sched_fair.c 43.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77
static const struct sched_class fair_sched_class;

78 79 80 81
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

P
Peter Zijlstra 已提交
82 83 84 85 86
static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}

87
#ifdef CONFIG_FAIR_GROUP_SCHED
88

89
/* cpu runqueue to which this cfs_rq is attached */
90 91
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
92
	return cfs_rq->rq;
93 94
}

95 96
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
97

P
Peter Zijlstra 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

189
#else	/* CONFIG_FAIR_GROUP_SCHED */
190

191 192 193
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
194 195 196 197
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
198 199
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
200

P
Peter Zijlstra 已提交
201
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
202
{
P
Peter Zijlstra 已提交
203
	return &task_rq(p)->cfs;
204 205
}

P
Peter Zijlstra 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

239 240 241 242 243
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
244 245
#endif	/* CONFIG_FAIR_GROUP_SCHED */

246 247 248 249 250

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

251
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
252
{
253 254
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
255 256 257 258 259
		min_vruntime = vruntime;

	return min_vruntime;
}

260
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
261 262 263 264 265 266 267 268
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

269 270 271 272 273 274
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

275
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
276
{
277
	return se->vruntime - cfs_rq->min_vruntime;
278 279
}

280 281 282 283 284 285 286 287 288 289 290 291
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
292
		if (!cfs_rq->curr)
293 294 295 296 297 298 299 300
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
}

301 302 303
/*
 * Enqueue an entity into the rb-tree:
 */
304
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
305 306 307 308
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
309
	s64 key = entity_key(cfs_rq, se);
310 311 312 313 314 315 316 317 318 319 320 321
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
322
		if (key < entity_key(cfs_rq, entry)) {
323 324 325 326 327 328 329 330 331 332 333
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
334
	if (leftmost)
I
Ingo Molnar 已提交
335
		cfs_rq->rb_leftmost = &se->run_node;
336 337 338 339 340

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

341
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
342
{
P
Peter Zijlstra 已提交
343 344 345 346 347 348
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
349

350 351 352 353 354
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
355 356 357 358 359 360
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
361 362
}

363
static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
364
{
365
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
366

367 368
	if (!last)
		return NULL;
369 370

	return rb_entry(last, struct sched_entity, run_node);
371 372
}

373 374 375 376
/**************************************************************
 * Scheduling class statistics methods:
 */

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
393

394
/*
395
 * delta /= w
396 397 398 399
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
400 401
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
402 403 404 405

	return delta;
}

406 407 408 409 410 411 412 413
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
414 415 416
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
417
	unsigned long nr_latency = sched_nr_latency;
418 419

	if (unlikely(nr_running > nr_latency)) {
420
		period = sysctl_sched_min_granularity;
421 422 423 424 425 426
		period *= nr_running;
	}

	return period;
}

427 428 429 430
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
431
 * s = p*P[w/rw]
432
 */
P
Peter Zijlstra 已提交
433
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
434
{
M
Mike Galbraith 已提交
435
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
436

M
Mike Galbraith 已提交
437
	for_each_sched_entity(se) {
L
Lin Ming 已提交
438
		struct load_weight *load;
439
		struct load_weight lw;
L
Lin Ming 已提交
440 441 442

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
443

M
Mike Galbraith 已提交
444
		if (unlikely(!se->on_rq)) {
445
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
446 447 448 449 450 451 452

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
453 454
}

455
/*
456
 * We calculate the vruntime slice of a to be inserted task
457
 *
458
 * vs = s/w
459
 */
460
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
461
{
462
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
463 464
}

465 466 467 468 469
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
470 471
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
472
{
473
	unsigned long delta_exec_weighted;
474

475
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
476 477

	curr->sum_exec_runtime += delta_exec;
478
	schedstat_add(cfs_rq, exec_clock, delta_exec);
479
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
480
	curr->vruntime += delta_exec_weighted;
481
	update_min_vruntime(cfs_rq);
482 483
}

