sched_fair.c 40.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77
static const struct sched_class fair_sched_class;

78 79 80 81
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

P
Peter Zijlstra 已提交
82 83 84 85 86
static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}

87
#ifdef CONFIG_FAIR_GROUP_SCHED
88

89
/* cpu runqueue to which this cfs_rq is attached */
90 91
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
92
	return cfs_rq->rq;
93 94
}

95 96
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
97

P
Peter Zijlstra 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

189
#else	/* CONFIG_FAIR_GROUP_SCHED */
190

191 192 193
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
194 195 196 197
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
198 199
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
200

P
Peter Zijlstra 已提交
201
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
202
{
P
Peter Zijlstra 已提交
203
	return &task_rq(p)->cfs;
204 205
}

P
Peter Zijlstra 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

239 240 241 242 243
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
244 245
#endif	/* CONFIG_FAIR_GROUP_SCHED */

246 247 248 249 250

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

251
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
252
{
253 254
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
255 256 257 258 259
		min_vruntime = vruntime;

	return min_vruntime;
}

260
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
261 262 263 264 265 266 267 268
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

269
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
270
{
271
	return se->vruntime - cfs_rq->min_vruntime;
272 273
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

		if (vruntime == cfs_rq->min_vruntime)
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
}

295 296 297
/*
 * Enqueue an entity into the rb-tree:
 */
298
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
299 300 301 302
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
303
	s64 key = entity_key(cfs_rq, se);
304 305 306 307 308 309 310 311 312 313 314 315
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
316
		if (key < entity_key(cfs_rq, entry)) {
317 318 319 320 321 322 323 324 325 326 327
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
328
	if (leftmost)
I
Ingo Molnar 已提交
329
		cfs_rq->rb_leftmost = &se->run_node;
330 331 332 333 334

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

335
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
336
{
P
Peter Zijlstra 已提交
337 338 339 340 341 342
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
343

344 345 346
	if (cfs_rq->next == se)
		cfs_rq->next = NULL;

347 348 349 350 351 352 353 354 355 356 357 358 359
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

360 361
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
362
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
363

364 365
	if (!last)
		return NULL;
366 367

	return rb_entry(last, struct sched_entity, run_node);
368 369
}

370 371 372 373
/**************************************************************
 * Scheduling class statistics methods:
 */

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
390

391
/*
392
 * delta *= P[w / rw]
393 394 395 396 397 398 399 400 401 402 403 404 405
 */
static inline unsigned long
calc_delta_weight(unsigned long delta, struct sched_entity *se)
{
	for_each_sched_entity(se) {
		delta = calc_delta_mine(delta,
				se->load.weight, &cfs_rq_of(se)->load);
	}

	return delta;
}

/*
406
 * delta /= w
407 408 409 410
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
411 412
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
413 414 415 416

	return delta;
}

417 418 419 420 421 422 423 424
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
425 426 427
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
428
	unsigned long nr_latency = sched_nr_latency;
429 430

	if (unlikely(nr_running > nr_latency)) {
431
		period = sysctl_sched_min_granularity;
432 433 434 435 436 437
		period *= nr_running;
	}

	return period;
}

438 439 440 441
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
442
 * s = p*P[w/rw]
443
 */
P
Peter Zijlstra 已提交
444
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
445
{
446 447 448 449 450 451
	unsigned long nr_running = cfs_rq->nr_running;

	if (unlikely(!se->on_rq))
		nr_running++;

	return calc_delta_weight(__sched_period(nr_running), se);
452 453
}

454
/*
455
 * We calculate the vruntime slice of a to be inserted task
456
 *
457
 * vs = s/w
458
 */
459
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
460
{
461
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
462 463
}

464 465 466 467 468
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
469 470
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
471
{
472
	unsigned long delta_exec_weighted;
473

474
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
475 476

	curr->sum_exec_runtime += delta_exec;
477
	schedstat_add(cfs_rq, exec_clock, delta_exec);
478
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
479
	curr->vruntime += delta_exec_weighted;
480
	update_min_vruntime(cfs_rq);
481 482
}

