sched_fair.c 40.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77
static const struct sched_class fair_sched_class;

78 79 80 81
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

P
Peter Zijlstra 已提交
82 83 84 85 86
static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}

87
#ifdef CONFIG_FAIR_GROUP_SCHED
88

89
/* cpu runqueue to which this cfs_rq is attached */
90 91
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
92
	return cfs_rq->rq;
93 94
}

95 96
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
97

P
Peter Zijlstra 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

189
#else	/* CONFIG_FAIR_GROUP_SCHED */
190

191 192 193
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
194 195 196 197
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
198 199
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
200

P
Peter Zijlstra 已提交
201
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
202
{
P
Peter Zijlstra 已提交
203
	return &task_rq(p)->cfs;
204 205
}

P
Peter Zijlstra 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

239 240 241 242 243
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
244 245
#endif	/* CONFIG_FAIR_GROUP_SCHED */

246 247 248 249 250

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

251
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
252
{
253 254
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
255 256 257 258 259
		min_vruntime = vruntime;

	return min_vruntime;
}

260
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
261 262 263 264 265 266 267 268
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

269
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
270
{
271
	return se->vruntime - cfs_rq->min_vruntime;
272 273
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

		if (vruntime == cfs_rq->min_vruntime)
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
}

295 296 297
/*
 * Enqueue an entity into the rb-tree:
 */
298
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
299 300 301 302
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
303
	s64 key = entity_key(cfs_rq, se);
304 305 306 307 308 309 310 311 312 313 314 315
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
316
		if (key < entity_key(cfs_rq, entry)) {
317 318 319 320 321 322 323 324 325 326 327
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
328
	if (leftmost)
I
Ingo Molnar 已提交
329
		cfs_rq->rb_leftmost = &se->run_node;
330 331 332 333 334

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

335
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
336
{
P
Peter Zijlstra 已提交
337 338 339 340 341 342
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
343

344 345 346 347 348
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
349 350 351 352 353 354
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
355 356
}

357
static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
358
{
359
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
360

361 362
	if (!last)
		return NULL;
363 364

	return rb_entry(last, struct sched_entity, run_node);
365 366
}

367 368 369 370
/**************************************************************
 * Scheduling class statistics methods:
 */

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
387

388
/*
389
 * delta *= P[w / rw]
390 391 392 393 394 395 396 397 398 399 400 401 402
 */
static inline unsigned long
calc_delta_weight(unsigned long delta, struct sched_entity *se)
{
	for_each_sched_entity(se) {
		delta = calc_delta_mine(delta,
				se->load.weight, &cfs_rq_of(se)->load);
	}

	return delta;
}

/*
403
 * delta /= w
404 405 406 407
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
408 409
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
410 411 412 413

	return delta;
}

414 415 416 417 418 419 420 421
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
422 423 424
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
425
	unsigned long nr_latency = sched_nr_latency;
426 427

	if (unlikely(nr_running > nr_latency)) {
428
		period = sysctl_sched_min_granularity;
429 430 431 432 433 434
		period *= nr_running;
	}

	return period;
}

435 436 437 438
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
439
 * s = p*P[w/rw]
440
 */
P
Peter Zijlstra 已提交
441
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
442
{
443 444 445 446 447 448
	unsigned long nr_running = cfs_rq->nr_running;

	if (unlikely(!se->on_rq))
		nr_running++;

	return calc_delta_weight(__sched_period(nr_running), se);
449 450
}

451
/*
452
 * We calculate the vruntime slice of a to be inserted task
453
 *
454
 * vs = s/w
455
 */
456
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
457
{
458
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
459 460
}

461 462 463 464 465
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
466 467
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
468
{
469
	unsigned long delta_exec_weighted;
470

471
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
472 473

	curr->sum_exec_runtime += delta_exec;
474
	schedstat_add(cfs_rq, exec_clock, delta_exec);
475
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
476
	curr->vruntime += delta_exec_weighted;
477
	update_min_vruntime(cfs_rq);
478 479
}

480
static void update_curr(struct cfs_rq *cfs_rq)
481
{
482
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
483
	u64 now = rq_of(cfs_rq)->clock;
484 485 486 487 488 489 490 491 492 493
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
494
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
495 496
	if (!delta_exec)
		return;
497