484
static void update_curr(struct cfs_rq *cfs_rq)
485
{
486
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
487
	u64 now = rq_of(cfs_rq)->clock;
488 489 490 491 492 493 494 495 496 497
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
498
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
499 500
	if (!delta_exec)
		return;
501

I
Ingo Molnar 已提交
502 503
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
504 505 506 507 508

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
509
		account_group_exec_runtime(curtask, delta_exec);
510
	}
511 512 513
}

static inline void
514
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
515
{
516
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
517 518 519 520 521
}

/*
 * Task is being enqueued - update stats:
 */
522
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 524 525 526 527
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
528
	if (se != cfs_rq->curr)
529
		update_stats_wait_start(cfs_rq, se);
530 531 532
}

static void
533
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
534
{
535 536
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
537 538 539
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
540
	schedstat_set(se->wait_start, 0);
541 542 543
}

static inline void
544
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
545 546 547 548 549
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
550
	if (se != cfs_rq->curr)
551
		update_stats_wait_end(cfs_rq, se);
552 553 554 555 556 557
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
558
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
559 560 561 562
{
	/*
	 * We are starting a new run period:
	 */
563
	se->exec_start = rq_of(cfs_rq)->clock;
564 565 566 567 568 569
}

/**************************************************
 * Scheduling class queueing methods:
 */

570 571 572 573 574 575 576 577 578 579 580 581 582
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

583 584 585 586
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
587 588
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
589
	if (entity_is_task(se)) {
590
		add_cfs_task_weight(cfs_rq, se->load.weight);
591 592
		list_add(&se->group_node, &cfs_rq->tasks);
	}
593 594 595 596 597 598 599 600
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
601 602
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
603
	if (entity_is_task(se)) {
604
		add_cfs_task_weight(cfs_rq, -se->load.weight);
605 606
		list_del_init(&se->group_node);
	}
607 608 609 610
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

611
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
612 613 614
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
615
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
A
Arjan van de Ven 已提交
616
		struct task_struct *tsk = task_of(se);
617 618 619 620 621 622 623 624 625

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
626 627

		account_scheduler_latency(tsk, delta >> 10, 1);
628 629
	}
	if (se->block_start) {
630
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
A
Arjan van de Ven 已提交
631
		struct task_struct *tsk = task_of(se);
632 633 634 635 636 637 638 639 640

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
641 642 643 644 645 646 647

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
648

I
Ingo Molnar 已提交
649 650 651
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
A
Arjan van de Ven 已提交
652
		account_scheduler_latency(tsk, delta >> 10, 0);
653 654 655 656
	}
#endif
}

P
Peter Zijlstra 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

670 671 672
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
673
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
674

675 676 677 678 679 680
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
681
	if (initial && sched_feat(START_DEBIT))
682
		vruntime += sched_vslice(cfs_rq, se);
683

I
Ingo Molnar 已提交
684
	if (!initial) {
685
		/* sleeps upto a single latency don't count. */
686 687 688 689
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
			unsigned long thresh = sysctl_sched_latency;

			/*
690 691 692 693
			 * Convert the sleeper threshold into virtual time.
			 * SCHED_IDLE is a special sub-class.  We care about
			 * fairness only relative to other SCHED_IDLE tasks,
			 * all of which have the same weight.
694
			 */
695
			if (sched_feat(NORMALIZED_SLEEPER) &&
696 697
					(!entity_is_task(se) ||
					 task_of(se)->policy != SCHED_IDLE))
698 699 700 701
				thresh = calc_delta_fair(thresh, se);

			vruntime -= thresh;
		}
702

703 704
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
705 706
	}

P
Peter Zijlstra 已提交
707
	se->vruntime = vruntime;
708 709
}

710
static void
711
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
712 713
{
	/*
714
	 * Update run-time statistics of the 'current'.
715
	 */
716
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
717
	account_entity_enqueue(cfs_rq, se);
718

I
Ingo Molnar 已提交
719
	if (wakeup) {
720
		place_entity(cfs_rq, se, 0);
721
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
722
	}
723

724
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
725
	check_spread(cfs_rq, se);
726 727
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
728 729
}