483
static void update_curr(struct cfs_rq *cfs_rq)
484
{
485
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
486
	u64 now = rq_of(cfs_rq)->clock;
487 488 489 490 491 492 493 494 495 496
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
497
	delta_exec = (unsigned long)(now - curr->exec_start);
498

I
Ingo Molnar 已提交
499 500
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
501 502 503 504 505

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
506
		account_group_exec_runtime(curtask, delta_exec);
507
	}
508 509 510
}

static inline void
511
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
512
{
513
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
514 515 516 517 518
}

/*
 * Task is being enqueued - update stats:
 */
519
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
520 521 522 523 524
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
525
	if (se != cfs_rq->curr)
526
		update_stats_wait_start(cfs_rq, se);
527 528 529
}

static void
530
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
531
{
532 533
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
534 535 536
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
537
	schedstat_set(se->wait_start, 0);
538 539 540
}

static inline void
541
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
542 543 544 545 546
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
547
	if (se != cfs_rq->curr)
548
		update_stats_wait_end(cfs_rq, se);
549 550 551 552 553 554
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
555
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
556 557 558 559
{
	/*
	 * We are starting a new run period:
	 */
560
	se->exec_start = rq_of(cfs_rq)->clock;
561 562 563 564 565 566
}

/**************************************************
 * Scheduling class queueing methods:
 */

567 568 569 570 571 572 573 574 575 576 577 578 579
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

580 581 582 583
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
584 585
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
586
	if (entity_is_task(se)) {
587
		add_cfs_task_weight(cfs_rq, se->load.weight);
588 589
		list_add(&se->group_node, &cfs_rq->tasks);
	}
590 591 592 593 594 595 596 597
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
598 599
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
600
	if (entity_is_task(se)) {
601
		add_cfs_task_weight(cfs_rq, -se->load.weight);
602 603
		list_del_init(&se->group_node);
	}
604 605 606 607
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

608
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
609 610 611
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
612
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
A
Arjan van de Ven 已提交
613
		struct task_struct *tsk = task_of(se);
614 615 616 617 618 619 620 621 622

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
623 624

		account_scheduler_latency(tsk, delta >> 10, 1);
625 626
	}
	if (se->block_start) {
627
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
A
Arjan van de Ven 已提交
628
		struct task_struct *tsk = task_of(se);
629 630 631 632 633 634 635 636 637

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
638 639 640 641 642 643 644

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
645

I
Ingo Molnar 已提交
646 647 648
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
A
Arjan van de Ven 已提交
649
		account_scheduler_latency(tsk, delta >> 10, 0);
650 651 652 653
	}
#endif
}

P
Peter Zijlstra 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

667 668 669
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
670
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
671

672 673 674 675 676 677
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
678
	if (initial && sched_feat(START_DEBIT))
679
		vruntime += sched_vslice(cfs_rq, se);
680

I
Ingo Molnar 已提交
681
	if (!initial) {
682
		/* sleeps upto a single latency don't count. */
683 684 685 686 687 688 689 690 691 692 693
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
			unsigned long thresh = sysctl_sched_latency;

			/*
			 * convert the sleeper threshold into virtual time
			 */
			if (sched_feat(NORMALIZED_SLEEPER))
				thresh = calc_delta_fair(thresh, se);

			vruntime -= thresh;
		}
694

695 696
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
697 698
	}

P
Peter Zijlstra 已提交
699
	se->vruntime = vruntime;
700 701
}

702
static void
703
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
704 705
{
	/*
706
	 * Update run-time statistics of the 'current'.
707
	 */
708
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
709
	account_entity_enqueue(cfs_rq, se);
710

I
Ingo Molnar 已提交
711
	if (wakeup) {
712
		place_entity(cfs_rq, se, 0);
713
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
714
	}
715

716
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
717
	check_spread(cfs_rq, se);
718 719
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
720 721 722
}

static void
723
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
724
{
725 726 727 728 729
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

730
	update_stats_dequeue(cfs_rq, se);
731
	if (sleep) {
P
Peter Zijlstra 已提交
732
#ifdef CONFIG_SCHEDSTATS
733 734 735 736
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
737
				se->sleep_start = rq_of(cfs_rq)->clock;
738
			if (tsk->state & TASK_UNINTERRUPTIBLE)
739
				se->block_start = rq_of(cfs_rq)->clock;
740
		}
741
#endif
P
Peter Zijlstra 已提交
742 743
	}

