sched_fair.c 29.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22 23
 */

/*
24 25
 * Targeted preemption latency for CPU-bound tasks:
 * (default: 20ms, units: nanoseconds)
26
 *
27 28 29 30
 * NOTE: this latency value is not the same as the concept of
 * 'timeslice length' - timeslices in CFS are of variable length.
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches field)
31 32 33 34
 *
 * On SMP systems the value of this is multiplied by the log2 of the
 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35
 * Targeted preemption latency for CPU-bound tasks:
36
 */
37 38 39 40 41 42 43
const_debug unsigned int sysctl_sched_latency = 20000000ULL;

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
const_debug unsigned int sysctl_sched_child_runs_first = 1;
44 45 46 47 48

/*
 * Minimal preemption granularity for CPU-bound tasks:
 * (default: 2 msec, units: nanoseconds)
 */
49
unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
50

51 52 53 54 55 56 57 58
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

59 60
/*
 * SCHED_BATCH wake-up granularity.
61
 * (default: 25 msec, units: nanoseconds)
62 63 64 65 66
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
67
const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
68 69 70 71 72 73 74 75 76

/*
 * SCHED_OTHER wake-up granularity.
 * (default: 1 msec, units: nanoseconds)
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
77
const_debug unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
78 79 80 81 82 83 84 85 86

unsigned int sysctl_sched_runtime_limit __read_mostly;

extern struct sched_class fair_sched_class;

/**************************************************************
 * CFS operations on generic schedulable entities:
 */

87
#ifdef CONFIG_FAIR_GROUP_SCHED
88

89
/* cpu runqueue to which this cfs_rq is attached */
90 91
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
92
	return cfs_rq->rq;
93 94
}

95 96
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
97

98
#else	/* CONFIG_FAIR_GROUP_SCHED */
99

100 101 102
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
}

#define entity_is_task(se)	1

#endif	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}


/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

I
Ingo Molnar 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131
static inline void
set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
{
	struct sched_entity *se;

	cfs_rq->rb_leftmost = leftmost;
	if (leftmost) {
		se = rb_entry(leftmost, struct sched_entity, run_node);
		cfs_rq->min_vruntime = max(se->vruntime,
						cfs_rq->min_vruntime);
	}
}

132 133 134
/*
 * Enqueue an entity into the rb-tree:
 */
135
static void
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	s64 key = se->fair_key;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
		if (key - entry->fair_key < 0) {
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
	if (leftmost)
I
Ingo Molnar 已提交
167
		set_leftmost(cfs_rq, &se->run_node);
168 169 170 171 172 173

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
174 175

	schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
176 177
}

178
static void
179 180 181
__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (cfs_rq->rb_leftmost == &se->run_node)
I
Ingo Molnar 已提交
182 183
		set_leftmost(cfs_rq, rb_next(&se->run_node));

184 185 186 187
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
188 189

	schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

/**************************************************************
 * Scheduling class statistics methods:
 */

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
/*
 * Calculate the preemption granularity needed to schedule every
 * runnable task once per sysctl_sched_latency amount of time.
 * (down to a sensible low limit on granularity)
 *
 * For example, if there are 2 tasks running and latency is 10 msecs,
 * we switch tasks every 5 msecs. If we have 3 tasks running, we have
 * to switch tasks every 3.33 msecs to get a 10 msecs observed latency
 * for each task. We do finer and finer scheduling up to until we
 * reach the minimum granularity value.
 *
 * To achieve this we use the following dynamic-granularity rule:
 *
 *    gran = lat/nr - lat/nr/nr
 *
 * This comes out of the following equations:
 *
 *    kA1 + gran = kB1
 *    kB2 + gran = kA2
 *    kA2 = kA1
 *    kB2 = kB1 - d + d/nr
 *    lat = d * nr
 *
 * Where 'k' is key, 'A' is task A (waiting), 'B' is task B (running),
 * '1' is start of time, '2' is end of time, 'd' is delay between
 * 1 and 2 (during which task B was running), 'nr' is number of tasks
 * running, 'lat' is the the period of each task. ('lat' is the
 * sched_latency that we aim for.)
 */
static long
sched_granularity(struct cfs_rq *cfs_rq)
{
	unsigned int gran = sysctl_sched_latency;
	unsigned int nr = cfs_rq->nr_running;

	if (nr > 1) {
		gran = gran/nr - gran/nr/nr;
243
		gran = max(gran, sysctl_sched_min_granularity);
244 245 246 247 248
	}

	return gran;
}

249 250 251 252 253 254 255 256 257
/*
 * We rescale the rescheduling granularity of tasks according to their
 * nice level, but only linearly, not exponentially:
 */
static long
niced_granularity(struct sched_entity *curr, unsigned long granularity)
{
	u64 tmp;

