sched_fair.c 28.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22 23
 */

/*
24 25
 * Targeted preemption latency for CPU-bound tasks:
 * (default: 20ms, units: nanoseconds)
26
 *
27 28 29 30
 * NOTE: this latency value is not the same as the concept of
 * 'timeslice length' - timeslices in CFS are of variable length.
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches field)
31 32 33 34
 *
 * On SMP systems the value of this is multiplied by the log2 of the
 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35
 * Targeted preemption latency for CPU-bound tasks:
36
 */
37 38 39 40 41 42 43
const_debug unsigned int sysctl_sched_latency = 20000000ULL;

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
const_debug unsigned int sysctl_sched_child_runs_first = 1;
44 45 46 47 48

/*
 * Minimal preemption granularity for CPU-bound tasks:
 * (default: 2 msec, units: nanoseconds)
 */
49
unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
50

51 52 53 54 55 56 57 58
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

59 60
/*
 * SCHED_BATCH wake-up granularity.
61
 * (default: 25 msec, units: nanoseconds)
62 63 64 65 66
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
67
const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
68 69 70 71 72 73 74 75 76

/*
 * SCHED_OTHER wake-up granularity.
 * (default: 1 msec, units: nanoseconds)
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
I
Ingo Molnar 已提交
77
const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
78 79 80 81 82 83 84 85 86

unsigned int sysctl_sched_runtime_limit __read_mostly;

extern struct sched_class fair_sched_class;

/**************************************************************
 * CFS operations on generic schedulable entities:
 */

87
#ifdef CONFIG_FAIR_GROUP_SCHED
88

89
/* cpu runqueue to which this cfs_rq is attached */
90 91
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
92
	return cfs_rq->rq;
93 94
}

95 96
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
97

98
#else	/* CONFIG_FAIR_GROUP_SCHED */
99

100 101 102
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
}

#define entity_is_task(se)	1

#endif	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}


/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

I
Ingo Molnar 已提交
119 120 121 122 123 124 125 126
static inline void
set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
{
	struct sched_entity *se;

	cfs_rq->rb_leftmost = leftmost;
	if (leftmost) {
		se = rb_entry(leftmost, struct sched_entity, run_node);
127 128 129 130
		if ((se->vruntime > cfs_rq->min_vruntime) ||
		    (cfs_rq->min_vruntime > (1ULL << 61) &&
		     se->vruntime < (1ULL << 50)))
			cfs_rq->min_vruntime = se->vruntime;
I
Ingo Molnar 已提交
131 132 133
	}
}

134 135 136 137 138
s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	return se->fair_key - cfs_rq->min_vruntime;
}

139 140 141
/*
 * Enqueue an entity into the rb-tree:
 */
142
static void
143 144 145 146 147
__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
148
	s64 key = entity_key(cfs_rq, se);
149 150 151 152 153 154 155 156 157 158 159 160
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
161
		if (key < entity_key(cfs_rq, entry)) {
162 163 164 165 166 167 168 169 170 171 172 173
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
	if (leftmost)
I
Ingo Molnar 已提交
174
		set_leftmost(cfs_rq, &se->run_node);
175 176 177 178 179 180

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
181 182

	schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
183 184
}

185
static void
186 187 188
__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (cfs_rq->rb_leftmost == &se->run_node)
I
Ingo Molnar 已提交
189 190
		set_leftmost(cfs_rq, rb_next(&se->run_node));

191 192 193 194
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
195 196

	schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
197 198 199 200 201 202 203 204 205 206 207 208
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct sched_entity *se = NULL;
	struct rb_node *parent;

	while (*link) {
		parent = *link;
		se = rb_entry(parent, struct sched_entity, run_node);
		link = &parent->rb_right;
	}

	return se;
}

224 225 226 227
/**************************************************************
 * Scheduling class statistics methods:
 */

