sched_fair.c 24.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22 23
 */

/*
24 25
 * Targeted preemption latency for CPU-bound tasks:
 * (default: 20ms, units: nanoseconds)
26
 *
27 28 29 30
 * NOTE: this latency value is not the same as the concept of
 * 'timeslice length' - timeslices in CFS are of variable length.
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches field)
31 32 33 34
 *
 * On SMP systems the value of this is multiplied by the log2 of the
 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35
 * Targeted preemption latency for CPU-bound tasks:
36
 */
37 38 39 40 41 42 43
const_debug unsigned int sysctl_sched_latency = 20000000ULL;

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
const_debug unsigned int sysctl_sched_child_runs_first = 1;
44 45 46 47 48

/*
 * Minimal preemption granularity for CPU-bound tasks:
 * (default: 2 msec, units: nanoseconds)
 */
49
unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
50

51 52 53 54 55 56 57 58
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

59 60
/*
 * SCHED_BATCH wake-up granularity.
61
 * (default: 25 msec, units: nanoseconds)
62 63 64 65 66
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
67
const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
68 69 70 71 72 73 74 75 76

/*
 * SCHED_OTHER wake-up granularity.
 * (default: 1 msec, units: nanoseconds)
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
I
Ingo Molnar 已提交
77
const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
78 79 80 81 82 83 84 85 86

unsigned int sysctl_sched_runtime_limit __read_mostly;

extern struct sched_class fair_sched_class;

/**************************************************************
 * CFS operations on generic schedulable entities:
 */

87
#ifdef CONFIG_FAIR_GROUP_SCHED
88

89
/* cpu runqueue to which this cfs_rq is attached */
90 91
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
92
	return cfs_rq->rq;
93 94
}

95 96
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
97

98
#else	/* CONFIG_FAIR_GROUP_SCHED */
99

100 101 102
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
}

#define entity_is_task(se)	1

#endif	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}


/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

119 120 121 122 123 124 125 126 127 128
static inline u64
max_vruntime(u64 min_vruntime, u64 vruntime)
{
	if ((vruntime > min_vruntime) ||
	    (min_vruntime > (1ULL << 61) && vruntime < (1ULL << 50)))
		min_vruntime = vruntime;

	return min_vruntime;
}

I
Ingo Molnar 已提交
129 130 131 132 133 134
static inline void
set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
{
	struct sched_entity *se;

	cfs_rq->rb_leftmost = leftmost;
135
	if (leftmost)
I
Ingo Molnar 已提交
136 137 138
		se = rb_entry(leftmost, struct sched_entity, run_node);
}

139 140
static inline s64
entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
141 142 143 144
{
	return se->fair_key - cfs_rq->min_vruntime;
}

145 146 147
/*
 * Enqueue an entity into the rb-tree:
 */
148
static void
149 150 151 152 153
__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
154
	s64 key = entity_key(cfs_rq, se);
155 156 157 158 159 160 161 162 163 164 165 166
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
167
		if (key < entity_key(cfs_rq, entry)) {
168 169 170 171 172 173 174 175 176 177 178 179
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
	if (leftmost)
I
Ingo Molnar 已提交
180
		set_leftmost(cfs_rq, &se->run_node);
181 182 183 184 185 186 187 188

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

189
static void
190 191 192
__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (cfs_rq->rb_leftmost == &se->run_node)
I
Ingo Molnar 已提交
193 194
		set_leftmost(cfs_rq, rb_next(&se->run_node));

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct sched_entity *se = NULL;
	struct rb_node *parent;

	while (*link) {
		parent = *link;
		se = rb_entry(parent, struct sched_entity, run_node);
		link = &parent->rb_right;
	}

	return se;
}

226 227 228 229
/**************************************************************
 * Scheduling class statistics methods:
 */

230 231 232 233 234 235 236 237 238 239 240 241 242 243
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
	unsigned long nr_latency =
		sysctl_sched_latency / sysctl_sched_min_granularity;

	if (unlikely(nr_running > nr_latency)) {
		period *= nr_running;
		do_div(period, nr_latency);
	}

	return period;
}

P
Peter Zijlstra 已提交
244
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
245
{
P
Peter Zijlstra 已提交
246
	u64 period = __sched_period(cfs_rq->nr_running);
247

P
Peter Zijlstra 已提交
248 249
	period *= se->load.weight;
	do_div(period, cfs_rq->load.weight);
250

P
Peter Zijlstra 已提交
251
	return period;
252 253 254 255 256 257 258
}

/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
259 260
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
261
{
262
	unsigned long delta_exec_weighted;
263
	u64 next_vruntime, min_vruntime;
264

