sched_fair.c 31.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

23 24 25 26 27 28 29 30 31
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

32
/*
33 34
 * Targeted preemption latency for CPU-bound tasks:
 * (default: 20ms, units: nanoseconds)
35
 *
36 37 38 39
 * NOTE: this latency value is not the same as the concept of
 * 'timeslice length' - timeslices in CFS are of variable length.
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches field)
40 41 42 43
 *
 * On SMP systems the value of this is multiplied by the log2 of the
 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
44
 * Targeted preemption latency for CPU-bound tasks:
45
 */
46 47 48 49 50 51 52
const_debug unsigned int sysctl_sched_latency = 20000000ULL;

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
const_debug unsigned int sysctl_sched_child_runs_first = 1;
53 54 55 56 57

/*
 * Minimal preemption granularity for CPU-bound tasks:
 * (default: 2 msec, units: nanoseconds)
 */
58
unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
59

60 61 62 63 64 65 66 67
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

68 69
/*
 * SCHED_BATCH wake-up granularity.
70
 * (default: 25 msec, units: nanoseconds)
71 72 73 74 75
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
76
const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
77 78 79 80 81 82 83 84 85

/*
 * SCHED_OTHER wake-up granularity.
 * (default: 1 msec, units: nanoseconds)
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
86
const_debug unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
87 88 89 90 91 92 93 94 95 96

unsigned int sysctl_sched_runtime_limit __read_mostly;

/*
 * Debugging: various feature bits
 */
enum {
	SCHED_FEAT_FAIR_SLEEPERS	= 1,
	SCHED_FEAT_SLEEPER_AVG		= 2,
	SCHED_FEAT_SLEEPER_LOAD_AVG	= 4,
I
Ingo Molnar 已提交
97 98
	SCHED_FEAT_START_DEBIT		= 8,
	SCHED_FEAT_SKIP_INITIAL		= 16,
99 100
};

101
const_debug unsigned int sysctl_sched_features =
102
		SCHED_FEAT_FAIR_SLEEPERS	*1 |
I
Ingo Molnar 已提交
103
		SCHED_FEAT_SLEEPER_AVG		*0 |
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
		SCHED_FEAT_SLEEPER_LOAD_AVG	*1 |
		SCHED_FEAT_START_DEBIT		*1 |
		SCHED_FEAT_SKIP_INITIAL		*0;

extern struct sched_class fair_sched_class;

/**************************************************************
 * CFS operations on generic schedulable entities:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* cpu runqueue to which this cfs_rq is attached */
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rq;
}

/* currently running entity (if any) on this cfs_rq */
static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
{
	return cfs_rq->curr;
}

/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)

static inline void
set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->curr = se;
}

#else	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
}

static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
{
	struct rq *rq = rq_of(cfs_rq);

	if (unlikely(rq->curr->sched_class != &fair_sched_class))
		return NULL;

	return &rq->curr->se;
}

#define entity_is_task(se)	1

static inline void
set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { }

#endif	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}


/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

/*
 * Enqueue an entity into the rb-tree:
 */
static inline void
__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	s64 key = se->fair_key;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
		if (key - entry->fair_key < 0) {
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
	if (leftmost)
		cfs_rq->rb_leftmost = &se->run_node;

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
213 214

	schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
215 216 217 218 219 220 221 222 223 224 225
}

static inline void
__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (cfs_rq->rb_leftmost == &se->run_node)
		cfs_rq->rb_leftmost = rb_next(&se->run_node);
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
226 227

	schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

/**************************************************************
 * Scheduling class statistics methods:
 */

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
/*
 * Calculate the preemption granularity needed to schedule every
 * runnable task once per sysctl_sched_latency amount of time.
 * (down to a sensible low limit on granularity)
 *
 * For example, if there are 2 tasks running and latency is 10 msecs,
 * we switch tasks every 5 msecs. If we have 3 tasks running, we have
 * to switch tasks every 3.33 msecs to get a 10 msecs observed latency
 * for each task. We do finer and finer scheduling up to until we
 * reach the minimum granularity value.
 *
 * To achieve this we use the following dynamic-granularity rule:
 *
 *    gran = lat/nr - lat/nr/nr
 *
 * This comes out of the following equations:
 *
 *    kA1 + gran = kB1
 *    kB2 + gran = kA2
 *    kA2 = kA1
 *    kB2 = kB1 - d + d/nr
 *    lat = d * nr
 *
 * Where 'k' is key, 'A' is task A (waiting), 'B' is task B (running),
 * '1' is start of time, '2' is end of time, 'd' is delay between
 * 1 and 2 (during which task B was running), 'nr' is number of tasks
 * running, 'lat' is the the period of each task. ('lat' is the
 * sched_latency that we aim for.)
 */
static long
sched_granularity(struct cfs_rq *cfs_rq)
{
	unsigned int gran = sysctl_sched_latency;
	unsigned int nr = cfs_rq->nr_running;

