->vruntime += delta_exec_weighted;
428 429
}

430
static void update_curr(struct cfs_rq *cfs_rq)
431
{
432
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
433
	u64 now = rq_of(cfs_rq)->clock;
434 435 436 437 438 439 440 441 442 443
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
444
	delta_exec = (unsigned long)(now - curr->exec_start);
445

I
Ingo Molnar 已提交
446 447
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
448 449 450 451 452 453

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
	}
454 455 456
}

static inline void
457
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
458
{
459
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
460 461 462 463 464
}

/*
 * Task is being enqueued - update stats:
 */
465
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
466 467 468 469 470
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
471
	if (se != cfs_rq->curr)
472
		update_stats_wait_start(cfs_rq, se);
473 474 475
}

static void
476
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
477
{
478 479
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
480 481 482
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
483
	schedstat_set(se->wait_start, 0);
484 485 486
}

static inline void
487
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
488 489 490 491 492
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
493
	if (se != cfs_rq->curr)
494
		update_stats_wait_end(cfs_rq, se);
495 496 497 498 499 500
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
501
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
502 503 504 505
{
	/*
	 * We are starting a new run period:
	 */
506
	se->exec_start = rq_of(cfs_rq)->clock;
507 508 509 510 511 512
}

/**************************************************
 * Scheduling class queueing methods:
 */

513 514 515 516 517 518
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
519
	list_add(&se->group_node, &cfs_rq->tasks);
520 521 522 523 524 525 526 527
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
528
	list_del_init(&se->group_node);
529 530
}

531
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
532 533 534
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
535
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
A
Arjan van de Ven 已提交
536
		struct task_struct *tsk = task_of(se);
537 538 539 540 541 542 543 544 545

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
546 547

		account_scheduler_latency(tsk, delta >> 10, 1);
548 549
	}
	if (se->block_start) {
550
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
A
Arjan van de Ven 已提交
551
		struct task_struct *tsk = task_of(se);
552 553 554 555 556 557 558 559 560

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
561 562 563 564 565 566 567

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
568

I
Ingo Molnar 已提交
569 570 571
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
A
Arjan van de Ven 已提交
572
		account_scheduler_latency(tsk, delta >> 10, 0);
573 574 575 576
	}
#endif
}

P
Peter Zijlstra 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

590 591 592
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
P
Peter Zijlstra 已提交
593
	u64 vruntime;
594

P
Peter Zijlstra 已提交
595 596 597 598 599
	if (first_fair(cfs_rq)) {
		vruntime = min_vruntime(cfs_rq->min_vruntime,
				__pick_next_entity(cfs_rq)->vruntime);
	} else
		vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
600

601 602 603 604 605 606
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
607
	if (initial && sched_feat(START_DEBIT))
608
		vruntime += sched_vslice_add(cfs_rq, se);
609

I
Ingo Molnar 已提交
610
	if (!initial) {
611
		/* sleeps upto a single latency don't count. */
612 613
		if (sched_feat(NEW_FAIR_SLEEPERS))
			vruntime -= sysctl_sched_latency;
614

615 616
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
617 618
	}

P
Peter Zijlstra 已提交
619
	se->vruntime = vruntime;
620 621
}

622
static void
623
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
624 625
{
	/*
626
	 * Update run-time statistics of the 'current'.
627
	 */
628
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
629
	account_entity_enqueue(cfs_rq, se);
630

I
Ingo Molnar 已提交
631
	if (wakeup) {
632
		place_entity(cfs_rq, se, 0);
633
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
634
	}
635

636
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
637
	check_spread(cfs_rq, se);
638 639
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
640 641
}

I
Ingo Molnar 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (!se->last_wakeup)
		return;

	update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
	se->last_wakeup = 0;
}

657
static void
658
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
659
{
660 661 662 663 664
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

665
	update_stats_dequeue(cfs_rq, se);
666
	if (sleep) {
I
Ingo Molnar 已提交
667
		update_avg_stats(cfs_rq, se);
P
Peter Zijlstra 已提交
668
#ifdef CONFIG_SCHEDSTATS
669 670 671 672
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
673
				se->sleep_start = rq_of(cfs_rq)->clock;
674
			if (tsk->state & TASK_UNINTERRUPTIBLE)
675
				se->block_start = rq_of(cfs_rq)->clock;
676
		}
677
#endif
P
Peter Zijlstra 已提交
678 679
	}

680
	if (se != cfs_rq->curr)
681 682
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
683 684 685 686 687
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
688
static void
I
Ingo Molnar 已提交
689
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
690
{
691 692
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
693
	ideal_runtime = sched_slice(cfs_rq, curr);
694
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
I
Ingo Molnar 已提交
695
	if (delta_exec > ideal_runtime)
696 697 698
		resched_task(rq_of(cfs_rq)->curr);
}