265
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
266 267

	curr->sum_exec_runtime += delta_exec;
268
	schedstat_add(cfs_rq, exec_clock, delta_exec);
I
Ingo Molnar 已提交
269 270 271 272 273 274
	delta_exec_weighted = delta_exec;
	if (unlikely(curr->load.weight != NICE_0_LOAD)) {
		delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
							&curr->load);
	}
	curr->vruntime += delta_exec_weighted;
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

	/*
	 * maintain cfs_rq->min_vruntime to be a monotonic increasing
	 * value tracking the leftmost vruntime in the tree.
	 */
	if (first_fair(cfs_rq)) {
		next_vruntime = __pick_next_entity(cfs_rq)->vruntime;

		/* min_vruntime() := !max_vruntime() */
		min_vruntime = max_vruntime(curr->vruntime, next_vruntime);
		if (min_vruntime == next_vruntime)
			min_vruntime = curr->vruntime;
		else
			min_vruntime = next_vruntime;
	} else
		min_vruntime = curr->vruntime;

	cfs_rq->min_vruntime =
		max_vruntime(cfs_rq->min_vruntime, min_vruntime);
294 295
}

296
static void update_curr(struct cfs_rq *cfs_rq)
297
{
298
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
299
	u64 now = rq_of(cfs_rq)->clock;
300 301 302 303 304 305 306 307 308 309
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
310
	delta_exec = (unsigned long)(now - curr->exec_start);
311

I
Ingo Molnar 已提交
312 313
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
314 315 316
}

static inline void
317
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
318
{
319
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
320 321 322
}

static inline unsigned long
I
Ingo Molnar 已提交
323
calc_weighted(unsigned long delta, struct sched_entity *se)
324
{
I
Ingo Molnar 已提交
325
	unsigned long weight = se->load.weight;
326

I
Ingo Molnar 已提交
327 328 329 330
	if (unlikely(weight != NICE_0_LOAD))
		return (u64)delta * se->load.weight >> NICE_0_SHIFT;
	else
		return delta;
331 332 333 334 335
}

/*
 * Task is being enqueued - update stats:
 */
336
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
337 338 339 340 341
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
342
	if (se != cfs_rq->curr)
343
		update_stats_wait_start(cfs_rq, se);
344 345 346
	/*
	 * Update the key:
	 */
I
Ingo Molnar 已提交
347
	se->fair_key = se->vruntime;
348 349 350
}

static void
351
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
352
{
353 354
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
I
Ingo Molnar 已提交
355
	schedstat_set(se->wait_start, 0);
356 357 358
}

static inline void
359
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
360
{
361
	update_curr(cfs_rq);
362 363 364 365
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
366
	if (se != cfs_rq->curr)
367
		update_stats_wait_end(cfs_rq, se);
368 369 370 371 372 373
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
374
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
375 376 377 378
{
	/*
	 * We are starting a new run period:
	 */
379
	se->exec_start = rq_of(cfs_rq)->clock;
380 381 382 383 384 385
}

/*
 * We are descheduling a task - update its stats:
 */
static inline void
386
update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
387 388 389 390 391 392 393 394
{
	se->exec_start = 0;
}

/**************************************************
 * Scheduling class queueing methods:
 */

395
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
396 397 398
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
399
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
400 401 402 403 404 405 406 407 408 409 410

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
	}
	if (se->block_start) {
411
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
412 413 414 415 416 417 418 419 420

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
421 422 423 424 425 426 427

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
428 429
			struct task_struct *tsk = task_of(se);

I
Ingo Molnar 已提交
430 431 432
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
433 434 435 436
	}
#endif
}

437 438 439 440 441 442
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
	u64 min_runtime, latency;

	min_runtime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455

	if (sched_feat(USE_TREE_AVG)) {
		struct sched_entity *last = __pick_last_entity(cfs_rq);
		if (last) {
			min_runtime = __pick_next_entity(cfs_rq)->vruntime;
			min_runtime += last->vruntime;
			min_runtime >>= 1;
		}
	} else if (sched_feat(APPROX_AVG))
		min_runtime += sysctl_sched_latency/2;

	if (initial && sched_feat(START_DEBIT))
		min_runtime += sched_slice(cfs_rq, se);
456 457 458 459 460 461 462 463 464 465 466 467

	if (!initial && sched_feat(NEW_FAIR_SLEEPERS)) {
		latency = sysctl_sched_latency;
		if (min_runtime > latency)
			min_runtime -= latency;
		else
			min_runtime = 0;
	}

	se->vruntime = max(se->vruntime, min_runtime);
}

468
static void
469
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
470 471 472 473
{
	/*
	 * Update the fair clock.
	 */
474
	update_curr(cfs_rq);
475

I
Ingo Molnar 已提交
476
	if (wakeup) {
477
		place_entity(cfs_rq, se, 0);
478
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
479
	}
480