228 229 230 231 232 233 234 235 236 237 238 239 240 241
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
	unsigned long nr_latency =
		sysctl_sched_latency / sysctl_sched_min_granularity;

	if (unlikely(nr_running > nr_latency)) {
		period *= nr_running;
		do_div(period, nr_latency);
	}

	return period;
}

P
Peter Zijlstra 已提交
242
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
243
{
P
Peter Zijlstra 已提交
244
	u64 period = __sched_period(cfs_rq->nr_running);
245

P
Peter Zijlstra 已提交
246 247
	period *= se->load.weight;
	do_div(period, cfs_rq->load.weight);
248

P
Peter Zijlstra 已提交
249
	return period;
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
}

static inline void
limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	long limit = sysctl_sched_runtime_limit;

	/*
	 * Niced tasks have the same history dynamic range as
	 * non-niced tasks:
	 */
	if (unlikely(se->wait_runtime > limit)) {
		se->wait_runtime = limit;
		schedstat_inc(se, wait_runtime_overruns);
		schedstat_inc(cfs_rq, wait_runtime_overruns);
	}
	if (unlikely(se->wait_runtime < -limit)) {
		se->wait_runtime = -limit;
		schedstat_inc(se, wait_runtime_underruns);
		schedstat_inc(cfs_rq, wait_runtime_underruns);
	}
}

static inline void
__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
{
	se->wait_runtime += delta;
	schedstat_add(se, sum_wait_runtime, delta);
	limit_wait_runtime(cfs_rq, se);
}

static void
add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
{
	schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
	__add_wait_runtime(cfs_rq, se, delta);
	schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
}

/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
294 295
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
296
{
I
Ingo Molnar 已提交
297
	unsigned long delta, delta_fair, delta_mine, delta_exec_weighted;
298 299 300
	struct load_weight *lw = &cfs_rq->load;
	unsigned long load = lw->weight;

301
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
302 303

	curr->sum_exec_runtime += delta_exec;
304
	schedstat_add(cfs_rq, exec_clock, delta_exec);
I
Ingo Molnar 已提交
305 306 307 308 309 310
	delta_exec_weighted = delta_exec;
	if (unlikely(curr->load.weight != NICE_0_LOAD)) {
		delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
							&curr->load);
	}
	curr->vruntime += delta_exec_weighted;
311

312 313 314
	if (!sched_feat(FAIR_SLEEPERS))
		return;

I
Ingo Molnar 已提交
315 316 317
	if (unlikely(!load))
		return;

318 319 320
	delta_fair = calc_delta_fair(delta_exec, lw);
	delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);

M
Mike Galbraith 已提交
321
	if (cfs_rq->sleeper_bonus > sysctl_sched_min_granularity) {
322
		delta = min((u64)delta_mine, cfs_rq->sleeper_bonus);
323 324
		delta = min(delta, (unsigned long)(
			(long)sysctl_sched_runtime_limit - curr->wait_runtime));
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
		cfs_rq->sleeper_bonus -= delta;
		delta_mine -= delta;
	}

	cfs_rq->fair_clock += delta_fair;
	/*
	 * We executed delta_exec amount of time on the CPU,
	 * but we were only entitled to delta_mine amount of
	 * time during that period (if nr_running == 1 then
	 * the two values are equal)
	 * [Note: delta_mine - delta_exec is negative]:
	 */
	add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
}

340
static void update_curr(struct cfs_rq *cfs_rq)
341
{
342
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
343
	u64 now = rq_of(cfs_rq)->clock;
344 345 346 347 348 349 350 351 352 353
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
354
	delta_exec = (unsigned long)(now - curr->exec_start);
355

I
Ingo Molnar 已提交
356 357
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
358 359 360
}

static inline void
361
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
362 363
{
	se->wait_start_fair = cfs_rq->fair_clock;
364
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
365 366 367
}

static inline unsigned long
I
Ingo Molnar 已提交
368
calc_weighted(unsigned long delta, struct sched_entity *se)
369
{
I
Ingo Molnar 已提交
370
	unsigned long weight = se->load.weight;
371