P
Peter Zijlstra 已提交
730
static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
731 732 733 734 735 736 737 738
{
	if (cfs_rq->last == se)
		cfs_rq->last = NULL;

	if (cfs_rq->next == se)
		cfs_rq->next = NULL;
}

P
Peter Zijlstra 已提交
739 740 741 742 743 744
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	for_each_sched_entity(se)
		__clear_buddies(cfs_rq_of(se), se);
}

745
static void
746
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
747
{
748 749 750 751 752
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

753
	update_stats_dequeue(cfs_rq, se);
754
	if (sleep) {
P
Peter Zijlstra 已提交
755
#ifdef CONFIG_SCHEDSTATS
756 757 758 759
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
760
				se->sleep_start = rq_of(cfs_rq)->clock;
761
			if (tsk->state & TASK_UNINTERRUPTIBLE)
762
				se->block_start = rq_of(cfs_rq)->clock;
763
		}
764
#endif
P
Peter Zijlstra 已提交
765 766
	}

P
Peter Zijlstra 已提交
767
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
768

769
	if (se != cfs_rq->curr)
770 771
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
772
	update_min_vruntime(cfs_rq);
773 774 775 776 777
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
778
static void
I
Ingo Molnar 已提交
779
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
780
{
781 782
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
783
	ideal_runtime = sched_slice(cfs_rq, curr);
784
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
785
	if (delta_exec > ideal_runtime) {
786
		resched_task(rq_of(cfs_rq)->curr);
787 788 789 790 791 792
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
	}
793 794
}

795
static void
796
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
797
{
798 799 800 801 802 803 804 805 806 807 808
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

809
	update_stats_curr_start(cfs_rq, se);
810
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
811 812 813 814 815 816
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
817
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
818 819 820 821
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
822
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
823 824
}

825 826 827
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

828
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
829
{
830 831
	struct sched_entity *se = __pick_next_entity(cfs_rq);

P
Peter Zijlstra 已提交
832 833
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
		return cfs_rq->next;
834

P
Peter Zijlstra 已提交
835 836 837 838
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
		return cfs_rq->last;

	return se;
839 840
}

841
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
842 843 844 845 846 847
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
848
		update_curr(cfs_rq);
849

P
Peter Zijlstra 已提交
850
	check_spread(cfs_rq, prev);
851
	if (prev->on_rq) {
852
		update_stats_wait_start(cfs_rq, prev);
853 854 855
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
856
	cfs_rq->curr = NULL;
857 858
}

P
Peter Zijlstra 已提交
859 860
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
861 862
{
	/*
863
	 * Update run-time statistics of the 'current'.
864
	 */
865
	update_curr(cfs_rq);
866

P
Peter Zijlstra 已提交
867 868 869 870 871
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
872 873 874 875
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
876 877 878 879 880 881 882 883
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

884
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
885
		check_preempt_tick(cfs_rq, curr);
886 887 888 889 890 891
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
915
		if (rq->curr != p)
916
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
917

918
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
919 920
	}
}
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
937
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
938 939 940 941
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
942 943 944 945

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
946 947
#endif

948 949 950 951 952
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
953
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
954 955
{
	struct cfs_rq *cfs_rq;
956
	struct sched_entity *se = &p->se;
957 958

	for_each_sched_entity(se) {
959
		if (se->on_rq)
960 961
			break;
		cfs_rq = cfs_rq_of(se);
962
		enqueue_entity(cfs_rq, se, wakeup);
963
		wakeup = 1;
964
	}
P
Peter Zijlstra 已提交
965

966
	hrtick_update(rq);
967 968 969 970 971 972 973
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
974
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
975 976
{
	struct cfs_rq *cfs_rq;
977
	struct sched_entity *se = &p->se;
978 979 980

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
981
		dequeue_entity(cfs_rq, se, sleep);
982
		/* Don't dequeue parent if it has other entities besides us */
983
		if (cfs_rq->load.weight)
984
			break;
985
		sleep = 1;
986
	}
P
Peter Zijlstra 已提交
987

988
	hrtick_update(rq);
989 990 991
}

/*
992 993 994
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
995
 */
996
static void yield_task_fair(struct rq *rq)
997
{
998 999 1000
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
1001 1002