I
Ingo Molnar 已提交
498 499
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
500 501 502 503 504

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
505
		account_group_exec_runtime(curtask, delta_exec);
506
	}
507 508 509
}

static inline void
510
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
511
{
512
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
513 514 515 516 517
}

/*
 * Task is being enqueued - update stats:
 */
518
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
519 520 521 522 523
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
524
	if (se != cfs_rq->curr)
525
		update_stats_wait_start(cfs_rq, se);
526 527 528
}

static void
529
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
530
{
531 532
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
533 534 535
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
536
	schedstat_set(se->wait_start, 0);
537 538 539
}

static inline void
540
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
541 542 543 544 545
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
546
	if (se != cfs_rq->curr)
547
		update_stats_wait_end(cfs_rq, se);
548 549 550 551 552 553
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
554
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
555 556 557 558
{
	/*
	 * We are starting a new run period:
	 */
559
	se->exec_start = rq_of(cfs_rq)->clock;
560 561 562 563 564 565
}

/**************************************************
 * Scheduling class queueing methods:
 */

566 567 568 569 570 571 572 573 574 575 576 577 578
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

579 580 581 582
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
583 584
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
585
	if (entity_is_task(se)) {
586
		add_cfs_task_weight(cfs_rq, se->load.weight);
587 588
		list_add(&se->group_node, &cfs_rq->tasks);
	}
589 590 591 592 593 594 595 596
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
597 598
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
599
	if (entity_is_task(se)) {
600
		add_cfs_task_weight(cfs_rq, -se->load.weight);
601 602
		list_del_init(&se->group_node);
	}
603 604 605 606
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

607
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
608 609 610
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
611
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
A
Arjan van de Ven 已提交
612
		struct task_struct *tsk = task_of(se);
613 614 615 616 617 618 619 620 621

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
622 623

		account_scheduler_latency(tsk, delta >> 10, 1);
624 625
	}
	if (se->block_start) {
626
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
A
Arjan van de Ven 已提交
627
		struct task_struct *tsk = task_of(se);
628 629 630 631 632 633 634 635 636

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
637 638 639 640 641 642 643

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
644

I
Ingo Molnar 已提交
645 646 647
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
A
Arjan van de Ven 已提交
648
		account_scheduler_latency(tsk, delta >> 10, 0);
649 650 651 652
	}
#endif
}

P
Peter Zijlstra 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

666 667 668
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
669
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
670

671 672 673 674 675 676
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
677
	if (initial && sched_feat(START_DEBIT))
678
		vruntime += sched_vslice(cfs_rq, se);
679

I
Ingo Molnar 已提交
680
	if (!initial) {
681
		/* sleeps upto a single latency don't count. */
682 683 684 685 686 687 688 689 690 691 692
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
			unsigned long thresh = sysctl_sched_latency;

			/*
			 * convert the sleeper threshold into virtual time
			 */
			if (sched_feat(NORMALIZED_SLEEPER))
				thresh = calc_delta_fair(thresh, se);

			vruntime -= thresh;
		}
693

694 695
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
696 697
	}

P
Peter Zijlstra 已提交
698
	se->vruntime = vruntime;
699 700
}

701
static void
702
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
703 704
{
	/*
705
	 * Update run-time statistics of the 'current'.
706
	 */
707
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
708
	account_entity_enqueue(cfs_rq, se);
709

I
Ingo Molnar 已提交
710
	if (wakeup) {
711
		place_entity(cfs_rq, se, 0);
712
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
713
	}
714

715
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
716
	check_spread(cfs_rq, se);
717 718
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
719 720
}

P
Peter Zijlstra 已提交
721 722 723 724 725 726 727 728 729
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (cfs_rq->last == se)
		cfs_rq->last = NULL;

	if (cfs_rq->next == se)
		cfs_rq->next = NULL;
}

730
static void
731
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
732
{
733 734 735 736 737
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

738
	update_stats_dequeue(cfs_rq, se);
739
	if (sleep) {
P
Peter Zijlstra 已提交
740
#ifdef CONFIG_SCHEDSTATS
741 742 743 744
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
745
				se->sleep_start = rq_of(cfs_rq)->clock;
746
			if (tsk->state & TASK_UNINTERRUPTIBLE)
747
				se->block_start = rq_of(cfs_rq)->clock;
748
		}
749
#endif
P
Peter Zijlstra 已提交
750 751
	}