I
Ingo Molnar 已提交
372 373 374 375
	if (unlikely(weight != NICE_0_LOAD))
		return (u64)delta * se->load.weight >> NICE_0_SHIFT;
	else
		return delta;
376 377 378 379 380
}

/*
 * Task is being enqueued - update stats:
 */
381
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
382 383 384 385 386
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
387
	if (se != cfs_rq->curr)
388
		update_stats_wait_start(cfs_rq, se);
389 390 391
	/*
	 * Update the key:
	 */
I
Ingo Molnar 已提交
392
	se->fair_key = se->vruntime;
393 394 395 396 397 398
}

/*
 * Note: must be called with a freshly updated rq->fair_clock.
 */
static inline void
I
Ingo Molnar 已提交
399 400
__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se,
			unsigned long delta_fair)
401
{
402 403
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
404

I
Ingo Molnar 已提交
405
	delta_fair = calc_weighted(delta_fair, se);
406 407 408 409 410

	add_wait_runtime(cfs_rq, se, delta_fair);
}

static void
411
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
412 413 414
{
	unsigned long delta_fair;

415 416 417
	if (unlikely(!se->wait_start_fair))
		return;

418 419 420
	delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
			(u64)(cfs_rq->fair_clock - se->wait_start_fair));

I
Ingo Molnar 已提交
421
	__update_stats_wait_end(cfs_rq, se, delta_fair);
422 423

	se->wait_start_fair = 0;
I
Ingo Molnar 已提交
424
	schedstat_set(se->wait_start, 0);
425 426 427
}

static inline void
428
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
429
{
430
	update_curr(cfs_rq);
431 432 433 434
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
435
	if (se != cfs_rq->curr)
436
		update_stats_wait_end(cfs_rq, se);
437 438 439 440 441 442
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
443
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
444 445 446 447
{
	/*
	 * We are starting a new run period:
	 */
448
	se->exec_start = rq_of(cfs_rq)->clock;
449 450 451 452 453 454
}

/*
 * We are descheduling a task - update its stats:
 */
static inline void
455
update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
456 457 458 459 460 461 462 463
{
	se->exec_start = 0;
}

/**************************************************
 * Scheduling class queueing methods:
 */

I
Ingo Molnar 已提交
464 465
static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se,
			      unsigned long delta_fair)
466
{
I
Ingo Molnar 已提交
467
	unsigned long load = cfs_rq->load.weight;
468 469
	long prev_runtime;

470 471 472 473 474 475 476
	/*
	 * Do not boost sleepers if there's too much bonus 'in flight'
	 * already:
	 */
	if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit))
		return;

P
Peter Zijlstra 已提交
477
	if (sched_feat(SLEEPER_LOAD_AVG))
478 479 480 481 482 483
		load = rq_of(cfs_rq)->cpu_load[2];

	/*
	 * Fix up delta_fair with the effect of us running
	 * during the whole sleep period:
	 */
P
Peter Zijlstra 已提交
484
	if (sched_feat(SLEEPER_AVG))
485 486 487
		delta_fair = div64_likely32((u64)delta_fair * load,
						load + se->load.weight);

I
Ingo Molnar 已提交
488
	delta_fair = calc_weighted(delta_fair, se);
489 490 491 492 493 494 495 496 497 498 499

	prev_runtime = se->wait_runtime;
	__add_wait_runtime(cfs_rq, se, delta_fair);
	delta_fair = se->wait_runtime - prev_runtime;

	/*
	 * Track the amount of bonus we've given to sleepers:
	 */
	cfs_rq->sleeper_bonus += delta_fair;
}

500
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
501 502 503 504 505
{
	struct task_struct *tsk = task_of(se);
	unsigned long delta_fair;

	if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
P
Peter Zijlstra 已提交
506
			 !sched_feat(FAIR_SLEEPERS))
507 508 509 510 511
		return;

	delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
		(u64)(cfs_rq->fair_clock - se->sleep_start_fair));

I
Ingo Molnar 已提交
512
	__enqueue_sleeper(cfs_rq, se, delta_fair);
513 514 515 516 517

	se->sleep_start_fair = 0;

