sched_fair.c 49.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
37
unsigned int sysctl_sched_latency = 5000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 1000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50

/*
51
 * After fork, child runs first. If set to 0 (default) then
52
 * parent will (try to) run first.
53
 */
54
unsigned int sysctl_sched_child_runs_first __read_mostly;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77
static const struct sched_class fair_sched_class;

78 79 80 81
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

82
#ifdef CONFIG_FAIR_GROUP_SCHED
83

84
/* cpu runqueue to which this cfs_rq is attached */
85 86
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
87
	return cfs_rq->rq;
88 89
}

90 91
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
92

93 94 95 96 97 98 99 100
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

192 193 194 195 196 197
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
198

199 200 201
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
202 203 204 205
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
206 207
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
208

P
Peter Zijlstra 已提交
209
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
210
{
P
Peter Zijlstra 已提交
211
	return &task_rq(p)->cfs;
212 213
}

P
Peter Zijlstra 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

247 248 249 250 251
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
252 253
#endif	/* CONFIG_FAIR_GROUP_SCHED */

254 255 256 257 258

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

259
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
260
{
261 262
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
263 264 265 266 267
		min_vruntime = vruntime;

	return min_vruntime;
}

268
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
269 270 271 272 273 274 275 276
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

277 278 279 280 281 282
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

283
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
284
{
285
	return se->vruntime - cfs_rq->min_vruntime;
286 287
}

288 289 290 291 292 293 294 295 296 297 298 299
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
300
		if (!cfs_rq->curr)
301 302 303 304 305 306 307 308
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
}

309 310 311
/*
 * Enqueue an entity into the rb-tree:
 */
312
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
313 314 315 316
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
317
	s64 key = entity_key(cfs_rq, se);
318 319 320 321 322 323 324 325 326 327 328 329
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
330
		if (key < entity_key(cfs_rq, entry)) {
331 332 333 334 335 336 337 338 339 340 341
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
342
	if (leftmost)
I
Ingo Molnar 已提交
343
		cfs_rq->rb_leftmost = &se->run_node;
344 345 346 347 348

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

349
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
350
{
P
Peter Zijlstra 已提交
351 352 353 354 355 356
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
357

358 359 360 361 362
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
363 364 365 366 367 368
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
369 370
}

371
static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
372
{
373
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
374

375 376
	if (!last)
		return NULL;
377 378

	return rb_entry(last, struct sched_entity, run_node);
379 380
}

381 382 383 384
/**************************************************************
 * Scheduling class statistics methods:
 */

385 386
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
387
		void __user *buffer, size_t *lenp,
388 389
		loff_t *ppos)
{
390
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
391 392 393 394 395 396 397 398 399 400

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
401

402
/*
403
 * delta /= w
404 405 406 407
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
408 409
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
410 411 412 413

	return delta;
}

414 415 416 417 418 419 420 421
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
422 423 424
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
425
	unsigned long nr_latency = sched_nr_latency;
426 427

	if (unlikely(nr_running > nr_latency)) {
428
		period = sysctl_sched_min_granularity;
429 430 431 432 433 434
		period *= nr_running;
	}

	return period;
}

435 436 437 438
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
439
 * s = p*P[w/rw]
440
 */
P
Peter Zijlstra 已提交
441
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
442
{
M
Mike Galbraith 已提交
443
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
444

M
Mike Galbraith 已提交
445
	for_each_sched_entity(se) {
L
Lin Ming 已提交
446
		struct load_weight *load;
447
		struct load_weight lw;
L
Lin Ming 已提交
448 449 450

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
451

M
Mike Galbraith 已提交
452
		if (unlikely(!se->on_rq)) {
453
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
454 455 456 457 458 459 460

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
461 462
}

463
/*
464
 * We calculate the vruntime slice of a to be inserted task
465
 *
466
 * vs = s/w
467
 */
468
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
469
{
470
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
471 472
}

473 474 475 476 477
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
478 479
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
480
{
481
	unsigned long delta_exec_weighted;
482

483
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
484 485

	curr->sum_exec_runtime += delta_exec;
486
	schedstat_add(cfs_rq, exec_clock, delta_exec);
487
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
488
	curr->vruntime += delta_exec_weighted;
489
	update_min_vruntime(cfs_rq);
490 491
}