P
Peter Zijlstra 已提交
752
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
753

754
	if (se != cfs_rq->curr)
755 756
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
757
	update_min_vruntime(cfs_rq);
758 759 760 761 762
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
763
static void
I
Ingo Molnar 已提交
764
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
765
{
766 767
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
768
	ideal_runtime = sched_slice(cfs_rq, curr);
769
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
I
Ingo Molnar 已提交
770
	if (delta_exec > ideal_runtime)
771 772 773
		resched_task(rq_of(cfs_rq)->curr);
}

774
static void
775
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
776
{
777 778 779 780 781 782 783 784 785 786 787
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

788
	update_stats_curr_start(cfs_rq, se);
789
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
790 791 792 793 794 795
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
796
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
797 798 799 800
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
801
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
802 803
}

804 805 806
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

807
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
808
{
809 810
	struct sched_entity *se = __pick_next_entity(cfs_rq);

P
Peter Zijlstra 已提交
811 812
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
		return cfs_rq->next;
813

P
Peter Zijlstra 已提交
814 815 816 817
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
		return cfs_rq->last;

	return se;
818 819
}

820
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
821 822 823 824 825 826
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
827
		update_curr(cfs_rq);
828

P
Peter Zijlstra 已提交
829
	check_spread(cfs_rq, prev);
830
	if (prev->on_rq) {
831
		update_stats_wait_start(cfs_rq, prev);
832 833 834
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
835
	cfs_rq->curr = NULL;
836 837
}

P
Peter Zijlstra 已提交
838 839
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
840 841
{
	/*
842
	 * Update run-time statistics of the 'current'.
843
	 */
844
	update_curr(cfs_rq);
845

P
Peter Zijlstra 已提交
846 847 848 849 850
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
851 852 853 854
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
855 856 857 858 859 860 861 862
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

863
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
864
		check_preempt_tick(cfs_rq, curr);
865 866 867 868 869 870
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
894
		if (rq->curr != p)
895
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
896

897
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
898 899
	}
}
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
916
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
917 918 919 920
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
921 922 923 924

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
925 926
#endif

927 928 929 930 931
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
932
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
933 934
{
	struct cfs_rq *cfs_rq;
935
	struct sched_entity *se = &p->se;
936 937

	for_each_sched_entity(se) {
938
		if (se->on_rq)
939 940
			break;
		cfs_rq = cfs_rq_of(se);
941
		enqueue_entity(cfs_rq, se, wakeup);
942
		wakeup = 1;
943
	}
P
Peter Zijlstra 已提交
944

945
	hrtick_update(rq);
946 947 948 949 950 951 952
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
953
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
954 955
{
	struct cfs_rq *cfs_rq;
956
	struct sched_entity *se = &p->se;
957 958 959

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
960
		dequeue_entity(cfs_rq, se, sleep);
961
		/* Don't dequeue parent if it has other entities besides us */
962
		if (cfs_rq->load.weight)
963
			break;
964
		sleep = 1;
965
	}
P
Peter Zijlstra 已提交
966

967
	hrtick_update(rq);
968 969 970
}

/*
971 972 973
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
974
 */
975
static void yield_task_fair(struct rq *rq)
976
{
977 978 979
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
980 981

	/*
982 983 984 985 986
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

P
Peter Zijlstra 已提交
987 988
	clear_buddies(cfs_rq, se);

989
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
990
		update_rq_clock(rq);
991
		/*
992
		 * Update run-time statistics of the 'current'.
993
		 */
D
Dmitry Adamushko 已提交
994
		update_curr(cfs_rq);
995 996 997 998 999

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
1000
	 */
D
Dmitry Adamushko 已提交
1001
	rightmost = __pick_last_entity(cfs_rq);
1002 1003 1004
	/*
	 * Already in the rightmost position?
	 */
1005
	if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1006 1007 1008 1009
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
1010 1011
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
1012
	 */
1013
	se->vruntime = rightmost->vruntime + 1;
1014 1015
}