	/*
1003 1004 1005 1006 1007
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

P
Peter Zijlstra 已提交
1008 1009
	clear_buddies(cfs_rq, se);

1010
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1011
		update_rq_clock(rq);
1012
		/*
1013
		 * Update run-time statistics of the 'current'.
1014
		 */
D
Dmitry Adamushko 已提交
1015
		update_curr(cfs_rq);
1016 1017 1018 1019 1020

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
1021
	 */
D
Dmitry Adamushko 已提交
1022
	rightmost = __pick_last_entity(cfs_rq);
1023 1024 1025
	/*
	 * Already in the rightmost position?
	 */
1026
	if (unlikely(!rightmost || entity_before(rightmost, se)))
1027 1028 1029 1030
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
1031 1032
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
1033
	 */
1034
	se->vruntime = rightmost->vruntime + 1;
1035 1036
}

1037 1038 1039 1040 1041
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
1042
 * Domains may include CPUs that are not usable for migration,
1043
 * hence we need to mask them out (cpu_active_mask)
1044 1045 1046 1047 1048 1049 1050 1051
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	struct sched_domain *sd;
	int i;
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	unsigned int chosen_wakeup_cpu;
	int this_cpu;

	/*
	 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
	 * are idle and this is not a kernel thread and this task's affinity
	 * allows it to be moved to preferred cpu, then just move!
	 */

	this_cpu = smp_processor_id();
	chosen_wakeup_cpu =
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;

	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
		idle_cpu(cpu) && idle_cpu(this_cpu) &&
		p->mm && !(p->flags & PF_KTHREAD) &&
		cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
		return chosen_wakeup_cpu;
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
1080
	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1081 1082 1083
		return cpu;

	for_each_domain(cpu, sd) {
1084 1085 1086
		if ((sd->flags & SD_WAKE_IDLE)
		    || ((sd->flags & SD_WAKE_IDLE_FAR)
			&& !task_hot(p, task_rq(p)->clock, sd))) {
1087 1088 1089
			for_each_cpu_and(i, sched_domain_span(sd),
					 &p->cpus_allowed) {
				if (cpu_active(i) && idle_cpu(i)) {
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
1103
#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1104 1105 1106 1107 1108 1109 1110
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
1111

1112
#ifdef CONFIG_FAIR_GROUP_SCHED
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 *
 * The problem is that perfectly aligning the shares is rather expensive, hence
 * we try to avoid doing that too often - see update_shares(), which ratelimits
 * this change.
 *
 * We compensate this by not only taking the current delta into account, but
 * also considering the delta between when the shares were last adjusted and
 * now.
 *
 * We still saw a performance dip, some tracing learned us that between
 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 * significantly. Therefore try to bias the error in direction of failing
 * the affine wakeup.
 *
 */
1134 1135
static long effective_load(struct task_group *tg, int cpu,
		long wl, long wg)
1136
{
P
Peter Zijlstra 已提交
1137
	struct sched_entity *se = tg->se[cpu];
1138 1139 1140 1141

	if (!tg->parent)
		return wl;

1142 1143 1144 1145 1146 1147 1148
	/*
	 * By not taking the decrease of shares on the other cpu into
	 * account our error leans towards reducing the affine wakeups.
	 */
	if (!wl && sched_feat(ASYM_EFF_LOAD))
		return wl;

P
Peter Zijlstra 已提交
1149
	for_each_sched_entity(se) {
1150
		long S, rw, s, a, b;
1151 1152 1153 1154 1155 1156 1157 1158 1159
		long more_w;

		/*
		 * Instead of using this increment, also add the difference
		 * between when the shares were last updated and now.
		 */
		more_w = se->my_q->load.weight - se->my_q->rq_weight;
		wl += more_w;
		wg += more_w;
P
Peter Zijlstra 已提交
1160 1161 1162

		S = se->my_q->tg->shares;
		s = se->my_q->shares;
1163
		rw = se->my_q->rq_weight;
1164