481
	update_stats_enqueue(cfs_rq, se);
482 483 484 485
	__enqueue_entity(cfs_rq, se);
}

static void
486
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
487
{
488
	update_stats_dequeue(cfs_rq, se);
489
#ifdef CONFIG_SCHEDSTATS
490
	if (sleep) {
491 492 493 494
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
495
				se->sleep_start = rq_of(cfs_rq)->clock;
496
			if (tsk->state & TASK_UNINTERRUPTIBLE)
497
				se->block_start = rq_of(cfs_rq)->clock;
498 499
		}
	}
500
#endif
501 502 503 504 505 506
	__dequeue_entity(cfs_rq, se);
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
507
static void
I
Ingo Molnar 已提交
508
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
509
{
510 511
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
512
	ideal_runtime = sched_slice(cfs_rq, curr);
513 514
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	if (delta_exec > ideal_runtime)
515 516 517 518
		resched_task(rq_of(cfs_rq)->curr);
}

static inline void
519
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
520 521 522 523
{
	/*
	 * Any task has to be enqueued before it get to execute on
	 * a CPU. So account for the time it spent waiting on the
524
	 * runqueue.
525
	 */
526
	update_stats_wait_end(cfs_rq, se);
527
	update_stats_curr_start(cfs_rq, se);
528
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
529 530 531 532 533 534
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
535
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
536 537 538 539
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
540
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
541 542
}

543
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
544 545 546
{
	struct sched_entity *se = __pick_next_entity(cfs_rq);

547
	set_next_entity(cfs_rq, se);
548 549 550 551

	return se;
}

552
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
553 554 555 556 557 558
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
559
		update_curr(cfs_rq);
560

561
	update_stats_curr_end(cfs_rq, prev);
562 563

	if (prev->on_rq)
564
		update_stats_wait_start(cfs_rq, prev);
565
	cfs_rq->curr = NULL;
566 567 568 569 570 571 572 573
}

static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
	/*
	 * Dequeue and enqueue the task to update its
	 * position within the tree:
	 */
574
	dequeue_entity(cfs_rq, curr, 0);
575
	enqueue_entity(cfs_rq, curr, 0);
576

I
Ingo Molnar 已提交
577 578
	if (cfs_rq->nr_running > 1)
		check_preempt_tick(cfs_rq, curr);
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
}

/**************************************************
 * CFS operations on tasks:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
S
Srivatsa Vaddagiri 已提交
613
	return cfs_rq->tg->cfs_rq[this_cpu];
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) tasks belong to the same group ? */
static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
{
	if (curr->se.cfs_rq == p->se.cfs_rq)
		return 1;

	return 0;
}

#else	/* CONFIG_FAIR_GROUP_SCHED */

#define for_each_sched_entity(se) \
		for (; se; se = NULL)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
{
	return 1;
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
673
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
674 675 676 677 678 679 680 681
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		if (se->on_rq)
			break;
		cfs_rq = cfs_rq_of(se);
682
		enqueue_entity(cfs_rq, se, wakeup);
683 684 685 686 687 688 689 690
	}
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
691
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
692 693 694 695 696 697
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
698
		dequeue_entity(cfs_rq, se, sleep);
699 700 701 702 703 704 705
		/* Don't dequeue parent if it has other entities besides us */
		if (cfs_rq->load.weight)
			break;
	}
}

/*
706 707 708
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
709 710 711 712
 */
static void yield_task_fair(struct rq *rq, struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
713 714 715
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct sched_entity *rightmost, *se = &p->se;
	struct rb_node *parent;
716 717

	/*
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

	if (likely(!sysctl_sched_compat_yield)) {
		__update_rq_clock(rq);
		/*
		 * Dequeue and enqueue the task to update its
		 * position within the tree:
		 */
		dequeue_entity(cfs_rq, &p->se, 0);
		enqueue_entity(cfs_rq, &p->se, 0);

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
736
	 */
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
	do {
		parent = *link;
		link = &parent->rb_right;
	} while (*link);

	rightmost = rb_entry(parent, struct sched_entity, run_node);
	/*
	 * Already in the rightmost position?
	 */
	if (unlikely(rightmost == se))
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
	 */
	se->fair_key = rightmost->fair_key + 1;

	if (cfs_rq->rb_leftmost == &se->run_node)
		cfs_rq->rb_leftmost = rb_next(&se->run_node);
	/*
	 * Relink the task to the rightmost position:
	 */
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
762 763 764 765 766
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
I
Ingo Molnar 已提交
767
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
768 769 770 771 772
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
773
		update_rq_clock(rq);
774
		update_curr(cfs_rq);
775 776 777
		resched_task(curr);
		return;
	}
I
Ingo Molnar 已提交
778 779
	if (is_same_group(curr, p)) {
		s64 delta = curr->se.vruntime - p->se.vruntime;
780

I
Ingo Molnar 已提交
781 782 783
		if (delta > (s64)sysctl_sched_wakeup_granularity)
			resched_task(curr);
	}
784 785
}