492
static void update_curr(struct cfs_rq *cfs_rq)
493
{
494
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
495
	u64 now = rq_of(cfs_rq)->clock;
496 497 498 499 500 501 502 503 504 505
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
506
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
507 508
	if (!delta_exec)
		return;
509

I
Ingo Molnar 已提交
510 511
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
512 513 514 515

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

516
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
517
		cpuacct_charge(curtask, delta_exec);
518
		account_group_exec_runtime(curtask, delta_exec);
519
	}
520 521 522
}

static inline void
523
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
524
{
525
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
526 527 528 529 530
}

/*
 * Task is being enqueued - update stats:
 */
531
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
532 533 534 535 536
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
537
	if (se != cfs_rq->curr)
538
		update_stats_wait_start(cfs_rq, se);
539 540 541
}

static void
542
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
543
{
544 545
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
546 547 548
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
549 550 551 552 553 554
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
			rq_of(cfs_rq)->clock - se->wait_start);
	}
#endif
555
	schedstat_set(se->wait_start, 0);
556 557 558
}

static inline void
559
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
560 561 562 563 564
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
565
	if (se != cfs_rq->curr)
566
		update_stats_wait_end(cfs_rq, se);
567 568 569 570 571 572
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
573
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
574 575 576 577
{
	/*
	 * We are starting a new run period:
	 */
578
	se->exec_start = rq_of(cfs_rq)->clock;
579 580 581 582 583 584
}

/**************************************************
 * Scheduling class queueing methods:
 */

585 586 587 588 589 590 591 592 593 594 595 596 597
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

598 599 600 601
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
602 603
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
604
	if (entity_is_task(se)) {
605
		add_cfs_task_weight(cfs_rq, se->load.weight);
606 607
		list_add(&se->group_node, &cfs_rq->tasks);
	}
608 609 610 611 612 613 614 615
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
616 617
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
618
	if (entity_is_task(se)) {
619
		add_cfs_task_weight(cfs_rq, -se->load.weight);
620 621
		list_del_init(&se->group_node);
	}
622 623 624 625
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

626
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 628
{
#ifdef CONFIG_SCHEDSTATS
629 630 631 632 633
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

634
	if (se->sleep_start) {
635
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
636 637 638 639 640 641 642 643 644

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
645

646
		if (tsk) {
647
			account_scheduler_latency(tsk, delta >> 10, 1);
648 649
			trace_sched_stat_sleep(tsk, delta);
		}
650 651
	}
	if (se->block_start) {
652
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
653 654 655 656 657 658 659 660 661

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
662

663
		if (tsk) {
664 665 666
			if (tsk->in_iowait) {
				se->iowait_sum += delta;
				se->iowait_count++;
667
				trace_sched_stat_iowait(tsk, delta);
668 669
			}

670 671 672 673 674 675 676 677 678 679 680
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
681
		}
682 683 684 685
	}
#endif
}

P
Peter Zijlstra 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

699 700 701
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
702
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
703

704 705 706 707 708 709
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
710
	if (initial && sched_feat(START_DEBIT))
711
		vruntime += sched_vslice(cfs_rq, se);
712

713 714 715
	/* sleeps up to a single latency don't count. */
	if (!initial && sched_feat(FAIR_SLEEPERS)) {
		unsigned long thresh = sysctl_sched_latency;
716

717 718 719 720 721 722 723 724 725
		/*
		 * Convert the sleeper threshold into virtual time.
		 * SCHED_IDLE is a special sub-class.  We care about
		 * fairness only relative to other SCHED_IDLE tasks,
		 * all of which have the same weight.
		 */
		if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
				 task_of(se)->policy != SCHED_IDLE))
			thresh = calc_delta_fair(thresh, se);
726

727 728 729 730 731 732
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
733

734
		vruntime -= thresh;
735 736
	}

737 738 739
	/* ensure we never gain time by being placed backwards. */
	vruntime = max_vruntime(se->vruntime, vruntime);

P
Peter Zijlstra 已提交
740
	se->vruntime = vruntime;
741 742
}

743
static void
744
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
745 746
{
	/*
747
	 * Update run-time statistics of the 'current'.
748
	 */
749
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
750
	account_entity_enqueue(cfs_rq, se);
751