699
static void
700
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
701
{
702 703 704 705 706 707 708 709 710 711 712
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

713
	update_stats_curr_start(cfs_rq, se);
714
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
715 716 717 718 719 720
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
721
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
722 723 724 725
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
726
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
727 728
}

729 730 731
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

732 733 734 735 736 737
static struct sched_entity *
pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (!cfs_rq->next)
		return se;

738
	if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
739 740 741 742 743
		return se;

	return cfs_rq->next;
}

744
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
745
{
D
Dmitry Adamushko 已提交
746
	struct sched_entity *se = NULL;
747

D
Dmitry Adamushko 已提交
748 749
	if (first_fair(cfs_rq)) {
		se = __pick_next_entity(cfs_rq);
750
		se = pick_next(cfs_rq, se);
D
Dmitry Adamushko 已提交
751 752
		set_next_entity(cfs_rq, se);
	}
753 754 755 756

	return se;
}

757
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
758 759 760 761 762 763
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
764
		update_curr(cfs_rq);
765

P
Peter Zijlstra 已提交
766
	check_spread(cfs_rq, prev);
767
	if (prev->on_rq) {
768
		update_stats_wait_start(cfs_rq, prev);
769 770 771
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
772
	cfs_rq->curr = NULL;
773 774
}

P
Peter Zijlstra 已提交
775 776
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
777 778
{
	/*
779
	 * Update run-time statistics of the 'current'.
780
	 */
781
	update_curr(cfs_rq);
782

P
Peter Zijlstra 已提交
783 784 785 786 787
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
788 789 790 791
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
792 793 794 795 796 797 798 799
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

800
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
801
		check_preempt_tick(cfs_rq, curr);
802 803 804 805 806 807
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	int requeue = rq->curr == p;
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
		if (!requeue)
			delta = max(10000LL, delta);

		hrtick_start(rq, delta, requeue);
	}
}
#else
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
#endif

845 846 847 848 849
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
850
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
851 852
{
	struct cfs_rq *cfs_rq;
853
	struct sched_entity *se = &p->se;
854 855

	for_each_sched_entity(se) {
856
		if (se->on_rq)
857 858
			break;
		cfs_rq = cfs_rq_of(se);
859
		enqueue_entity(cfs_rq, se, wakeup);
860
		wakeup = 1;
861
	}
P
Peter Zijlstra 已提交
862 863

	hrtick_start_fair(rq, rq->curr);
864 865 866 867 868 869 870
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
871
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
872 873
{
	struct cfs_rq *cfs_rq;
874
	struct sched_entity *se = &p->se;
875 876 877

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
878
		dequeue_entity(cfs_rq, se, sleep);
879
		/* Don't dequeue parent if it has other entities besides us */
880
		if (cfs_rq->load.weight)
881
			break;
882
		sleep = 1;
883
	}
P
Peter Zijlstra 已提交
884 885

	hrtick_start_fair(rq, rq->curr);
886 887 888
}

/*
889 890 891
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
892
 */
893
static void yield_task_fair(struct rq *rq)
894
{
895 896 897
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
898 899

	/*
900 901 902 903 904
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

905
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
906
		update_rq_clock(rq);
907
		/*
908
		 * Update run-time statistics of the 'current'.
909
		 */
D
Dmitry Adamushko 已提交
910
		update_curr(cfs_rq);
911 912 913 914 915

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
916
	 */
D
Dmitry Adamushko 已提交
917
	rightmost = __pick_last_entity(cfs_rq);
918 919 920
	/*
	 * Already in the rightmost position?
	 */
921
	if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
922 923 924 925
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
926 927
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
928
	 */
929
	se->vruntime = rightmost->vruntime + 1;
930 931
}

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
956
	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
957 958 959
		return cpu;

	for_each_domain(cpu, sd) {
960 961 962
		if ((sd->flags & SD_WAKE_IDLE)
		    || ((sd->flags & SD_WAKE_IDLE_FAR)
			&& !task_hot(p, task_rq(p)->clock, sd))) {
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
			cpus_and(tmp, sd->span, p->cpus_allowed);
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
#else
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
987

I
Ingo Molnar 已提交
988 989
static const struct sched_class fair_sched_class;

990
static int
I
Ingo Molnar 已提交
991 992 993
wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
994 995
	    unsigned int imbalance)
{
I
Ingo Molnar 已提交
996
	struct task_struct *curr = this_rq->curr;
997 998
	unsigned long tl = this_load;
	unsigned long tl_per_task;
999
	int balanced;
1000