#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
518
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
519 520 521 522 523 524 525 526 527 528 529

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
	}
	if (se->block_start) {
530
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
531 532 533 534 535 536 537 538 539

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
540 541 542 543 544 545 546 547 548 549

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
550 551 552 553
	}
#endif
}

554 555 556 557 558 559
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
	u64 min_runtime, latency;

	min_runtime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572

	if (sched_feat(USE_TREE_AVG)) {
		struct sched_entity *last = __pick_last_entity(cfs_rq);
		if (last) {
			min_runtime = __pick_next_entity(cfs_rq)->vruntime;
			min_runtime += last->vruntime;
			min_runtime >>= 1;
		}
	} else if (sched_feat(APPROX_AVG))
		min_runtime += sysctl_sched_latency/2;

	if (initial && sched_feat(START_DEBIT))
		min_runtime += sched_slice(cfs_rq, se);
573 574 575 576 577 578 579 580 581 582 583 584

	if (!initial && sched_feat(NEW_FAIR_SLEEPERS)) {
		latency = sysctl_sched_latency;
		if (min_runtime > latency)
			min_runtime -= latency;
		else
			min_runtime = 0;
	}

	se->vruntime = max(se->vruntime, min_runtime);
}

585
static void
586
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
587 588 589 590
{
	/*
	 * Update the fair clock.
	 */
591
	update_curr(cfs_rq);
592

I
Ingo Molnar 已提交
593
	if (wakeup) {
594
		place_entity(cfs_rq, se, 0);
595
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
596
	}
597

598
	update_stats_enqueue(cfs_rq, se);
599 600 601 602
	__enqueue_entity(cfs_rq, se);
}

static void
603
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
604
{
605
	update_stats_dequeue(cfs_rq, se);
606 607 608 609 610 611 612
	if (sleep) {
		se->sleep_start_fair = cfs_rq->fair_clock;
#ifdef CONFIG_SCHEDSTATS
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
613
				se->sleep_start = rq_of(cfs_rq)->clock;
614
			if (tsk->state & TASK_UNINTERRUPTIBLE)
615
				se->block_start = rq_of(cfs_rq)->clock;
616 617 618 619 620 621 622 623 624
		}
#endif
	}
	__dequeue_entity(cfs_rq, se);
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
625
static void
I
Ingo Molnar 已提交
626
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
627
{
628 629
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
630
	ideal_runtime = sched_slice(cfs_rq, curr);
631 632
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	if (delta_exec > ideal_runtime)
633 634 635 636
		resched_task(rq_of(cfs_rq)->curr);
}

static inline void
637
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
638 639 640 641 642 643 644 645
{
	/*
	 * Any task has to be enqueued before it get to execute on
	 * a CPU. So account for the time it spent waiting on the
	 * runqueue. (note, here we rely on pick_next_task() having
	 * done a put_prev_task_fair() shortly before this, which
	 * updated rq->fair_clock - used by update_stats_wait_end())
	 */
646
	update_stats_wait_end(cfs_rq, se);
647
	update_stats_curr_start(cfs_rq, se);
648
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
649 650 651 652 653 654 655 656 657 658 659
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
	if (rq_of(cfs_rq)->ls.load.weight >= 2*se->load.weight) {
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
660
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
661 662
}

663
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
664 665 666
{
	struct sched_entity *se = __pick_next_entity(cfs_rq);

667
	set_next_entity(cfs_rq, se);
668 669 670 671

	return se;
}

672
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
673 674 675 676 677 678
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
679
		update_curr(cfs_rq);
680

681
	update_stats_curr_end(cfs_rq, prev);
682 683

	if (prev->on_rq)
684
		update_stats_wait_start(cfs_rq, prev);
685
	cfs_rq->curr = NULL;
686 687 688 689 690 691 692 693
}

static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
	/*
	 * Dequeue and enqueue the task to update its
	 * position within the tree:
	 */
694
	dequeue_entity(cfs_rq, curr, 0);
695
	enqueue_entity(cfs_rq, curr, 0);
696