I
Ingo Molnar 已提交
752
	if (wakeup) {
753
		place_entity(cfs_rq, se, 0);
754
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
755
	}
756

757
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
758
	check_spread(cfs_rq, se);
759 760
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
761 762
}

P
Peter Zijlstra 已提交
763
static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
764
{
765
	if (!se || cfs_rq->last == se)
P
Peter Zijlstra 已提交
766 767
		cfs_rq->last = NULL;

768
	if (!se || cfs_rq->next == se)
P
Peter Zijlstra 已提交
769 770 771
		cfs_rq->next = NULL;
}

P
Peter Zijlstra 已提交
772 773 774 775 776 777
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	for_each_sched_entity(se)
		__clear_buddies(cfs_rq_of(se), se);
}

778
static void
779
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
780
{
781 782 783 784 785
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

786
	update_stats_dequeue(cfs_rq, se);
787
	if (sleep) {
P
Peter Zijlstra 已提交
788
#ifdef CONFIG_SCHEDSTATS
789 790 791 792
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
793
				se->sleep_start = rq_of(cfs_rq)->clock;
794
			if (tsk->state & TASK_UNINTERRUPTIBLE)
795
				se->block_start = rq_of(cfs_rq)->clock;
796
		}
797
#endif
P
Peter Zijlstra 已提交
798 799
	}

P
Peter Zijlstra 已提交
800
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
801

802
	if (se != cfs_rq->curr)
803 804
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
805
	update_min_vruntime(cfs_rq);
806 807 808 809 810
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
811
static void
I
Ingo Molnar 已提交
812
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
813
{
814 815
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
816
	ideal_runtime = sched_slice(cfs_rq, curr);
817
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
818
	if (delta_exec > ideal_runtime) {
819
		resched_task(rq_of(cfs_rq)->curr);
820 821 822 823 824
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (!sched_feat(WAKEUP_PREEMPT))
		return;

	if (delta_exec < sysctl_sched_min_granularity)
		return;

	if (cfs_rq->nr_running > 1) {
		struct sched_entity *se = __pick_next_entity(cfs_rq);
		s64 delta = curr->vruntime - se->vruntime;

		if (delta > ideal_runtime)
			resched_task(rq_of(cfs_rq)->curr);
845
	}
846 847
}

848
static void
849
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
850
{
851 852 853 854 855 856 857 858 859 860 861
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

862
	update_stats_curr_start(cfs_rq, se);
863
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
864 865 866 867 868 869
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
870
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
871 872 873 874
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
875
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
876 877
}

878 879 880
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

881
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
882
{
883
	struct sched_entity *se = __pick_next_entity(cfs_rq);
884
	struct sched_entity *left = se;
885

886 887
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;
888

889 890 891 892 893 894 895
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
896 897

	return se;
898 899
}

900
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
901 902 903 904 905 906
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
907
		update_curr(cfs_rq);
908

P
Peter Zijlstra 已提交
909
	check_spread(cfs_rq, prev);
910
	if (prev->on_rq) {
911
		update_stats_wait_start(cfs_rq, prev);
912 913 914
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
915
	cfs_rq->curr = NULL;
916 917
}

P
Peter Zijlstra 已提交
918 919
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
920 921
{
	/*
922
	 * Update run-time statistics of the 'current'.
923
	 */
924
	update_curr(cfs_rq);
925

P
Peter Zijlstra 已提交
926 927 928 929 930
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
931 932 933 934
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
935 936 937 938 939 940 941 942
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

943
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
944
		check_preempt_tick(cfs_rq, curr);
945 946 947 948 949 950
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
974
		if (rq->curr != p)
975
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
976

977
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
978 979
	}
}
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
996
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
997 998 999 1000
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
1001 1002 1003 1004

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
1005 1006
#endif

1007 1008 1009 1010 1011
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
1012
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
1013 1014
{
	struct cfs_rq *cfs_rq;
1015
	struct sched_entity *se = &p->se;
1016 1017

	for_each_sched_entity(se) {
1018
		if (se->on_rq)
1019 1020
			break;
		cfs_rq = cfs_rq_of(se);
1021
		enqueue_entity(cfs_rq, se, wakeup);
1022
		wakeup = 1;
1023
	}
P
Peter Zijlstra 已提交
1024