744
	if (se != cfs_rq->curr)
745 746
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
747
	update_min_vruntime(cfs_rq);
748 749 750 751 752
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
753
static void
I
Ingo Molnar 已提交
754
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
755
{
756 757
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
758
	ideal_runtime = sched_slice(cfs_rq, curr);
759
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
I
Ingo Molnar 已提交
760
	if (delta_exec > ideal_runtime)
761 762 763
		resched_task(rq_of(cfs_rq)->curr);
}

764
static void
765
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
766
{
767 768 769 770 771 772 773 774 775 776 777
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

778
	update_stats_curr_start(cfs_rq, se);
779
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
780 781 782 783 784 785
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
786
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
787 788 789 790
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
791
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
792 793
}

794 795 796
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

797 798 799
static struct sched_entity *
pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
800
	if (!cfs_rq->next || wakeup_preempt_entity(cfs_rq->next, se) == 1)
801 802 803 804 805
		return se;

	return cfs_rq->next;
}

806
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
807
{
D
Dmitry Adamushko 已提交
808
	struct sched_entity *se = NULL;
809

D
Dmitry Adamushko 已提交
810 811
	if (first_fair(cfs_rq)) {
		se = __pick_next_entity(cfs_rq);
812
		se = pick_next(cfs_rq, se);
D
Dmitry Adamushko 已提交
813 814
		set_next_entity(cfs_rq, se);
	}
815 816 817 818

	return se;
}

819
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
820 821 822 823 824 825
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
826
		update_curr(cfs_rq);
827

P
Peter Zijlstra 已提交
828
	check_spread(cfs_rq, prev);
829
	if (prev->on_rq) {
830
		update_stats_wait_start(cfs_rq, prev);
831 832 833
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
834
	cfs_rq->curr = NULL;
835 836
}

P
Peter Zijlstra 已提交
837 838
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
839 840
{
	/*
841
	 * Update run-time statistics of the 'current'.
842
	 */
843
	update_curr(cfs_rq);
844

P
Peter Zijlstra 已提交
845 846 847 848 849
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
850 851 852 853
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
854 855 856 857 858 859 860 861
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

862
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
863
		check_preempt_tick(cfs_rq, curr);
864 865 866 867 868 869
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
893
		if (rq->curr != p)
894
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
895

896
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
897 898
	}
}
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
915
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
916 917 918 919
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
920 921 922 923

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
924 925
#endif

926 927 928 929 930
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
931
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
932 933
{
	struct cfs_rq *cfs_rq;
934
	struct sched_entity *se = &p->se;
935 936

	for_each_sched_entity(se) {
937
		if (se->on_rq)
938 939
			break;
		cfs_rq = cfs_rq_of(se);
940
		enqueue_entity(cfs_rq, se, wakeup);
941
		wakeup = 1;
942
	}
P
Peter Zijlstra 已提交
943

944
	hrtick_update(rq);
945 946 947 948 949 950 951
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
952
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
953 954
{
	struct cfs_rq *cfs_rq;
955
	struct sched_entity *se = &p->se;
956 957 958

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
959
		dequeue_entity(cfs_rq, se, sleep);
960
		/* Don't dequeue parent if it has other entities besides us */
961
		if (cfs_rq->load.weight)
962
			break;
963
		sleep = 1;
964
	}
P
Peter Zijlstra 已提交
965

966
	hrtick_update(rq);
967 968 969
}

/*
970 971 972
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
973
 */
974
static void yield_task_fair(struct rq *rq)
975
{
976 977 978
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
979 980

	/*
981 982 983 984 985
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

986
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
987
		update_rq_clock(rq);
988
		/*
989
		 * Update run-time statistics of the 'current'.
990
		 */
D
Dmitry Adamushko 已提交
991
		update_curr(cfs_rq);
992 993 994 995 996