1165 1166
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1167

1168 1169 1170 1171 1172
		wl = s*(a-b);

		if (likely(b))
			wl /= b;

1173 1174 1175 1176 1177 1178 1179
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1180 1181
		wg = 0;
	}
1182

P
Peter Zijlstra 已提交
1183
	return wl;
1184
}
P
Peter Zijlstra 已提交
1185

1186
#else
P
Peter Zijlstra 已提交
1187

1188 1189
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1190
{
1191
	return wl;
1192
}
P
Peter Zijlstra 已提交
1193

1194 1195
#endif

1196
static int
1197
wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
I
Ingo Molnar 已提交
1198 1199
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
1200 1201
	    unsigned int imbalance)
{
1202 1203
	struct task_struct *curr = this_rq->curr;
	struct task_group *tg;
1204 1205
	unsigned long tl = this_load;
	unsigned long tl_per_task;
1206
	unsigned long weight;
1207
	int balanced;
1208

1209
	if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1210 1211
		return 0;

1212 1213 1214 1215
	if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
			p->se.avg_overlap > sysctl_sched_migration_cost))
		sync = 0;

1216 1217 1218 1219 1220
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1221 1222 1223 1224 1225 1226 1227
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

		tl += effective_load(tg, this_cpu, -weight, -weight);
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
1228

1229 1230
	tg = task_group(p);
	weight = p->se.load.weight;
1231

1232 1233
	balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1234

1235
	/*
I
Ingo Molnar 已提交
1236 1237 1238
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1239
	 */
1240 1241
	if (sync && balanced)
		return 1;
1242 1243 1244 1245

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1246 1247
	if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
			tl_per_task)) {
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1261 1262 1263
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1264
	int prev_cpu, this_cpu, new_cpu;
1265
	unsigned long load, this_load;
1266
	struct rq *this_rq;
1267 1268
	unsigned int imbalance;
	int idx;
1269

1270 1271
	prev_cpu	= task_cpu(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1272
	this_rq		= cpu_rq(this_cpu);
1273
	new_cpu		= prev_cpu;
1274

1275 1276
	if (prev_cpu == this_cpu)
		goto out;
1277 1278 1279 1280
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1281
	for_each_domain(this_cpu, sd) {
1282
		if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
1283 1284 1285 1286 1287
			this_sd = sd;
			break;
		}
	}

1288
	if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
1289
		goto out;
1290 1291 1292 1293

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1294
	if (!this_sd)
1295
		goto out;
1296

1297 1298 1299 1300
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1301
	load = source_load(prev_cpu, idx);
1302 1303
	this_load = target_load(this_cpu, idx);

1304
	if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
I
Ingo Molnar 已提交
1305 1306 1307
				     load, this_load, imbalance))
		return this_cpu;

1308 1309 1310 1311 1312 1313 1314 1315
	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1316
			return this_cpu;
1317 1318 1319
		}
	}

1320
out:
1321 1322 1323 1324
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
/*
 * Adaptive granularity
 *
 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
 * with the limit of wakeup_gran -- when it never does a wakeup.
 *
 * So the smaller avg_wakeup is the faster we want this task to preempt,
 * but we don't want to treat the preemptee unfairly and therefore allow it
 * to run for at least the amount of time we'd like to run.
 *
 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
 *
 * NOTE: we use *nr_running to scale with load, this nicely matches the
 *       degrading latency on load.
 */
static unsigned long
adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
{
	u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
	u64 gran = 0;

	if (this_run < expected_wakeup)
		gran = expected_wakeup - this_run;

	return min_t(s64, gran, sysctl_sched_wakeup_granularity);
}

static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1355 1356 1357
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

P
Peter Zijlstra 已提交
1358 1359 1360
	if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
		gran = adaptive_gran(curr, se);