1025
	hrtick_update(rq);
1026 1027 1028 1029 1030 1031 1032
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
1033
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1034 1035
{
	struct cfs_rq *cfs_rq;
1036
	struct sched_entity *se = &p->se;
1037 1038 1039

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1040
		dequeue_entity(cfs_rq, se, sleep);
1041
		/* Don't dequeue parent if it has other entities besides us */
1042
		if (cfs_rq->load.weight)
1043
			break;
1044
		sleep = 1;
1045
	}
P
Peter Zijlstra 已提交
1046

1047
	hrtick_update(rq);
1048 1049 1050
}

/*
1051 1052 1053
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
1054
 */
1055
static void yield_task_fair(struct rq *rq)
1056
{
1057 1058 1059
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
1060 1061

	/*
1062 1063 1064 1065 1066
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

P
Peter Zijlstra 已提交
1067 1068
	clear_buddies(cfs_rq, se);

1069
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1070
		update_rq_clock(rq);
1071
		/*
1072
		 * Update run-time statistics of the 'current'.
1073
		 */
D
Dmitry Adamushko 已提交
1074
		update_curr(cfs_rq);
1075 1076 1077 1078 1079

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
1080
	 */
D
Dmitry Adamushko 已提交
1081
	rightmost = __pick_last_entity(cfs_rq);
1082 1083 1084
	/*
	 * Already in the rightmost position?
	 */
1085
	if (unlikely(!rightmost || entity_before(rightmost, se)))
1086 1087 1088 1089
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
1090 1091
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
1092
	 */
1093
	se->vruntime = rightmost->vruntime + 1;
1094 1095
}

1096
#ifdef CONFIG_SMP
1097

1098
#ifdef CONFIG_FAIR_GROUP_SCHED
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 *
 * The problem is that perfectly aligning the shares is rather expensive, hence
 * we try to avoid doing that too often - see update_shares(), which ratelimits
 * this change.
 *
 * We compensate this by not only taking the current delta into account, but
 * also considering the delta between when the shares were last adjusted and
 * now.
 *
 * We still saw a performance dip, some tracing learned us that between
 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 * significantly. Therefore try to bias the error in direction of failing
 * the affine wakeup.
 *
 */
1120 1121
static long effective_load(struct task_group *tg, int cpu,
		long wl, long wg)
1122
{
P
Peter Zijlstra 已提交
1123
	struct sched_entity *se = tg->se[cpu];
1124 1125 1126 1127

	if (!tg->parent)
		return wl;

1128 1129 1130 1131 1132 1133 1134
	/*
	 * By not taking the decrease of shares on the other cpu into
	 * account our error leans towards reducing the affine wakeups.
	 */
	if (!wl && sched_feat(ASYM_EFF_LOAD))
		return wl;

P
Peter Zijlstra 已提交
1135
	for_each_sched_entity(se) {
1136
		long S, rw, s, a, b;
1137 1138 1139 1140 1141 1142 1143 1144 1145
		long more_w;

		/*
		 * Instead of using this increment, also add the difference
		 * between when the shares were last updated and now.
		 */
		more_w = se->my_q->load.weight - se->my_q->rq_weight;
		wl += more_w;
		wg += more_w;
P
Peter Zijlstra 已提交
1146 1147 1148

		S = se->my_q->tg->shares;
		s = se->my_q->shares;
1149
		rw = se->my_q->rq_weight;
1150

1151 1152
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1153

1154 1155 1156 1157 1158
		wl = s*(a-b);

		if (likely(b))
			wl /= b;

1159 1160 1161 1162 1163 1164 1165
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1166 1167
		wg = 0;
	}
1168

P
Peter Zijlstra 已提交
1169
	return wl;
1170
}
P
Peter Zijlstra 已提交
1171

1172
#else
P
Peter Zijlstra 已提交
1173

1174 1175
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1176
{
1177
	return wl;
1178
}
P
Peter Zijlstra 已提交
1179

1180 1181
#endif

1182
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1183
{
1184 1185 1186
	struct task_struct *curr = current;
	unsigned long this_load, load;
	int idx, this_cpu, prev_cpu;
1187
	unsigned long tl_per_task;
1188 1189
	unsigned int imbalance;
	struct task_group *tg;
1190
	unsigned long weight;
1191
	int balanced;
1192