1016 1017 1018 1019 1020
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
1021 1022
 * Domains may include CPUs that are not usable for migration,
 * hence we need to mask them out (cpu_active_map)
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
1042
	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1043 1044 1045
		return cpu;

	for_each_domain(cpu, sd) {
1046 1047 1048
		if ((sd->flags & SD_WAKE_IDLE)
		    || ((sd->flags & SD_WAKE_IDLE_FAR)
			&& !task_hot(p, task_rq(p)->clock, sd))) {
1049
			cpus_and(tmp, sd->span, p->cpus_allowed);
1050
			cpus_and(tmp, tmp, cpu_active_map);
1051
			for_each_cpu_mask_nr(i, tmp) {
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
1066
#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1067 1068 1069 1070 1071 1072 1073
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
1074

1075
#ifdef CONFIG_FAIR_GROUP_SCHED
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 *
 * The problem is that perfectly aligning the shares is rather expensive, hence
 * we try to avoid doing that too often - see update_shares(), which ratelimits
 * this change.
 *
 * We compensate this by not only taking the current delta into account, but
 * also considering the delta between when the shares were last adjusted and
 * now.
 *
 * We still saw a performance dip, some tracing learned us that between
 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 * significantly. Therefore try to bias the error in direction of failing
 * the affine wakeup.
 *
 */
1097 1098
static long effective_load(struct task_group *tg, int cpu,
		long wl, long wg)
1099
{
P
Peter Zijlstra 已提交
1100
	struct sched_entity *se = tg->se[cpu];
1101 1102 1103 1104

	if (!tg->parent)
		return wl;

1105 1106 1107 1108 1109 1110 1111
	/*
	 * By not taking the decrease of shares on the other cpu into
	 * account our error leans towards reducing the affine wakeups.
	 */
	if (!wl && sched_feat(ASYM_EFF_LOAD))
		return wl;

P
Peter Zijlstra 已提交
1112
	for_each_sched_entity(se) {
1113
		long S, rw, s, a, b;
1114 1115 1116 1117 1118 1119 1120 1121 1122
		long more_w;

		/*
		 * Instead of using this increment, also add the difference
		 * between when the shares were last updated and now.
		 */
		more_w = se->my_q->load.weight - se->my_q->rq_weight;
		wl += more_w;
		wg += more_w;
P
Peter Zijlstra 已提交
1123 1124 1125

		S = se->my_q->tg->shares;
		s = se->my_q->shares;
1126
		rw = se->my_q->rq_weight;
1127

1128 1129
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1130

1131 1132 1133 1134 1135
		wl = s*(a-b);

		if (likely(b))
			wl /= b;

1136 1137 1138 1139 1140 1141 1142
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1143 1144
		wg = 0;
	}
1145

P
Peter Zijlstra 已提交
1146
	return wl;
1147
}
P
Peter Zijlstra 已提交
1148

1149
#else
P
Peter Zijlstra 已提交
1150

1151 1152
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1153
{
1154
	return wl;
1155
}
P
Peter Zijlstra 已提交
1156

1157 1158
#endif

1159
static int
1160
wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
I
Ingo Molnar 已提交
1161 1162
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
1163 1164
	    unsigned int imbalance)
{
I
Ingo Molnar 已提交
1165
	struct task_struct *curr = this_rq->curr;
1166
	struct task_group *tg;
1167 1168
	unsigned long tl = this_load;
	unsigned long tl_per_task;
1169
	unsigned long weight;
1170
	int balanced;
1171

1172
	if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1173 1174
		return 0;

M
Mike Galbraith 已提交
1175 1176 1177
	if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
			p->se.avg_overlap > sysctl_sched_migration_cost))
		sync = 0;
1178

1179 1180 1181 1182 1183
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1184 1185 1186 1187 1188 1189 1190
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

		tl += effective_load(tg, this_cpu, -weight, -weight);
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
1191

1192 1193
	tg = task_group(p);
	weight = p->se.load.weight;
1194

1195 1196
	balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1197

1198
	/*
I
Ingo Molnar 已提交
1199 1200 1201
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1202
	 */
1203 1204
	if (sync && balanced)
		return 1;
1205 1206 1207 1208

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1209 1210
	if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
			tl_per_task)) {
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1224 1225 1226
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1227
	int prev_cpu, this_cpu, new_cpu;
1228
	unsigned long load, this_load;
1229
	struct rq *this_rq;
1230 1231
	unsigned int imbalance;
	int idx;
1232