	if (nr > 1) {
		gran = gran/nr - gran/nr/nr;
281
		gran = max(gran, sysctl_sched_min_granularity);
282 283 284 285 286
	}

	return gran;
}

287 288 289 290 291 292 293 294 295
/*
 * We rescale the rescheduling granularity of tasks according to their
 * nice level, but only linearly, not exponentially:
 */
static long
niced_granularity(struct sched_entity *curr, unsigned long granularity)
{
	u64 tmp;

296 297
	if (likely(curr->load.weight == NICE_0_LOAD))
		return granularity;
298
	/*
299
	 * Positive nice levels get the same granularity as nice-0:
300
	 */
301 302 303 304
	if (likely(curr->load.weight < NICE_0_LOAD)) {
		tmp = curr->load.weight * (u64)granularity;
		return (long) (tmp >> NICE_0_SHIFT);
	}
305
	/*
306
	 * Negative nice level tasks get linearly finer
307 308
	 * granularity:
	 */
309
	tmp = curr->load.inv_weight * (u64)granularity;
310 311 312 313

	/*
	 * It will always fit into 'long':
	 */
314
	return (long) (tmp >> (WMULT_SHIFT-NICE_0_SHIFT));
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
}

static inline void
limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	long limit = sysctl_sched_runtime_limit;

	/*
	 * Niced tasks have the same history dynamic range as
	 * non-niced tasks:
	 */
	if (unlikely(se->wait_runtime > limit)) {
		se->wait_runtime = limit;
		schedstat_inc(se, wait_runtime_overruns);
		schedstat_inc(cfs_rq, wait_runtime_overruns);
	}
	if (unlikely(se->wait_runtime < -limit)) {
		se->wait_runtime = -limit;
		schedstat_inc(se, wait_runtime_underruns);
		schedstat_inc(cfs_rq, wait_runtime_underruns);
	}
}

static inline void
__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
{
	se->wait_runtime += delta;
	schedstat_add(se, sum_wait_runtime, delta);
	limit_wait_runtime(cfs_rq, se);
}

static void
add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
{
	schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
	__add_wait_runtime(cfs_rq, se, delta);
	schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
}

/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
359 360
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
361
{
I
Ingo Molnar 已提交
362
	unsigned long delta, delta_fair, delta_mine;
363 364 365
	struct load_weight *lw = &cfs_rq->load;
	unsigned long load = lw->weight;

366
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
367 368 369 370

	curr->sum_exec_runtime += delta_exec;
	cfs_rq->exec_clock += delta_exec;

I
Ingo Molnar 已提交
371 372 373
	if (unlikely(!load))
		return;

374 375 376
	delta_fair = calc_delta_fair(delta_exec, lw);
	delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);

M
Mike Galbraith 已提交
377
	if (cfs_rq->sleeper_bonus > sysctl_sched_min_granularity) {
378
		delta = min((u64)delta_mine, cfs_rq->sleeper_bonus);
379 380
		delta = min(delta, (unsigned long)(
			(long)sysctl_sched_runtime_limit - curr->wait_runtime));
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
		cfs_rq->sleeper_bonus -= delta;
		delta_mine -= delta;
	}

	cfs_rq->fair_clock += delta_fair;
	/*
	 * We executed delta_exec amount of time on the CPU,
	 * but we were only entitled to delta_mine amount of
	 * time during that period (if nr_running == 1 then
	 * the two values are equal)
	 * [Note: delta_mine - delta_exec is negative]:
	 */
	add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
}

396
static void update_curr(struct cfs_rq *cfs_rq)
397 398
{
	struct sched_entity *curr = cfs_rq_curr(cfs_rq);
I
Ingo Molnar 已提交
399
	u64 now = rq_of(cfs_rq)->clock;
400 401 402 403 404 405 406 407 408 409
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
410
	delta_exec = (unsigned long)(now - curr->exec_start);
411