1193 1194 1195 1196 1197
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
1198

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	if (sync) {
	       if (sched_feat(SYNC_LESS) &&
		   (curr->se.avg_overlap > sysctl_sched_migration_cost ||
		    p->se.avg_overlap > sysctl_sched_migration_cost))
		       sync = 0;
	} else {
		if (sched_feat(SYNC_MORE) &&
		    (curr->se.avg_overlap < sysctl_sched_migration_cost &&
		     p->se.avg_overlap < sysctl_sched_migration_cost))
			sync = 1;
	}
1210

1211 1212 1213 1214 1215
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1216 1217 1218 1219
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

1220
		this_load += effective_load(tg, this_cpu, -weight, -weight);
1221 1222
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
1223

1224 1225
	tg = task_group(p);
	weight = p->se.load.weight;
1226

1227 1228
	imbalance = 100 + (sd->imbalance_pct - 100) / 2;

1229 1230
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1231 1232 1233
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
1234 1235 1236 1237
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
1238 1239
	balanced = !this_load ||
		100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
1240
		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1241

1242
	/*
I
Ingo Molnar 已提交
1243 1244 1245
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1246
	 */
1247 1248
	if (sync && balanced)
		return 1;
1249 1250 1251 1252

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1253 1254 1255
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1256 1257 1258 1259 1260
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
1261
		schedstat_inc(sd, ttwu_move_affine);
1262 1263 1264 1265 1266 1267 1268
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1269 1270 1271 1272 1273
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
1274
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1275
		  int this_cpu, int load_idx)
1276
{
1277 1278 1279
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
1280

1281 1282 1283 1284
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
1285

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
1341 1342 1343
		}
	}

1344 1345
	return idlest;
}
1346

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
/*
 * Try and locate an idle CPU in the sched_domain.
 */
static int
select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
	int i;

	/*
	 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
	 * test in select_task_rq_fair) and the prev_cpu is idle then that's
	 * always a better target than the current cpu.
	 */
1362 1363
	if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
		return prev_cpu;
1364 1365 1366 1367

	/*
	 * Otherwise, iterate the domain and find an elegible idle cpu.
	 */
1368 1369 1370 1371
	for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
		if (!cpu_rq(i)->cfs.nr_running) {
			target = i;
			break;
1372 1373 1374 1375 1376 1377
		}
	}

	return target;
}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
1389
static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1390
{
1391
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1392 1393 1394 1395
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
	int new_cpu = cpu;
	int want_affine = 0;
1396
	int want_sd = 1;
1397
	int sync = wake_flags & WF_SYNC;
1398

1399
	if (sd_flag & SD_BALANCE_WAKE) {
1400 1401
		if (sched_feat(AFFINE_WAKEUPS) &&
		    cpumask_test_cpu(cpu, &p->cpus_allowed))
1402 1403 1404
			want_affine = 1;
		new_cpu = prev_cpu;
	}
1405

P
Peter Zijlstra 已提交
1406
	rcu_read_lock();
1407 1408
	for_each_domain(cpu, tmp) {
		/*
1409 1410
		 * If power savings logic is enabled for a domain, see if we
		 * are not overloaded, if so, don't balance wider.
1411
		 */
P
Peter Zijlstra 已提交
1412
		if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
			unsigned long power = 0;
			unsigned long nr_running = 0;
			unsigned long capacity;
			int i;

			for_each_cpu(i, sched_domain_span(tmp)) {
				power += power_of(i);
				nr_running += cpu_rq(i)->cfs.nr_running;
			}

			capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);

P
Peter Zijlstra 已提交
1425 1426 1427 1428
			if (tmp->flags & SD_POWERSAVINGS_BALANCE)
				nr_running /= 2;

			if (nr_running < capacity)
1429
				want_sd = 0;
1430
		}
1431

1432 1433 1434 1435 1436 1437
		/*
		 * While iterating the domains looking for a spanning
		 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
		 * in cache sharing domains along the way.
		 */
		if (want_affine) {
1438
			int target = -1;
1439