1233 1234
	prev_cpu	= task_cpu(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1235
	this_rq		= cpu_rq(this_cpu);
1236
	new_cpu		= prev_cpu;
1237

1238 1239
	if (prev_cpu == this_cpu)
		goto out;
1240 1241 1242 1243
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1244
	for_each_domain(this_cpu, sd) {
1245
		if (cpu_isset(prev_cpu, sd->span)) {
1246 1247 1248 1249 1250 1251
			this_sd = sd;
			break;
		}
	}

	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1252
		goto out;
1253 1254 1255 1256

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1257
	if (!this_sd)
1258
		goto out;
1259

1260 1261 1262 1263
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1264
	load = source_load(prev_cpu, idx);
1265 1266
	this_load = target_load(this_cpu, idx);

1267
	if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
I
Ingo Molnar 已提交
1268 1269 1270
				     load, this_load, imbalance))
		return this_cpu;

1271 1272 1273 1274 1275 1276 1277 1278
	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1279
			return this_cpu;
1280 1281 1282
		}
	}

1283
out:
1284 1285 1286 1287
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

1288 1289 1290 1291 1292
static unsigned long wakeup_gran(struct sched_entity *se)
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
1293 1294
	 * More easily preempt - nice tasks, while not making it harder for
	 * + nice tasks.
1295
	 */
1296 1297
	if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD)
		gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
1298 1299 1300 1301

	return gran;
}

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

	gran = wakeup_gran(curr);
	if (vdiff > gran)
		return 1;

	return 0;
}

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
static void set_last_buddy(struct sched_entity *se)
{
	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
}

static void set_next_buddy(struct sched_entity *se)
{
	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
}

1343 1344 1345
/*
 * Preempt the current task with a newly woken task if needed:
 */
1346
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1347 1348
{
	struct task_struct *curr = rq->curr;
1349
	struct sched_entity *se = &curr->se, *pse = &p->se;
1350
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1351

1352
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1353

1354
	if (unlikely(rt_prio(p->prio))) {
1355 1356 1357
		resched_task(curr);
		return;
	}
1358

P
Peter Zijlstra 已提交
1359 1360 1361
	if (unlikely(p->sched_class != &fair_sched_class))
		return;

I
Ingo Molnar 已提交
1362 1363 1364
	if (unlikely(se == pse))
		return;

P
Peter Zijlstra 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	/*
	 * Only set the backward buddy when the current task is still on the
	 * rq. This can happen when a wakeup gets interleaved with schedule on
	 * the ->pre_schedule() or idle_balance() point, either of which can
	 * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class, for
	 * obvious reasons its a bad idea to schedule back to the idle thread.
	 */
	if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1375 1376
		set_last_buddy(se);
	set_next_buddy(pse);
P
Peter Zijlstra 已提交
1377

1378 1379 1380 1381 1382 1383 1384
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 */
	if (test_tsk_need_resched(curr))
		return;

1385 1386 1387 1388 1389 1390
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
1391

1392 1393
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1394

1395 1396 1397
	if (sched_feat(WAKEUP_OVERLAP) && (sync ||
			(se->avg_overlap < sysctl_sched_migration_cost &&
			 pse->avg_overlap < sysctl_sched_migration_cost))) {
1398 1399 1400 1401
		resched_task(curr);
		return;
	}

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	find_matching_se(&se, &pse);

	while (se) {
		BUG_ON(!pse);

		if (wakeup_preempt_entity(se, pse) == 1) {
			resched_task(curr);
			break;
		}

		se = parent_entity(se);
		pse = parent_entity(pse);
	}
1415 1416
}

1417
static struct task_struct *pick_next_task_fair(struct rq *rq)
1418
{
P
Peter Zijlstra 已提交
1419
	struct task_struct *p;
1420 1421 1422 1423 1424 1425 1426
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1427
		se = pick_next_entity(cfs_rq);
1428
		set_next_entity(cfs_rq, se);
1429 1430 1431
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1432 1433 1434 1435
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1436 1437 1438 1439 1440
}

/*
 * Account for a descheduled task:
 */
1441
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1442 1443 1444 1445 1446 1447
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1448
		put_prev_entity(cfs_rq, se);
1449 1450 1451
	}
}