I
Ingo Molnar 已提交
412 413
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
414 415 416
}

static inline void
417
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
418 419
{
	se->wait_start_fair = cfs_rq->fair_clock;
420
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
}

/*
 * We calculate fair deltas here, so protect against the random effects
 * of a multiplication overflow by capping it to the runtime limit:
 */
#if BITS_PER_LONG == 32
static inline unsigned long
calc_weighted(unsigned long delta, unsigned long weight, int shift)
{
	u64 tmp = (u64)delta * weight >> shift;

	if (unlikely(tmp > sysctl_sched_runtime_limit*2))
		return sysctl_sched_runtime_limit*2;
	return tmp;
}
#else
static inline unsigned long
calc_weighted(unsigned long delta, unsigned long weight, int shift)
{
	return delta * weight >> shift;
}
#endif

/*
 * Task is being enqueued - update stats:
 */
448
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
449 450 451 452 453 454 455 456
{
	s64 key;

	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
	if (se != cfs_rq_curr(cfs_rq))
457
		update_stats_wait_start(cfs_rq, se);
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
	/*
	 * Update the key:
	 */
	key = cfs_rq->fair_clock;

	/*
	 * Optimize the common nice 0 case:
	 */
	if (likely(se->load.weight == NICE_0_LOAD)) {
		key -= se->wait_runtime;
	} else {
		u64 tmp;

		if (se->wait_runtime < 0) {
			tmp = -se->wait_runtime;
			key += (tmp * se->load.inv_weight) >>
					(WMULT_SHIFT - NICE_0_SHIFT);
		} else {
			tmp = se->wait_runtime;
477 478
			key -= (tmp * se->load.inv_weight) >>
					(WMULT_SHIFT - NICE_0_SHIFT);
479 480 481 482 483 484 485 486 487 488
		}
	}

	se->fair_key = key;
}

/*
 * Note: must be called with a freshly updated rq->fair_clock.
 */
static inline void
I
Ingo Molnar 已提交
489 490
__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se,
			unsigned long delta_fair)
491
{
492 493
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
494 495 496 497 498 499 500 501 502

	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta_fair = calc_weighted(delta_fair, se->load.weight,
							NICE_0_SHIFT);

	add_wait_runtime(cfs_rq, se, delta_fair);
}

static void
503
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
504 505 506
{
	unsigned long delta_fair;

507 508 509
	if (unlikely(!se->wait_start_fair))
		return;

510 511 512
	delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
			(u64)(cfs_rq->fair_clock - se->wait_start_fair));

I
Ingo Molnar 已提交
513
	__update_stats_wait_end(cfs_rq, se, delta_fair);
514 515

	se->wait_start_fair = 0;
I
Ingo Molnar 已提交
516
	schedstat_set(se->wait_start, 0);
517 518 519
}

static inline void
520
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
521
{
522
	update_curr(cfs_rq);
523 524 525 526 527
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
	if (se != cfs_rq_curr(cfs_rq))
528
		update_stats_wait_end(cfs_rq, se);
529 530 531 532 533 534
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
535
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
536 537 538 539
{
	/*
	 * We are starting a new run period:
	 */
540
	se->exec_start = rq_of(cfs_rq)->clock;
541 542 543 544 545 546
}

/*
 * We are descheduling a task - update its stats:
 */
static inline void
547
update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
548 549 550 551 552 553 554 555
{
	se->exec_start = 0;
}

/**************************************************
 * Scheduling class queueing methods:
 */

I
Ingo Molnar 已提交
556 557
static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se,
			      unsigned long delta_fair)
558
{
I
Ingo Molnar 已提交
559
	unsigned long load = cfs_rq->load.weight;
560 561
	long prev_runtime;

562 563 564 565 566 567 568
	/*
	 * Do not boost sleepers if there's too much bonus 'in flight'
	 * already:
	 */
	if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit))
		return;

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
	if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG)
		load = rq_of(cfs_rq)->cpu_load[2];

	/*
	 * Fix up delta_fair with the effect of us running
	 * during the whole sleep period:
	 */
	if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG)
		delta_fair = div64_likely32((u64)delta_fair * load,
						load + se->load.weight);