1001
	if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1002 1003
		return 0;

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
	if (sync)
		tl -= current->se.load.weight;

	balanced = 100*(tl + p->se.load.weight) <= imbalance*load;

1014
	/*
I
Ingo Molnar 已提交
1015 1016 1017
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1018
	 */
1019
	if (sync && balanced && curr->sched_class == &fair_sched_class) {
I
Ingo Molnar 已提交
1020 1021 1022 1023
		if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
				p->se.avg_overlap < sysctl_sched_migration_cost)
			return 1;
	}
1024 1025 1026 1027

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1028
	if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
1029
			balanced) {
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1043 1044 1045
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1046
	int prev_cpu, this_cpu, new_cpu;
1047
	unsigned long load, this_load;
I
Ingo Molnar 已提交
1048
	struct rq *rq, *this_rq;
1049 1050
	unsigned int imbalance;
	int idx;
1051

1052 1053 1054
	prev_cpu	= task_cpu(p);
	rq		= task_rq(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1055
	this_rq		= cpu_rq(this_cpu);
1056
	new_cpu		= prev_cpu;
1057

1058 1059 1060 1061
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1062
	for_each_domain(this_cpu, sd) {
1063
		if (cpu_isset(prev_cpu, sd->span)) {
1064 1065 1066 1067 1068 1069
			this_sd = sd;
			break;
		}
	}

	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1070
		goto out;
1071 1072 1073 1074

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1075
	if (!this_sd)
1076
		goto out;
1077

1078 1079 1080 1081
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1082
	load = source_load(prev_cpu, idx);
1083 1084
	this_load = target_load(this_cpu, idx);

I
Ingo Molnar 已提交
1085 1086 1087 1088 1089
	if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
				     load, this_load, imbalance))
		return this_cpu;

	if (prev_cpu == this_cpu)
1090
		goto out;
1091 1092 1093 1094 1095 1096 1097 1098 1099

	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1100
			return this_cpu;
1101 1102 1103
		}
	}

1104
out:
1105 1106 1107 1108
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

1109 1110 1111 1112 1113
static unsigned long wakeup_gran(struct sched_entity *se)
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
1114 1115
	 * More easily preempt - nice tasks, while not making
	 * it harder for + nice tasks.
1116
	 */
1117 1118
	if (unlikely(se->load.weight > NICE_0_LOAD))
		gran = calc_delta_fair(gran, &se->load);
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

	return gran;
}

/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff < 0)
		return -1;

	gran = wakeup_gran(curr);
	if (vdiff > gran)
		return 1;

	return 0;
}
1151

D
Dhaval Giani 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

1163 1164 1165
/*
 * Preempt the current task with a newly woken task if needed:
 */
I
Ingo Molnar 已提交
1166
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1167 1168
{
	struct task_struct *curr = rq->curr;
1169
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1170
	struct sched_entity *se = &curr->se, *pse = &p->se;
D
Dhaval Giani 已提交
1171
	int se_depth, pse_depth;
1172 1173

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
1174
		update_rq_clock(rq);
1175
		update_curr(cfs_rq);
1176 1177 1178
		resched_task(curr);
		return;
	}
1179

I
Ingo Molnar 已提交
1180 1181 1182 1183
	se->last_wakeup = se->sum_exec_runtime;
	if (unlikely(se == pse))
		return;

1184 1185
	cfs_rq_of(pse)->next = pse;

1186 1187 1188 1189 1190 1191
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
1192

1193 1194
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1195

D
Dhaval Giani 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(se);
	pse_depth = depth_se(pse);

	while (se_depth > pse_depth) {
		se_depth--;
		se = parent_entity(se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		pse = parent_entity(pse);
	}

1217 1218 1219
	while (!is_same_group(se, pse)) {
		se = parent_entity(se);
		pse = parent_entity(pse);
1220
	}
1221

1222
	if (wakeup_preempt_entity(se, pse) == 1)
1223
		resched_task(curr);
1224 1225
}

1226
static struct task_struct *pick_next_task_fair(struct rq *rq)
1227
{
P
Peter Zijlstra 已提交
1228
	struct task_struct *p;
1229 1230 1231 1232 1233 1234 1235
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1236
		se = pick_next_entity(cfs_rq);
1237 1238 1239
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1240 1241 1242 1243
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1244 1245 1246 1247 1248
}

/*
 * Account for a descheduled task:
 */
1249
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1250 1251 1252 1253 1254 1255
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1256
		put_prev_entity(cfs_rq, se);
1257 1258 1259
	}
}