1361
	/*
P
Peter Zijlstra 已提交
1362 1363
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
1364
	 */
P
Peter Zijlstra 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	if (sched_feat(ASYM_GRAN)) {
		/*
		 * By using 'se' instead of 'curr' we penalize light tasks, so
		 * they get preempted easier. That is, if 'se' < 'curr' then
		 * the resulting gran will be larger, therefore penalizing the
		 * lighter, if otoh 'se' > 'curr' then the resulting gran will
		 * be smaller, again penalizing the lighter task.
		 *
		 * This is especially important for buddies when the leftmost
		 * task is higher priority than the buddy.
		 */
		if (unlikely(se->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, se);
	} else {
		if (unlikely(curr->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, curr);
	}
1382 1383 1384 1385

	return gran;
}

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
1408
	gran = wakeup_gran(curr, se);
1409 1410 1411 1412 1413 1414
	if (vdiff > gran)
		return 1;

	return 0;
}

1415 1416
static void set_last_buddy(struct sched_entity *se)
{
1417 1418 1419 1420
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->last = se;
	}
1421 1422 1423 1424
}

static void set_next_buddy(struct sched_entity *se)
{
1425 1426 1427 1428
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->next = se;
	}
1429 1430
}

1431 1432 1433
/*
 * Preempt the current task with a newly woken task if needed:
 */
1434
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1435 1436
{
	struct task_struct *curr = rq->curr;
1437
	struct sched_entity *se = &curr->se, *pse = &p->se;
1438
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1439

1440
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1441

1442
	if (unlikely(rt_prio(p->prio))) {
1443 1444 1445
		resched_task(curr);
		return;
	}
1446

P
Peter Zijlstra 已提交
1447 1448 1449
	if (unlikely(p->sched_class != &fair_sched_class))
		return;

I
Ingo Molnar 已提交
1450 1451 1452
	if (unlikely(se == pse))
		return;

P
Peter Zijlstra 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	/*
	 * Only set the backward buddy when the current task is still on the
	 * rq. This can happen when a wakeup gets interleaved with schedule on
	 * the ->pre_schedule() or idle_balance() point, either of which can
	 * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class, for
	 * obvious reasons its a bad idea to schedule back to the idle thread.
	 */
	if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1463 1464
		set_last_buddy(se);
	set_next_buddy(pse);
P
Peter Zijlstra 已提交
1465

1466 1467 1468 1469 1470 1471 1472
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 */
	if (test_tsk_need_resched(curr))
		return;

1473
	/*
1474
	 * Batch and idle tasks do not preempt (their preemption is driven by
1475 1476
	 * the tick):
	 */
1477
	if (unlikely(p->policy != SCHED_NORMAL))
1478
		return;
1479

1480 1481 1482
	/* Idle tasks are by definition preempted by everybody. */
	if (unlikely(curr->policy == SCHED_IDLE)) {
		resched_task(curr);
1483
		return;
1484
	}
1485

1486 1487
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1488

1489 1490 1491
	if (sched_feat(WAKEUP_OVERLAP) && (sync ||
			(se->avg_overlap < sysctl_sched_migration_cost &&
			 pse->avg_overlap < sysctl_sched_migration_cost))) {
1492 1493 1494 1495
		resched_task(curr);
		return;
	}

1496 1497
	find_matching_se(&se, &pse);

1498
	BUG_ON(!pse);
1499

1500 1501
	if (wakeup_preempt_entity(se, pse) == 1)
		resched_task(curr);
1502 1503
}

1504
static struct task_struct *pick_next_task_fair(struct rq *rq)
1505
{
P
Peter Zijlstra 已提交
1506
	struct task_struct *p;
1507 1508 1509 1510 1511 1512 1513
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1514
		se = pick_next_entity(cfs_rq);
1515 1516 1517 1518
		/*
		 * If se was a buddy, clear it so that it will have to earn
		 * the favour again.
		 */
P
Peter Zijlstra 已提交
1519
		__clear_buddies(cfs_rq, se);
1520
		set_next_entity(cfs_rq, se);
1521 1522 1523
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1524 1525 1526 1527
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1528 1529 1530 1531 1532
}

/*
 * Account for a descheduled task:
 */
1533
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1534 1535 1536 1537 1538 1539
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1540
		put_prev_entity(cfs_rq, se);
1541 1542 1543
	}
}