	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta_fair = calc_weighted(delta_fair, se->load.weight,
							NICE_0_SHIFT);

	prev_runtime = se->wait_runtime;
	__add_wait_runtime(cfs_rq, se, delta_fair);
	delta_fair = se->wait_runtime - prev_runtime;

	/*
	 * Track the amount of bonus we've given to sleepers:
	 */
	cfs_rq->sleeper_bonus += delta_fair;
}

594
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
595 596 597 598 599 600 601 602 603 604 605
{
	struct task_struct *tsk = task_of(se);
	unsigned long delta_fair;

	if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
			 !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS))
		return;

	delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
		(u64)(cfs_rq->fair_clock - se->sleep_start_fair));

I
Ingo Molnar 已提交
606
	__enqueue_sleeper(cfs_rq, se, delta_fair);
607 608 609 610 611

	se->sleep_start_fair = 0;

#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
612
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
613 614 615 616 617 618 619 620 621 622 623

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
	}
	if (se->block_start) {
624
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
625 626 627 628 629 630 631 632 633

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
634 635 636 637 638 639 640 641 642 643

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
644 645 646 647 648
	}
#endif
}

static void
649
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
650 651 652 653
{
	/*
	 * Update the fair clock.
	 */
654
	update_curr(cfs_rq);
655 656

	if (wakeup)
657
		enqueue_sleeper(cfs_rq, se);
658

659
	update_stats_enqueue(cfs_rq, se);
660 661 662 663
	__enqueue_entity(cfs_rq, se);
}

static void
664
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
665
{
666
	update_stats_dequeue(cfs_rq, se);
667 668 669 670 671 672 673
	if (sleep) {
		se->sleep_start_fair = cfs_rq->fair_clock;
#ifdef CONFIG_SCHEDSTATS
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
674
				se->sleep_start = rq_of(cfs_rq)->clock;
675
			if (tsk->state & TASK_UNINTERRUPTIBLE)
676
				se->block_start = rq_of(cfs_rq)->clock;
677 678 679 680 681 682 683 684 685
		}
#endif
	}
	__dequeue_entity(cfs_rq, se);
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
686
static void
687 688 689 690
__check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
			  struct sched_entity *curr, unsigned long granularity)
{
	s64 __delta = curr->fair_key - se->fair_key;
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
	unsigned long ideal_runtime, delta_exec;

	/*
	 * ideal_runtime is compared against sum_exec_runtime, which is
	 * walltime, hence do not scale.
	 */
	ideal_runtime = max(sysctl_sched_latency / cfs_rq->nr_running,
			(unsigned long)sysctl_sched_min_granularity);

	/*
	 * If we executed more than what the latency constraint suggests,
	 * reduce the rescheduling granularity. This way the total latency
	 * of how much a task is not scheduled converges to
	 * sysctl_sched_latency:
	 */
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	if (delta_exec > ideal_runtime)
		granularity = 0;
709 710 711 712 713

	/*
	 * Take scheduling granularity into account - do not
	 * preempt the current task unless the best task has
	 * a larger than sched_granularity fairness advantage:
714 715
	 *
	 * scale granularity as key space is in fair_clock.
716
	 */
717
	if (__delta > niced_granularity(curr, granularity))
718 719 720 721
		resched_task(rq_of(cfs_rq)->curr);
}

static inline void
722
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
723 724 725 726 727 728 729 730
{
	/*
	 * Any task has to be enqueued before it get to execute on
	 * a CPU. So account for the time it spent waiting on the
	 * runqueue. (note, here we rely on pick_next_task() having
	 * done a put_prev_task_fair() shortly before this, which
	 * updated rq->fair_clock - used by update_stats_wait_end())
	 */
731
	update_stats_wait_end(cfs_rq, se);
732
	update_stats_curr_start(cfs_rq, se);
733
	set_cfs_rq_curr(cfs_rq, se);
I
Ingo Molnar 已提交
734 735 736 737 738 739 740 741 742 743 744
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
	if (rq_of(cfs_rq)->ls.load.weight >= 2*se->load.weight) {
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
745
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
746 747
}

748
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
749 750 751
{
	struct sched_entity *se = __pick_next_entity(cfs_rq);

752
	set_next_entity(cfs_rq, se);
753 754 755 756

	return se;
}

757
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
758 759 760 761 762 763
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
764
		update_curr(cfs_rq);
765