I
Ingo Molnar 已提交
697 698
	if (cfs_rq->nr_running > 1)
		check_preempt_tick(cfs_rq, curr);
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
}

/**************************************************
 * CFS operations on tasks:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	/* A later patch will take group into account */
	return &cpu_rq(this_cpu)->cfs;
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) tasks belong to the same group ? */
static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
{
	if (curr->se.cfs_rq == p->se.cfs_rq)
		return 1;

	return 0;
}

#else	/* CONFIG_FAIR_GROUP_SCHED */

#define for_each_sched_entity(se) \
		for (; se; se = NULL)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
{
	return 1;
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
794
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
795 796 797 798 799 800 801 802
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		if (se->on_rq)
			break;
		cfs_rq = cfs_rq_of(se);
803
		enqueue_entity(cfs_rq, se, wakeup);
804 805 806 807 808 809 810 811
	}
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
812
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
813 814 815 816 817 818
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
819
		dequeue_entity(cfs_rq, se, sleep);
820 821 822 823 824 825 826
		/* Don't dequeue parent if it has other entities besides us */
		if (cfs_rq->load.weight)
			break;
	}
}

/*
827 828 829
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
830 831 832 833
 */
static void yield_task_fair(struct rq *rq, struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
834 835 836
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct sched_entity *rightmost, *se = &p->se;
	struct rb_node *parent;
837 838

	/*
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

	if (likely(!sysctl_sched_compat_yield)) {
		__update_rq_clock(rq);
		/*
		 * Dequeue and enqueue the task to update its
		 * position within the tree:
		 */
		dequeue_entity(cfs_rq, &p->se, 0);
		enqueue_entity(cfs_rq, &p->se, 0);

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
857
	 */
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
	do {
		parent = *link;
		link = &parent->rb_right;
	} while (*link);

	rightmost = rb_entry(parent, struct sched_entity, run_node);
	/*
	 * Already in the rightmost position?
	 */
	if (unlikely(rightmost == se))
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
	 */
	se->fair_key = rightmost->fair_key + 1;

	if (cfs_rq->rb_leftmost == &se->run_node)
		cfs_rq->rb_leftmost = rb_next(&se->run_node);
	/*
	 * Relink the task to the rightmost position:
	 */
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
883 884 885 886 887
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
I
Ingo Molnar 已提交
888
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
889 890 891 892 893
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
894
		update_rq_clock(rq);
895
		update_curr(cfs_rq);
896 897 898
		resched_task(curr);
		return;
	}
I
Ingo Molnar 已提交
899 900
	if (is_same_group(curr, p)) {
		s64 delta = curr->se.vruntime - p->se.vruntime;
901

I
Ingo Molnar 已提交
902 903 904
		if (delta > (s64)sysctl_sched_wakeup_granularity)
			resched_task(curr);
	}
905 906
}

907
static struct task_struct *pick_next_task_fair(struct rq *rq)
908 909 910 911 912 913 914 915
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
916
		se = pick_next_entity(cfs_rq);
917 918 919 920 921 922 923 924 925
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	return task_of(se);
}

/*
 * Account for a descheduled task:
 */
926
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
927 928 929 930 931 932
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
933
		put_prev_entity(cfs_rq, se);
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
	}
}

/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
static inline struct task_struct *
__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
{
	struct task_struct *p;

	if (!curr)
		return NULL;

	p = rb_entry(curr, struct task_struct, se.run_node);
	cfs_rq->rb_load_balance_curr = rb_next(curr);