1452
#ifdef CONFIG_SMP
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1464
static struct task_struct *
1465
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1466
{
D
Dhaval Giani 已提交
1467 1468
	struct task_struct *p = NULL;
	struct sched_entity *se;
1469

1470 1471 1472
	if (next == &cfs_rq->tasks)
		return NULL;

1473 1474 1475
	se = list_entry(next, struct sched_entity, group_node);
	p = task_of(se);
	cfs_rq->balance_iterator = next->next;
1476

1477 1478 1479 1480 1481 1482 1483
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1484
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1485 1486 1487 1488 1489 1490
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1491
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1492 1493
}

1494 1495 1496 1497 1498
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1499
{
1500
	struct rq_iterator cfs_rq_iterator;
1501

1502 1503 1504
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1505

1506 1507 1508
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1509 1510
}

1511
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1512
static unsigned long
1513
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1514
		  unsigned long max_load_move,
1515 1516
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1517 1518
{
	long rem_load_move = max_load_move;
1519 1520
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1521

1522
	rcu_read_lock();
1523
	update_h_load(busiest_cpu);
1524

1525
	list_for_each_entry_rcu(tg, &task_groups, list) {
1526
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1527 1528
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
S
Srivatsa Vaddagiri 已提交
1529
		u64 rem_load, moved_load;
1530

1531 1532 1533
		/*
		 * empty group
		 */
1534
		if (!busiest_cfs_rq->task_weight)
1535 1536
			continue;

S
Srivatsa Vaddagiri 已提交
1537 1538
		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);
1539

1540
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1541
				rem_load, sd, idle, all_pinned, this_best_prio,
1542
				tg->cfs_rq[busiest_cpu]);
1543

1544
		if (!moved_load)
1545 1546
			continue;

1547
		moved_load *= busiest_h_load;
S
Srivatsa Vaddagiri 已提交
1548
		moved_load = div_u64(moved_load, busiest_weight + 1);
1549

1550 1551
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1552 1553
			break;
	}
1554
	rcu_read_unlock();
1555

P
Peter Williams 已提交
1556
	return max_load_move - rem_load_move;
1557
}
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1570

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1594
#endif /* CONFIG_SMP */
1595

1596 1597 1598
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1599
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1600 1601 1602 1603 1604 1605
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1606
		entity_tick(cfs_rq, se, queued);
1607 1608 1609
	}
}

1610
#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1611

1612 1613 1614 1615 1616 1617 1618
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1619
static void task_new_fair(struct rq *rq, struct task_struct *p)
1620 1621
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1622
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1623
	int this_cpu = smp_processor_id();
1624 1625 1626

	sched_info_queued(p);

1627
	update_curr(cfs_rq);
1628
	place_entity(cfs_rq, se, 1);
1629

1630
	/* 'curr' will be NULL if the child belongs to a different group */
1631
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1632
			curr && curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1633
		/*
1634 1635 1636
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1637
		swap(curr->vruntime, se->vruntime);
1638
		resched_task(rq->curr);
1639
	}
1640

1641
	enqueue_task_fair(rq, p, 0);
1642 1643
}

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
1660
		check_preempt_curr(rq, p, 0);
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
1677
		check_preempt_curr(rq, p, 0);
1678 1679
}

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1703 1704 1705
/*
 * All the scheduling class methods:
 */
1706 1707
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1708 1709 1710 1711
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
1712
	.check_preempt_curr	= check_preempt_wakeup,
1713 1714 1715 1716

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1717
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1718 1719
	.select_task_rq		= select_task_rq_fair,

1720
	.load_balance		= load_balance_fair,
1721
	.move_one_task		= move_one_task_fair,
1722
#endif
1723

1724
	.set_curr_task          = set_curr_task_fair,
1725 1726
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1727 1728 1729

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1730 1731 1732 1733

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1734 1735 1736
};

#ifdef CONFIG_SCHED_DEBUG
1737
static void print_cfs_stats(struct seq_file *m, int cpu)
1738 1739 1740
{
	struct cfs_rq *cfs_rq;

1741
	rcu_read_lock();
1742
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1743
		print_cfs_rq(m, cpu, cfs_rq);
1744
	rcu_read_unlock();
1745 1746
}
#endif