1440 1441 1442 1443
			/*
			 * If both cpu and prev_cpu are part of this domain,
			 * cpu is a valid SD_WAKE_AFFINE target.
			 */
1444
			if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
1445
				target = cpu;
1446 1447

			/*
1448 1449
			 * If there's an idle sibling in this domain, make that
			 * the wake_affine target instead of the current cpu.
1450
			 */
1451 1452
			if (tmp->flags & SD_PREFER_SIBLING)
				target = select_idle_sibling(p, tmp, target);
1453

1454
			if (target >= 0) {
1455 1456 1457 1458
				if (tmp->flags & SD_WAKE_AFFINE) {
					affine_sd = tmp;
					want_affine = 0;
				}
1459
				cpu = target;
1460
			}
1461 1462
		}

1463 1464 1465
		if (!want_sd && !want_affine)
			break;

1466
		if (!(tmp->flags & sd_flag))
1467 1468
			continue;

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
		if (want_sd)
			sd = tmp;
	}

	if (sched_feat(LB_SHARES_UPDATE)) {
		/*
		 * Pick the largest domain to update shares over
		 */
		tmp = sd;
		if (affine_sd && (!tmp ||
				  cpumask_weight(sched_domain_span(affine_sd)) >
				  cpumask_weight(sched_domain_span(sd))))
			tmp = affine_sd;

		if (tmp)
			update_shares(tmp);
1485
	}
1486

1487 1488
	if (affine_sd && wake_affine(affine_sd, p, sync)) {
		new_cpu = cpu;
1489
		goto out;
1490
	}
1491

1492
	while (sd) {
1493
		int load_idx = sd->forkexec_idx;
1494
		struct sched_group *group;
1495
		int weight;
1496

1497
		if (!(sd->flags & sd_flag)) {
1498 1499 1500
			sd = sd->child;
			continue;
		}
1501

1502 1503
		if (sd_flag & SD_BALANCE_WAKE)
			load_idx = sd->wake_idx;
1504

1505
		group = find_idlest_group(sd, p, cpu, load_idx);
1506 1507 1508 1509
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
1510

1511
		new_cpu = find_idlest_cpu(group, p, cpu);
1512 1513 1514 1515
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
1516
		}
1517 1518 1519 1520 1521 1522 1523 1524

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
		weight = cpumask_weight(sched_domain_span(sd));
		sd = NULL;
		for_each_domain(cpu, tmp) {
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
				break;
1525
			if (tmp->flags & sd_flag)
1526 1527 1528
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
1529 1530
	}

1531
out:
P
Peter Zijlstra 已提交
1532
	rcu_read_unlock();
1533
	return new_cpu;
1534 1535 1536
}
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
/*
 * Adaptive granularity
 *
 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
 * with the limit of wakeup_gran -- when it never does a wakeup.
 *
 * So the smaller avg_wakeup is the faster we want this task to preempt,
 * but we don't want to treat the preemptee unfairly and therefore allow it
 * to run for at least the amount of time we'd like to run.
 *
 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
 *
 * NOTE: we use *nr_running to scale with load, this nicely matches the
 *       degrading latency on load.
 */
static unsigned long
adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
{
	u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
	u64 gran = 0;

	if (this_run < expected_wakeup)
		gran = expected_wakeup - this_run;

	return min_t(s64, gran, sysctl_sched_wakeup_granularity);
}

static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1567 1568 1569
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

P
Peter Zijlstra 已提交
1570 1571 1572
	if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
		gran = adaptive_gran(curr, se);

1573
	/*
P
Peter Zijlstra 已提交
1574 1575
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
1576
	 */
P
Peter Zijlstra 已提交
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	if (sched_feat(ASYM_GRAN)) {
		/*
		 * By using 'se' instead of 'curr' we penalize light tasks, so
		 * they get preempted easier. That is, if 'se' < 'curr' then
		 * the resulting gran will be larger, therefore penalizing the
		 * lighter, if otoh 'se' > 'curr' then the resulting gran will
		 * be smaller, again penalizing the lighter task.
		 *
		 * This is especially important for buddies when the leftmost
		 * task is higher priority than the buddy.
		 */
		if (unlikely(se->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, se);
	} else {
		if (unlikely(curr->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, curr);
	}
1594 1595 1596 1597

	return gran;
}

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
1620
	gran = wakeup_gran(curr, se);
1621 1622 1623 1624 1625 1626
	if (vdiff > gran)
		return 1;

	return 0;
}

1627 1628
static void set_last_buddy(struct sched_entity *se)
{
1629 1630 1631 1632
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->last = se;
	}
1633 1634 1635 1636
}

static void set_next_buddy(struct sched_entity *se)
{
1637 1638 1639 1640
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->next = se;
	}
1641 1642
}