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
997
	 */
D
Dmitry Adamushko 已提交
998
	rightmost = __pick_last_entity(cfs_rq);
999 1000 1001
	/*
	 * Already in the rightmost position?
	 */
1002
	if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1003 1004 1005 1006
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
1007 1008
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
1009
	 */
1010
	se->vruntime = rightmost->vruntime + 1;
1011 1012
}

1013 1014 1015 1016 1017
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
1018 1019
 * Domains may include CPUs that are not usable for migration,
 * hence we need to mask them out (cpu_active_map)
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
1039
	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1040 1041 1042
		return cpu;

	for_each_domain(cpu, sd) {
1043 1044 1045
		if ((sd->flags & SD_WAKE_IDLE)
		    || ((sd->flags & SD_WAKE_IDLE_FAR)
			&& !task_hot(p, task_rq(p)->clock, sd))) {
1046
			cpus_and(tmp, sd->span, p->cpus_allowed);
1047
			cpus_and(tmp, tmp, cpu_active_map);
1048
			for_each_cpu_mask_nr(i, tmp) {
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
1063
#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1064 1065 1066 1067 1068 1069 1070
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
1071

1072
#ifdef CONFIG_FAIR_GROUP_SCHED
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 *
 * The problem is that perfectly aligning the shares is rather expensive, hence
 * we try to avoid doing that too often - see update_shares(), which ratelimits
 * this change.
 *
 * We compensate this by not only taking the current delta into account, but
 * also considering the delta between when the shares were last adjusted and
 * now.
 *
 * We still saw a performance dip, some tracing learned us that between
 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 * significantly. Therefore try to bias the error in direction of failing
 * the affine wakeup.
 *
 */
1094 1095
static long effective_load(struct task_group *tg, int cpu,
		long wl, long wg)
1096
{
P
Peter Zijlstra 已提交
1097
	struct sched_entity *se = tg->se[cpu];
1098 1099 1100 1101

	if (!tg->parent)
		return wl;

1102 1103 1104 1105 1106 1107 1108
	/*
	 * By not taking the decrease of shares on the other cpu into
	 * account our error leans towards reducing the affine wakeups.
	 */
	if (!wl && sched_feat(ASYM_EFF_LOAD))
		return wl;

P
Peter Zijlstra 已提交
1109
	for_each_sched_entity(se) {
1110
		long S, rw, s, a, b;
1111 1112 1113 1114 1115 1116 1117 1118 1119
		long more_w;

		/*
		 * Instead of using this increment, also add the difference
		 * between when the shares were last updated and now.
		 */
		more_w = se->my_q->load.weight - se->my_q->rq_weight;
		wl += more_w;
		wg += more_w;
P
Peter Zijlstra 已提交
1120 1121 1122

		S = se->my_q->tg->shares;
		s = se->my_q->shares;
1123
		rw = se->my_q->rq_weight;
1124

1125 1126
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1127

1128 1129 1130 1131 1132
		wl = s*(a-b);

		if (likely(b))
			wl /= b;

1133 1134 1135 1136 1137 1138 1139
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1140 1141
		wg = 0;
	}
1142

P
Peter Zijlstra 已提交
1143
	return wl;
1144
}
P
Peter Zijlstra 已提交
1145

1146
#else
P
Peter Zijlstra 已提交
1147

1148 1149
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1150
{
1151
	return wl;
1152
}
P
Peter Zijlstra 已提交
1153

1154 1155
#endif

1156
static int
1157
wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
I
Ingo Molnar 已提交
1158 1159
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
1160 1161
	    unsigned int imbalance)
{
I
Ingo Molnar 已提交
1162
	struct task_struct *curr = this_rq->curr;
1163
	struct task_group *tg;
1164 1165
	unsigned long tl = this_load;
	unsigned long tl_per_task;
1166
	unsigned long weight;
1167
	int balanced;
1168

1169
	if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1170 1171
		return 0;

M
Mike Galbraith 已提交
1172 1173 1174
	if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
			p->se.avg_overlap > sysctl_sched_migration_cost))
		sync = 0;
1175

1176 1177 1178 1179 1180
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1181 1182 1183 1184 1185 1186 1187
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

		tl += effective_load(tg, this_cpu, -weight, -weight);
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
1188