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
}

976
#ifdef CONFIG_FAIR_GROUP_SCHED
977 978 979 980 981 982 983 984 985 986 987 988 989
static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
{
	struct sched_entity *curr;
	struct task_struct *p;

	if (!cfs_rq->nr_running)
		return MAX_PRIO;

	curr = __pick_next_entity(cfs_rq);
	p = task_of(curr);

	return p->prio;
}
990
#endif
991

P
Peter Williams 已提交
992
static unsigned long
993
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
994 995 996
		  unsigned long max_nr_move, unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
997 998 999 1000 1001 1002 1003 1004 1005 1006
{
	struct cfs_rq *busy_cfs_rq;
	unsigned long load_moved, total_nr_moved = 0, nr_moved;
	long rem_load_move = max_load_move;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1007
#ifdef CONFIG_FAIR_GROUP_SCHED
1008
		struct cfs_rq *this_cfs_rq;
1009
		long imbalance;
1010 1011 1012 1013
		unsigned long maxload;

		this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);

1014
		imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1015 1016 1017 1018 1019 1020 1021 1022
		/* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
		if (imbalance <= 0)
			continue;

		/* Don't pull more than imbalance/2 */
		imbalance /= 2;
		maxload = min(rem_load_move, imbalance);

1023 1024
		*this_best_prio = cfs_rq_best_prio(this_cfs_rq);
#else
1025
# define maxload rem_load_move
1026
#endif
1027 1028 1029 1030 1031 1032
		/* pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		nr_moved = balance_tasks(this_rq, this_cpu, busiest,
				max_nr_move, maxload, sd, idle, all_pinned,
1033
				&load_moved, this_best_prio, &cfs_rq_iterator);
1034 1035 1036 1037 1038 1039 1040 1041 1042

		total_nr_moved += nr_moved;
		max_nr_move -= nr_moved;
		rem_load_move -= load_moved;

		if (max_nr_move <= 0 || rem_load_move <= 0)
			break;
	}

P
Peter Williams 已提交
1043
	return max_load_move - rem_load_move;
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
}

/*
 * scheduler tick hitting a task of our scheduling class:
 */
static void task_tick_fair(struct rq *rq, struct task_struct *curr)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		entity_tick(cfs_rq, se);
	}
}

1060 1061
#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)

1062 1063 1064 1065 1066 1067 1068
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1069
static void task_new_fair(struct rq *rq, struct task_struct *p)
1070 1071
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1072
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1073 1074 1075

	sched_info_queued(p);

1076
	update_curr(cfs_rq);
1077
	place_entity(cfs_rq, se, 1);
1078

1079 1080 1081 1082
	/*
	 * The statistical average of wait_runtime is about
	 * -granularity/2, so initialize the task with that:
	 */
P
Peter Zijlstra 已提交
1083
	if (sched_feat(START_DEBIT))
1084 1085 1086 1087 1088 1089 1090 1091 1092
		se->wait_runtime = -(__sched_period(cfs_rq->nr_running+1) / 2);

	if (sysctl_sched_child_runs_first &&
			curr->vruntime < se->vruntime) {

		dequeue_entity(cfs_rq, curr, 0);
		swap(curr->vruntime, se->vruntime);
		enqueue_entity(cfs_rq, curr, 0);
	}
1093

I
Ingo Molnar 已提交
1094
	update_stats_enqueue(cfs_rq, se);
1095
	__enqueue_entity(cfs_rq, se);
1096
	resched_task(rq->curr);
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
}

#ifdef CONFIG_FAIR_GROUP_SCHED
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
1107
	struct sched_entity *se = &rq->curr->se;
I
Ingo Molnar 已提交
1108

1109 1110
	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
}
#else
static void set_curr_task_fair(struct rq *rq)
{
}
#endif

/*
 * All the scheduling class methods:
 */
struct sched_class fair_sched_class __read_mostly = {
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
1126
	.check_preempt_curr	= check_preempt_wakeup,
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

	.load_balance		= load_balance_fair,

	.set_curr_task          = set_curr_task_fair,
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
};

#ifdef CONFIG_SCHED_DEBUG
1139
static void print_cfs_stats(struct seq_file *m, int cpu)
1140 1141 1142
{
	struct cfs_rq *cfs_rq;

1143
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1144
		print_cfs_rq(m, cpu, cfs_rq);
1145 1146
}
#endif