1643 1644 1645
/*
 * Preempt the current task with a newly woken task if needed:
 */
1646
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1647 1648
{
	struct task_struct *curr = rq->curr;
1649
	struct sched_entity *se = &curr->se, *pse = &p->se;
1650
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1651
	int sync = wake_flags & WF_SYNC;
1652
	int scale = cfs_rq->nr_running >= sched_nr_latency;
1653

1654
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1655

1656
	if (unlikely(rt_prio(p->prio))) {
1657 1658 1659
		resched_task(curr);
		return;
	}
1660

P
Peter Zijlstra 已提交
1661 1662 1663
	if (unlikely(p->sched_class != &fair_sched_class))
		return;

I
Ingo Molnar 已提交
1664 1665 1666
	if (unlikely(se == pse))
		return;

1667
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
M
Mike Galbraith 已提交
1668
		set_next_buddy(pse);
P
Peter Zijlstra 已提交
1669

1670 1671 1672 1673 1674 1675 1676
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 */
	if (test_tsk_need_resched(curr))
		return;

1677
	/*
1678
	 * Batch and idle tasks do not preempt (their preemption is driven by
1679 1680
	 * the tick):
	 */
1681
	if (unlikely(p->policy != SCHED_NORMAL))
1682
		return;
1683

1684 1685 1686
	/* Idle tasks are by definition preempted by everybody. */
	if (unlikely(curr->policy == SCHED_IDLE)) {
		resched_task(curr);
1687
		return;
1688
	}
1689

P
Peter Zijlstra 已提交
1690 1691 1692 1693
	if ((sched_feat(WAKEUP_SYNC) && sync) ||
	    (sched_feat(WAKEUP_OVERLAP) &&
	     (se->avg_overlap < sysctl_sched_migration_cost &&
	      pse->avg_overlap < sysctl_sched_migration_cost))) {
1694 1695 1696 1697
		resched_task(curr);
		return;
	}

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	if (sched_feat(WAKEUP_RUNNING)) {
		if (pse->avg_running < se->avg_running) {
			set_next_buddy(pse);
			resched_task(curr);
			return;
		}
	}

	if (!sched_feat(WAKEUP_PREEMPT))
		return;

1709 1710
	find_matching_se(&se, &pse);

1711
	BUG_ON(!pse);
1712

1713
	if (wakeup_preempt_entity(se, pse) == 1) {
1714
		resched_task(curr);
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
		/*
		 * Only set the backward buddy when the current task is still
		 * on the rq. This can happen when a wakeup gets interleaved
		 * with schedule on the ->pre_schedule() or idle_balance()
		 * point, either of which can * drop the rq lock.
		 *
		 * Also, during early boot the idle thread is in the fair class,
		 * for obvious reasons its a bad idea to schedule back to it.
		 */
		if (unlikely(!se->on_rq || curr == rq->idle))
			return;
		if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
			set_last_buddy(se);
	}
1729 1730
}

1731
static struct task_struct *pick_next_task_fair(struct rq *rq)
1732
{
P
Peter Zijlstra 已提交
1733
	struct task_struct *p;
1734 1735 1736
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

1737
	if (!cfs_rq->nr_running)
1738 1739 1740
		return NULL;

	do {
1741
		se = pick_next_entity(cfs_rq);
1742
		set_next_entity(cfs_rq, se);
1743 1744 1745
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1746 1747 1748 1749
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1750 1751 1752 1753 1754
}

/*
 * Account for a descheduled task:
 */
1755
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1756 1757 1758 1759 1760 1761
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1762
		put_prev_entity(cfs_rq, se);
1763 1764 1765
	}
}

1766
#ifdef CONFIG_SMP
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1778
static struct task_struct *
1779
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1780
{
D
Dhaval Giani 已提交
1781 1782
	struct task_struct *p = NULL;
	struct sched_entity *se;
1783