1544
#ifdef CONFIG_SMP
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1556
static struct task_struct *
1557
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1558
{
D
Dhaval Giani 已提交
1559 1560
	struct task_struct *p = NULL;
	struct sched_entity *se;
1561

1562 1563 1564
	if (next == &cfs_rq->tasks)
		return NULL;

1565 1566 1567
	se = list_entry(next, struct sched_entity, group_node);
	p = task_of(se);
	cfs_rq->balance_iterator = next->next;
1568

1569 1570 1571 1572 1573 1574 1575
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1576
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1577 1578 1579 1580 1581 1582
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1583
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1584 1585
}

1586 1587 1588 1589 1590
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1591
{
1592
	struct rq_iterator cfs_rq_iterator;
1593

1594 1595 1596
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1597

1598 1599 1600
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1601 1602
}

1603
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1604
static unsigned long
1605
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1606
		  unsigned long max_load_move,
1607 1608
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1609 1610
{
	long rem_load_move = max_load_move;
1611 1612
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1613

1614
	rcu_read_lock();
1615
	update_h_load(busiest_cpu);
1616

1617
	list_for_each_entry_rcu(tg, &task_groups, list) {
1618
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1619 1620
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
S
Srivatsa Vaddagiri 已提交
1621
		u64 rem_load, moved_load;
1622

1623 1624 1625
		/*
		 * empty group
		 */
1626
		if (!busiest_cfs_rq->task_weight)
1627 1628
			continue;

S
Srivatsa Vaddagiri 已提交
1629 1630
		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);
1631

1632
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1633
				rem_load, sd, idle, all_pinned, this_best_prio,
1634
				tg->cfs_rq[busiest_cpu]);
1635

1636
		if (!moved_load)
1637 1638
			continue;

1639
		moved_load *= busiest_h_load;
S
Srivatsa Vaddagiri 已提交
1640
		moved_load = div_u64(moved_load, busiest_weight + 1);
1641

1642 1643
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1644 1645
			break;
	}
1646
	rcu_read_unlock();
1647

P
Peter Williams 已提交
1648
	return max_load_move - rem_load_move;
1649
}
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1662

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1686
#endif /* CONFIG_SMP */
1687

1688 1689 1690
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1691
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1692 1693 1694 1695 1696 1697
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1698
		entity_tick(cfs_rq, se, queued);
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	}
}

/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1709
static void task_new_fair(struct rq *rq, struct task_struct *p)
1710 1711
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1712
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1713
	int this_cpu = smp_processor_id();
1714 1715 1716

	sched_info_queued(p);

1717
	update_curr(cfs_rq);
1718
	place_entity(cfs_rq, se, 1);
1719

1720
	/* 'curr' will be NULL if the child belongs to a different group */
1721
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1722
			curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
1723
		/*
1724 1725 1726
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1727
		swap(curr->vruntime, se->vruntime);
1728
		resched_task(rq->curr);
1729
	}
1730

1731
	enqueue_task_fair(rq, p, 0);
1732 1733
}

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
1750
		check_preempt_curr(rq, p, 0);
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
1767
		check_preempt_curr(rq, p, 0);
1768 1769
}

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1793 1794 1795
/*
 * All the scheduling class methods:
 */
1796 1797
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1798 1799 1800 1801
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
1802
	.check_preempt_curr	= check_preempt_wakeup,
1803 1804 1805 1806

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1807
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1808 1809
	.select_task_rq		= select_task_rq_fair,

1810
	.load_balance		= load_balance_fair,
1811
	.move_one_task		= move_one_task_fair,
1812
#endif
1813

1814
	.set_curr_task          = set_curr_task_fair,
1815 1816
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1817 1818 1819

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1820 1821 1822 1823

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1824 1825 1826
};

#ifdef CONFIG_SCHED_DEBUG
1827
static void print_cfs_stats(struct seq_file *m, int cpu)
1828 1829 1830
{
	struct cfs_rq *cfs_rq;

1831
	rcu_read_lock();
1832
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1833
		print_cfs_rq(m, cpu, cfs_rq);
1834
	rcu_read_unlock();
1835 1836
}
#endif