1260
#ifdef CONFIG_SMP
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1272
static struct task_struct *
1273
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1274
{
D
Dhaval Giani 已提交
1275 1276
	struct task_struct *p = NULL;
	struct sched_entity *se;
1277

1278
	while (next != &cfs_rq->tasks) {
1279 1280
		se = list_entry(next, struct sched_entity, group_node);
		next = next->next;
D
Dhaval Giani 已提交
1281

1282 1283 1284 1285 1286 1287
		/* Skip over entities that are not tasks */
		if (entity_is_task(se)) {
			p = task_of(se);
			break;
		}
	}
1288 1289

	cfs_rq->balance_iterator = next;
1290 1291 1292 1293 1294 1295 1296
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1297
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1298 1299 1300 1301 1302 1303
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1304
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1305 1306
}

1307 1308
#ifdef CONFIG_FAIR_GROUP_SCHED
static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1309
{
1310 1311
	struct sched_entity *curr;
	struct task_struct *p;
1312

1313 1314 1315 1316 1317 1318 1319 1320
	if (!cfs_rq->nr_running || !first_fair(cfs_rq))
		return MAX_PRIO;

	curr = cfs_rq->curr;
	if (!curr)
		curr = __pick_next_entity(cfs_rq);

	p = task_of(curr);
1321

1322
	return p->prio;
1323
}
1324
#endif
1325

P
Peter Williams 已提交
1326
static unsigned long
1327
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1328
		  unsigned long max_load_move,
1329 1330
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1331
{
1332
	struct cfs_rq *busy_cfs_rq;
1333
	long rem_load_move = max_load_move;
1334
	struct rq_iterator cfs_rq_iterator;
1335

1336 1337
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
1338

1339 1340 1341 1342 1343
	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
#ifdef CONFIG_FAIR_GROUP_SCHED
		struct cfs_rq *this_cfs_rq;
		long imbalance;
		unsigned long maxload;
1344

1345
		this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
1346

1347 1348 1349
		imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
		/* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
		if (imbalance <= 0)
1350 1351
			continue;

1352 1353 1354
		/* Don't pull more than imbalance/2 */
		imbalance /= 2;
		maxload = min(rem_load_move, imbalance);
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
		*this_best_prio = cfs_rq_best_prio(this_cfs_rq);
#else
# define maxload rem_load_move
#endif
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
					       maxload, sd, idle, all_pinned,
					       this_best_prio,
					       &cfs_rq_iterator);
1369

1370
		if (rem_load_move <= 0)
1371 1372 1373
			break;
	}

P
Peter Williams 已提交
1374
	return max_load_move - rem_load_move;
1375 1376
}

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1400
#endif
1401

1402 1403 1404
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1405
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1406 1407 1408 1409 1410 1411
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1412
		entity_tick(cfs_rq, se, queued);
1413 1414 1415
	}
}

1416
#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1417

1418 1419 1420 1421 1422 1423 1424
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1425
static void task_new_fair(struct rq *rq, struct task_struct *p)
1426 1427
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1428
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1429
	int this_cpu = smp_processor_id();
1430 1431 1432

	sched_info_queued(p);

1433
	update_curr(cfs_rq);
1434
	place_entity(cfs_rq, se, 1);
1435

1436
	/* 'curr' will be NULL if the child belongs to a different group */
1437
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1438
			curr && curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1439
		/*
1440 1441 1442
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1443 1444
		swap(curr->vruntime, se->vruntime);
	}
1445

1446
	enqueue_task_fair(rq, p, 0);
1447
	resched_task(rq->curr);
1448 1449
}

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
		check_preempt_curr(rq, p);
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
		check_preempt_curr(rq, p);
}

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1509 1510 1511
/*
 * All the scheduling class methods:
 */
1512 1513
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1514 1515 1516
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
1517 1518 1519
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_fair,
#endif /* CONFIG_SMP */
1520

I
Ingo Molnar 已提交
1521
	.check_preempt_curr	= check_preempt_wakeup,
1522 1523 1524 1525

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1526
#ifdef CONFIG_SMP
1527
	.load_balance		= load_balance_fair,
1528
	.move_one_task		= move_one_task_fair,
1529
#endif
1530

1531
	.set_curr_task          = set_curr_task_fair,
1532 1533
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1534 1535 1536

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1537 1538 1539 1540

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1541 1542 1543
};

#ifdef CONFIG_SCHED_DEBUG
1544
static void print_cfs_stats(struct seq_file *m, int cpu)
1545 1546 1547
{
	struct cfs_rq *cfs_rq;

1548
	rcu_read_lock();
1549
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1550
		print_cfs_rq(m, cpu, cfs_rq);
1551
	rcu_read_unlock();
1552 1553
}
#endif