1784 1785 1786
	if (next == &cfs_rq->tasks)
		return NULL;

1787 1788 1789
	se = list_entry(next, struct sched_entity, group_node);
	p = task_of(se);
	cfs_rq->balance_iterator = next->next;
1790

1791 1792 1793 1794 1795 1796 1797
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1798
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1799 1800 1801 1802 1803 1804
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1805
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1806 1807
}

1808 1809 1810 1811 1812
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1813
{
1814
	struct rq_iterator cfs_rq_iterator;
1815

1816 1817 1818
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1819

1820 1821 1822
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1823 1824
}

1825
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1826
static unsigned long
1827
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1828
		  unsigned long max_load_move,
1829 1830
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1831 1832
{
	long rem_load_move = max_load_move;
1833 1834
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1835

1836
	rcu_read_lock();
1837
	update_h_load(busiest_cpu);
1838

1839
	list_for_each_entry_rcu(tg, &task_groups, list) {
1840
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1841 1842
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
S
Srivatsa Vaddagiri 已提交
1843
		u64 rem_load, moved_load;
1844

1845 1846 1847
		/*
		 * empty group
		 */
1848
		if (!busiest_cfs_rq->task_weight)
1849 1850
			continue;

S
Srivatsa Vaddagiri 已提交
1851 1852
		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);
1853

1854
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1855
				rem_load, sd, idle, all_pinned, this_best_prio,
1856
				tg->cfs_rq[busiest_cpu]);
1857

1858
		if (!moved_load)
1859 1860
			continue;

1861
		moved_load *= busiest_h_load;
S
Srivatsa Vaddagiri 已提交
1862
		moved_load = div_u64(moved_load, busiest_weight + 1);
1863

1864 1865
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1866 1867
			break;
	}
1868
	rcu_read_unlock();
1869

P
Peter Williams 已提交
1870
	return max_load_move - rem_load_move;
1871
}
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1884

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1908
#endif /* CONFIG_SMP */
1909

1910 1911 1912
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1913
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1914 1915 1916 1917 1918 1919
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1920
		entity_tick(cfs_rq, se, queued);
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
	}
}

/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1931
static void task_new_fair(struct rq *rq, struct task_struct *p)
1932 1933
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1934
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1935
	int this_cpu = smp_processor_id();
1936 1937 1938

	sched_info_queued(p);

1939
	update_curr(cfs_rq);
1940 1941
	if (curr)
		se->vruntime = curr->vruntime;
1942
	place_entity(cfs_rq, se, 1);
1943

1944
	/* 'curr' will be NULL if the child belongs to a different group */
1945
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1946
			curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
1947
		/*
1948 1949 1950
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1951
		swap(curr->vruntime, se->vruntime);
1952
		resched_task(rq->curr);
1953
	}
1954

1955
	enqueue_task_fair(rq, p, 0);
1956 1957
}

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
1974
		check_preempt_curr(rq, p, 0);
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
1991
		check_preempt_curr(rq, p, 0);
1992 1993
}

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

2017
unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));

	return rr_interval;
}

2032 2033 2034
/*
 * All the scheduling class methods:
 */
2035 2036
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
2037 2038 2039 2040
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
2041
	.check_preempt_curr	= check_preempt_wakeup,
2042 2043 2044 2045

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

2046
#ifdef CONFIG_SMP
L
Li Zefan 已提交
2047 2048
	.select_task_rq		= select_task_rq_fair,

2049
	.load_balance		= load_balance_fair,
2050
	.move_one_task		= move_one_task_fair,
2051
#endif
2052

2053
	.set_curr_task          = set_curr_task_fair,
2054 2055
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
2056 2057 2058

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
2059

2060 2061
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
2062 2063 2064
#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
2065 2066 2067
};

#ifdef CONFIG_SCHED_DEBUG
2068
static void print_cfs_stats(struct seq_file *m, int cpu)
2069 2070 2071
{
	struct cfs_rq *cfs_rq;

2072
	rcu_read_lock();
2073
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
2074
		print_cfs_rq(m, cpu, cfs_rq);
2075
	rcu_read_unlock();
2076 2077
}
#endif