1189 1190
	tg = task_group(p);
	weight = p->se.load.weight;
1191

1192 1193
	balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1194

1195
	/*
I
Ingo Molnar 已提交
1196 1197 1198
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1199
	 */
1200 1201
	if (sync && balanced)
		return 1;
1202 1203 1204 1205

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1206 1207
	if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
			tl_per_task)) {
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1221 1222 1223
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1224
	int prev_cpu, this_cpu, new_cpu;
1225
	unsigned long load, this_load;
1226
	struct rq *this_rq;
1227 1228
	unsigned int imbalance;
	int idx;
1229

1230 1231
	prev_cpu	= task_cpu(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1232
	this_rq		= cpu_rq(this_cpu);
1233
	new_cpu		= prev_cpu;
1234

1235 1236
	if (prev_cpu == this_cpu)
		goto out;
1237 1238 1239 1240
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1241
	for_each_domain(this_cpu, sd) {
1242
		if (cpu_isset(prev_cpu, sd->span)) {
1243 1244 1245 1246 1247 1248
			this_sd = sd;
			break;
		}
	}

	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1249
		goto out;
1250 1251 1252 1253

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1254
	if (!this_sd)
1255
		goto out;
1256

1257 1258 1259 1260
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1261
	load = source_load(prev_cpu, idx);
1262 1263
	this_load = target_load(this_cpu, idx);

1264
	if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
I
Ingo Molnar 已提交
1265 1266 1267
				     load, this_load, imbalance))
		return this_cpu;

1268 1269 1270 1271 1272 1273 1274 1275
	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1276
			return this_cpu;
1277 1278 1279
		}
	}

1280
out:
1281 1282 1283 1284
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

1285 1286 1287 1288 1289
static unsigned long wakeup_gran(struct sched_entity *se)
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
1290 1291
	 * More easily preempt - nice tasks, while not making it harder for
	 * + nice tasks.
1292
	 */
1293 1294
	if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD)
		gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
1295 1296 1297 1298

	return gran;
}

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

	gran = wakeup_gran(curr);
	if (vdiff > gran)
		return 1;

	return 0;
}

1328 1329 1330
/*
 * Preempt the current task with a newly woken task if needed:
 */
1331
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1332 1333
{
	struct task_struct *curr = rq->curr;
1334
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1335
	struct sched_entity *se = &curr->se, *pse = &p->se;
1336 1337

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
1338
		update_rq_clock(rq);
1339
		update_curr(cfs_rq);
1340 1341 1342
		resched_task(curr);
		return;
	}
1343

I
Ingo Molnar 已提交
1344 1345 1346
	if (unlikely(se == pse))
		return;

P
Peter Zijlstra 已提交
1347 1348
	cfs_rq_of(pse)->next = pse;

1349 1350 1351 1352 1353 1354 1355
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 */
	if (test_tsk_need_resched(curr))
		return;

1356 1357 1358 1359 1360 1361
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
1362

1363 1364
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1365

1366 1367 1368
	if (sched_feat(WAKEUP_OVERLAP) && (sync ||
			(se->avg_overlap < sysctl_sched_migration_cost &&
			 pse->avg_overlap < sysctl_sched_migration_cost))) {
1369 1370 1371 1372
		resched_task(curr);
		return;
	}

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	find_matching_se(&se, &pse);

	while (se) {
		BUG_ON(!pse);

		if (wakeup_preempt_entity(se, pse) == 1) {
			resched_task(curr);
			break;
		}

		se = parent_entity(se);
		pse = parent_entity(pse);
	}
1386 1387
}

1388
static struct task_struct *pick_next_task_fair(struct rq *rq)
1389
{
P
Peter Zijlstra 已提交
1390
	struct task_struct *p;
1391 1392 1393 1394 1395 1396 1397
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1398
		se = pick_next_entity(cfs_rq);
1399 1400 1401
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1402 1403 1404 1405
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1406 1407 1408 1409 1410
}

/*
 * Account for a descheduled task:
 */
1411
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1412 1413 1414 1415 1416 1417
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1418
		put_prev_entity(cfs_rq, se);
1419 1420 1421
	}
}