786
static struct task_struct *pick_next_task_fair(struct rq *rq)
787 788 789 790 791 792 793 794
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
795
		se = pick_next_entity(cfs_rq);
796 797 798 799 800 801 802 803 804
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	return task_of(se);
}

/*
 * Account for a descheduled task:
 */
805
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
806 807 808 809 810 811
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
812
		put_prev_entity(cfs_rq, se);
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
	}
}

/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
static inline struct task_struct *
__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
{
	struct task_struct *p;

	if (!curr)
		return NULL;

	p = rb_entry(curr, struct task_struct, se.run_node);
	cfs_rq->rb_load_balance_curr = rb_next(curr);

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
}

855
#ifdef CONFIG_FAIR_GROUP_SCHED
856 857 858 859 860 861 862 863 864 865 866 867 868
static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
{
	struct sched_entity *curr;
	struct task_struct *p;

	if (!cfs_rq->nr_running)
		return MAX_PRIO;

	curr = __pick_next_entity(cfs_rq);
	p = task_of(curr);

	return p->prio;
}
869
#endif
870

P
Peter Williams 已提交
871
static unsigned long
872
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
873 874 875
		  unsigned long max_nr_move, unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
876 877 878 879 880 881 882 883 884 885
{
	struct cfs_rq *busy_cfs_rq;
	unsigned long load_moved, total_nr_moved = 0, nr_moved;
	long rem_load_move = max_load_move;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
886
#ifdef CONFIG_FAIR_GROUP_SCHED
887
		struct cfs_rq *this_cfs_rq;
888
		long imbalance;
889 890 891 892
		unsigned long maxload;

		this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);

893
		imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
894 895 896 897 898 899 900 901
		/* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
		if (imbalance <= 0)
			continue;

		/* Don't pull more than imbalance/2 */
		imbalance /= 2;
		maxload = min(rem_load_move, imbalance);

902 903
		*this_best_prio = cfs_rq_best_prio(this_cfs_rq);
#else
904
# define maxload rem_load_move
905
#endif
906 907 908 909 910 911
		/* pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		nr_moved = balance_tasks(this_rq, this_cpu, busiest,
				max_nr_move, maxload, sd, idle, all_pinned,
912
				&load_moved, this_best_prio, &cfs_rq_iterator);
913 914 915 916 917 918 919 920 921

		total_nr_moved += nr_moved;
		max_nr_move -= nr_moved;
		rem_load_move -= load_moved;

		if (max_nr_move <= 0 || rem_load_move <= 0)
			break;
	}

P
Peter Williams 已提交
922
	return max_load_move - rem_load_move;
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
}

/*
 * scheduler tick hitting a task of our scheduling class:
 */
static void task_tick_fair(struct rq *rq, struct task_struct *curr)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		entity_tick(cfs_rq, se);
	}
}

939 940
#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)

941 942 943 944 945 946 947
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
948
static void task_new_fair(struct rq *rq, struct task_struct *p)
949 950
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
951
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
952 953 954

	sched_info_queued(p);

955
	update_curr(cfs_rq);
956
	place_entity(cfs_rq, se, 1);
957 958 959 960 961 962 963 964

	if (sysctl_sched_child_runs_first &&
			curr->vruntime < se->vruntime) {

		dequeue_entity(cfs_rq, curr, 0);
		swap(curr->vruntime, se->vruntime);
		enqueue_entity(cfs_rq, curr, 0);
	}
965

I
Ingo Molnar 已提交
966
	update_stats_enqueue(cfs_rq, se);
967
	__enqueue_entity(cfs_rq, se);
968
	resched_task(rq->curr);
969 970 971 972 973 974 975 976 977 978
}

#ifdef CONFIG_FAIR_GROUP_SCHED
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
979
	struct sched_entity *se = &rq->curr->se;
I
Ingo Molnar 已提交
980

981 982
	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
983 984 985 986
}
#else
static void set_curr_task_fair(struct rq *rq)
{
D
Dmitry Adamushko 已提交
987 988 989 990
	struct sched_entity *se = &rq->curr->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	cfs_rq->curr = se;
991 992 993 994 995 996 997 998 999 1000 1001
}
#endif

/*
 * All the scheduling class methods:
 */
struct sched_class fair_sched_class __read_mostly = {
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
1002
	.check_preempt_curr	= check_preempt_wakeup,
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

	.load_balance		= load_balance_fair,

	.set_curr_task          = set_curr_task_fair,
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
};

#ifdef CONFIG_SCHED_DEBUG
1015
static void print_cfs_stats(struct seq_file *m, int cpu)
1016 1017 1018
{
	struct cfs_rq *cfs_rq;

1019
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1020
		print_cfs_rq(m, cpu, cfs_rq);
1021 1022
}
#endif