766
	update_stats_curr_end(cfs_rq, prev);
767 768

	if (prev->on_rq)
769
		update_stats_wait_start(cfs_rq, prev);
770 771 772 773 774 775
	set_cfs_rq_curr(cfs_rq, NULL);
}

static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
	struct sched_entity *next;
I
Ingo Molnar 已提交
776

777 778 779 780
	/*
	 * Dequeue and enqueue the task to update its
	 * position within the tree:
	 */
781
	dequeue_entity(cfs_rq, curr, 0);
782
	enqueue_entity(cfs_rq, curr, 0);
783 784 785 786 787 788 789 790

	/*
	 * Reschedule if another task tops the current one.
	 */
	next = __pick_next_entity(cfs_rq);
	if (next == curr)
		return;

791 792
	__check_preempt_curr_fair(cfs_rq, next, curr,
			sched_granularity(cfs_rq));
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
}

/**************************************************
 * CFS operations on tasks:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	/* A later patch will take group into account */
	return &cpu_rq(this_cpu)->cfs;
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) tasks belong to the same group ? */
static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
{
	if (curr->se.cfs_rq == p->se.cfs_rq)
		return 1;

	return 0;
}

#else	/* CONFIG_FAIR_GROUP_SCHED */

#define for_each_sched_entity(se) \
		for (; se; se = NULL)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
{
	return 1;
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
888
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
889 890 891 892 893 894 895 896
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		if (se->on_rq)
			break;
		cfs_rq = cfs_rq_of(se);
897
		enqueue_entity(cfs_rq, se, wakeup);
898 899 900 901 902 903 904 905
	}
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
906
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
907 908 909 910 911 912
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
913
		dequeue_entity(cfs_rq, se, sleep);
914 915 916 917 918 919 920
		/* Don't dequeue parent if it has other entities besides us */
		if (cfs_rq->load.weight)
			break;
	}
}

/*
921 922 923
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
924 925 926 927
 */
static void yield_task_fair(struct rq *rq, struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
928 929 930
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct sched_entity *rightmost, *se = &p->se;
	struct rb_node *parent;
931 932

	/*
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

	if (likely(!sysctl_sched_compat_yield)) {
		__update_rq_clock(rq);
		/*
		 * Dequeue and enqueue the task to update its
		 * position within the tree:
		 */
		dequeue_entity(cfs_rq, &p->se, 0);
		enqueue_entity(cfs_rq, &p->se, 0);

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
951
	 */
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
	do {
		parent = *link;
		link = &parent->rb_right;
	} while (*link);

	rightmost = rb_entry(parent, struct sched_entity, run_node);
	/*
	 * Already in the rightmost position?
	 */
	if (unlikely(rightmost == se))
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
	 */
	se->fair_key = rightmost->fair_key + 1;

	if (cfs_rq->rb_leftmost == &se->run_node)
		cfs_rq->rb_leftmost = rb_next(&se->run_node);
	/*
	 * Relink the task to the rightmost position:
	 */
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
977 978 979 980 981 982 983 984 985 986 987 988
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	unsigned long gran;

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
989
		update_rq_clock(rq);
990
		update_curr(cfs_rq);
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
		resched_task(curr);
		return;
	}

	gran = sysctl_sched_wakeup_granularity;
	/*
	 * Batch tasks prefer throughput over latency:
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		gran = sysctl_sched_batch_wakeup_granularity;

	if (is_same_group(curr, p))
		__check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
}

1006
static struct task_struct *pick_next_task_fair(struct rq *rq)
1007 1008 1009 1010 1011 1012 1013 1014
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1015
		se = pick_next_entity(cfs_rq);
1016 1017 1018 1019 1020 1021 1022 1023 1024
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	return task_of(se);
}

/*
 * Account for a descheduled task:
 */
1025
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1026 1027 1028 1029 1030 1031
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1032
		put_prev_entity(cfs_rq, se);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	}
}

/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
static inline struct task_struct *
__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
{
	struct task_struct *p;

	if (!curr)
		return NULL;

	p = rb_entry(curr, struct task_struct, se.run_node);
	cfs_rq->rb_load_balance_curr = rb_next(curr);