1422
#ifdef CONFIG_SMP
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1434
static struct task_struct *
1435
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1436
{
D
Dhaval Giani 已提交
1437 1438
	struct task_struct *p = NULL;
	struct sched_entity *se;
1439

1440 1441 1442
	if (next == &cfs_rq->tasks)
		return NULL;

1443 1444 1445
	se = list_entry(next, struct sched_entity, group_node);
	p = task_of(se);
	cfs_rq->balance_iterator = next->next;
1446

1447 1448 1449 1450 1451 1452 1453
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1454
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1455 1456 1457 1458 1459 1460
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1461
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1462 1463
}

1464 1465 1466 1467 1468
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1469
{
1470
	struct rq_iterator cfs_rq_iterator;
1471

1472 1473 1474
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1475

1476 1477 1478
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1479 1480
}

1481
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1482
static unsigned long
1483
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1484
		  unsigned long max_load_move,
1485 1486
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1487 1488
{
	long rem_load_move = max_load_move;
1489 1490
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1491

1492
	rcu_read_lock();
1493
	update_h_load(busiest_cpu);
1494

1495
	list_for_each_entry_rcu(tg, &task_groups, list) {
1496
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1497 1498
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
S
Srivatsa Vaddagiri 已提交
1499
		u64 rem_load, moved_load;
1500

1501 1502 1503
		/*
		 * empty group
		 */
1504
		if (!busiest_cfs_rq->task_weight)
1505 1506
			continue;

S
Srivatsa Vaddagiri 已提交
1507 1508
		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);
1509

1510
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1511
				rem_load, sd, idle, all_pinned, this_best_prio,
1512
				tg->cfs_rq[busiest_cpu]);
1513

1514
		if (!moved_load)
1515 1516
			continue;

1517
		moved_load *= busiest_h_load;
S
Srivatsa Vaddagiri 已提交
1518
		moved_load = div_u64(moved_load, busiest_weight + 1);
1519

1520 1521
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1522 1523
			break;
	}
1524
	rcu_read_unlock();
1525

P
Peter Williams 已提交
1526
	return max_load_move - rem_load_move;
1527
}
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1540

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1564
#endif /* CONFIG_SMP */
1565

1566 1567 1568
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1569
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1570 1571 1572 1573 1574 1575
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1576
		entity_tick(cfs_rq, se, queued);
1577 1578 1579
	}
}

1580
#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1581

1582 1583 1584 1585 1586 1587 1588
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1589
static void task_new_fair(struct rq *rq, struct task_struct *p)
1590 1591
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1592
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1593
	int this_cpu = smp_processor_id();
1594 1595 1596

	sched_info_queued(p);

1597
	update_curr(cfs_rq);
1598
	place_entity(cfs_rq, se, 1);
1599

1600
	/* 'curr' will be NULL if the child belongs to a different group */
1601
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1602
			curr && curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1603
		/*
1604 1605 1606
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1607
		swap(curr->vruntime, se->vruntime);
1608
		resched_task(rq->curr);
1609
	}
1610

1611
	enqueue_task_fair(rq, p, 0);
1612 1613
}

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
1630
		check_preempt_curr(rq, p, 0);
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
1647
		check_preempt_curr(rq, p, 0);
1648 1649
}

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1673 1674 1675
/*
 * All the scheduling class methods:
 */
1676 1677
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1678 1679 1680 1681
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
1682
	.check_preempt_curr	= check_preempt_wakeup,
1683 1684 1685 1686

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1687
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1688 1689
	.select_task_rq		= select_task_rq_fair,

1690
	.load_balance		= load_balance_fair,
1691
	.move_one_task		= move_one_task_fair,
1692
#endif
1693

1694
	.set_curr_task          = set_curr_task_fair,
1695 1696
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1697 1698 1699

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1700 1701 1702 1703

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1704 1705 1706
};

#ifdef CONFIG_SCHED_DEBUG
1707
static void print_cfs_stats(struct seq_file *m, int cpu)
1708 1709 1710
{
	struct cfs_rq *cfs_rq;

1711
	rcu_read_lock();
1712
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1713
		print_cfs_rq(m, cpu, cfs_rq);
1714
	rcu_read_unlock();
1715 1716
}
#endif