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
}

1075
#ifdef CONFIG_FAIR_GROUP_SCHED
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
{
	struct sched_entity *curr;
	struct task_struct *p;

	if (!cfs_rq->nr_running)
		return MAX_PRIO;

	curr = __pick_next_entity(cfs_rq);
	p = task_of(curr);

	return p->prio;
}
1089
#endif
1090

P
Peter Williams 已提交
1091
static unsigned long
1092
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1093 1094 1095
		  unsigned long max_nr_move, unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
{
	struct cfs_rq *busy_cfs_rq;
	unsigned long load_moved, total_nr_moved = 0, nr_moved;
	long rem_load_move = max_load_move;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1106
#ifdef CONFIG_FAIR_GROUP_SCHED
1107
		struct cfs_rq *this_cfs_rq;
1108
		long imbalance;
1109 1110 1111 1112
		unsigned long maxload;

		this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);

1113
		imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1114 1115 1116 1117 1118 1119 1120 1121
		/* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
		if (imbalance <= 0)
			continue;

		/* Don't pull more than imbalance/2 */
		imbalance /= 2;
		maxload = min(rem_load_move, imbalance);

1122 1123
		*this_best_prio = cfs_rq_best_prio(this_cfs_rq);
#else
1124
# define maxload rem_load_move
1125
#endif
1126 1127 1128 1129 1130 1131
		/* pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		nr_moved = balance_tasks(this_rq, this_cpu, busiest,
				max_nr_move, maxload, sd, idle, all_pinned,
1132
				&load_moved, this_best_prio, &cfs_rq_iterator);
1133 1134 1135 1136 1137 1138 1139 1140 1141

		total_nr_moved += nr_moved;
		max_nr_move -= nr_moved;
		rem_load_move -= load_moved;

		if (max_nr_move <= 0 || rem_load_move <= 0)
			break;
	}

P
Peter Williams 已提交
1142
	return max_load_move - rem_load_move;
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
}

/*
 * scheduler tick hitting a task of our scheduling class:
 */
static void task_tick_fair(struct rq *rq, struct task_struct *curr)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		entity_tick(cfs_rq, se);
	}
}

/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1166
static void task_new_fair(struct rq *rq, struct task_struct *p)
1167 1168
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1169
	struct sched_entity *se = &p->se, *curr = cfs_rq_curr(cfs_rq);
1170 1171 1172

	sched_info_queued(p);

1173
	update_curr(cfs_rq);
1174
	update_stats_enqueue(cfs_rq, se);
1175 1176 1177 1178 1179
	/*
	 * Child runs first: we let it run before the parent
	 * until it reschedules once. We set up the key so that
	 * it will preempt the parent:
	 */
I
Ingo Molnar 已提交
1180
	se->fair_key = curr->fair_key -
1181
		niced_granularity(curr, sched_granularity(cfs_rq)) - 1;
1182 1183 1184 1185 1186
	/*
	 * The first wait is dominated by the child-runs-first logic,
	 * so do not credit it with that waiting time yet:
	 */
	if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL)
I
Ingo Molnar 已提交
1187
		se->wait_start_fair = 0;
1188 1189 1190 1191 1192

	/*
	 * The statistical average of wait_runtime is about
	 * -granularity/2, so initialize the task with that:
	 */
1193
	if (sysctl_sched_features & SCHED_FEAT_START_DEBIT)
I
Ingo Molnar 已提交
1194
		se->wait_runtime = -(sched_granularity(cfs_rq) / 2);
1195 1196

	__enqueue_entity(cfs_rq, se);
1197
	resched_task(rq->curr);
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
}

#ifdef CONFIG_FAIR_GROUP_SCHED
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
1208
	struct sched_entity *se = &rq->curr->se;
I
Ingo Molnar 已提交
1209

1210 1211
	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
}
#else
static void set_curr_task_fair(struct rq *rq)
{
}
#endif

/*
 * All the scheduling class methods:
 */
struct sched_class fair_sched_class __read_mostly = {
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

	.check_preempt_curr	= check_preempt_curr_fair,

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

	.load_balance		= load_balance_fair,

	.set_curr_task          = set_curr_task_fair,
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
};

#ifdef CONFIG_SCHED_DEBUG
1240
static void print_cfs_stats(struct seq_file *m, int cpu)
1241 1242 1243
{
	struct cfs_rq *cfs_rq;

1244
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1245
		print_cfs_rq(m, cpu, cfs_rq);
1246 1247
}
#endif