258 259
	if (likely(curr->load.weight == NICE_0_LOAD))
		return granularity;
260
	/*
261
	 * Positive nice levels get the same granularity as nice-0:
262
	 */
263 264 265 266
	if (likely(curr->load.weight < NICE_0_LOAD)) {
		tmp = curr->load.weight * (u64)granularity;
		return (long) (tmp >> NICE_0_SHIFT);
	}
267
	/*
268
	 * Negative nice level tasks get linearly finer
269 270
	 * granularity:
	 */
271
	tmp = curr->load.inv_weight * (u64)granularity;
272 273 274 275

	/*
	 * It will always fit into 'long':
	 */
276
	return (long) (tmp >> (WMULT_SHIFT-NICE_0_SHIFT));
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
}

static inline void
limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	long limit = sysctl_sched_runtime_limit;

	/*
	 * Niced tasks have the same history dynamic range as
	 * non-niced tasks:
	 */
	if (unlikely(se->wait_runtime > limit)) {
		se->wait_runtime = limit;
		schedstat_inc(se, wait_runtime_overruns);
		schedstat_inc(cfs_rq, wait_runtime_overruns);
	}
	if (unlikely(se->wait_runtime < -limit)) {
		se->wait_runtime = -limit;
		schedstat_inc(se, wait_runtime_underruns);
		schedstat_inc(cfs_rq, wait_runtime_underruns);
	}
}

static inline void
__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
{
	se->wait_runtime += delta;
	schedstat_add(se, sum_wait_runtime, delta);
	limit_wait_runtime(cfs_rq, se);
}

static void
add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
{
	schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
	__add_wait_runtime(cfs_rq, se, delta);
	schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
}

/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
321 322
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
323
{
I
Ingo Molnar 已提交
324
	unsigned long delta, delta_fair, delta_mine, delta_exec_weighted;
325 326 327
	struct load_weight *lw = &cfs_rq->load;
	unsigned long load = lw->weight;

328
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
329 330 331

	curr->sum_exec_runtime += delta_exec;
	cfs_rq->exec_clock += delta_exec;
I
Ingo Molnar 已提交
332 333 334 335 336 337
	delta_exec_weighted = delta_exec;
	if (unlikely(curr->load.weight != NICE_0_LOAD)) {
		delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
							&curr->load);
	}
	curr->vruntime += delta_exec_weighted;
338

339 340 341
	if (!sched_feat(FAIR_SLEEPERS))
		return;

I
Ingo Molnar 已提交
342 343 344
	if (unlikely(!load))
		return;

345 346 347
	delta_fair = calc_delta_fair(delta_exec, lw);
	delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);

M
Mike Galbraith 已提交
348
	if (cfs_rq->sleeper_bonus > sysctl_sched_min_granularity) {
349
		delta = min((u64)delta_mine, cfs_rq->sleeper_bonus);
350 351
		delta = min(delta, (unsigned long)(
			(long)sysctl_sched_runtime_limit - curr->wait_runtime));
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
		cfs_rq->sleeper_bonus -= delta;
		delta_mine -= delta;
	}

	cfs_rq->fair_clock += delta_fair;
	/*
	 * We executed delta_exec amount of time on the CPU,
	 * but we were only entitled to delta_mine amount of
	 * time during that period (if nr_running == 1 then
	 * the two values are equal)
	 * [Note: delta_mine - delta_exec is negative]:
	 */
	add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
}

367
static void update_curr(struct cfs_rq *cfs_rq)
368
{
369
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
370
	u64 now = rq_of(cfs_rq)->clock;
371 372 373 374 375 376 377 378 379 380
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
381
	delta_exec = (unsigned long)(now - curr->exec_start);
382

I
Ingo Molnar 已提交
383 384
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
385 386 387
}

static inline void
388
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
389 390
{
	se->wait_start_fair = cfs_rq->fair_clock;
391
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
392 393 394
}

static inline unsigned long
I
Ingo Molnar 已提交
395
calc_weighted(unsigned long delta, struct sched_entity *se)
396
{
I
Ingo Molnar 已提交
397
	unsigned long weight = se->load.weight;
398

I
Ingo Molnar 已提交
399 400 401 402
	if (unlikely(weight != NICE_0_LOAD))
		return (u64)delta * se->load.weight >> NICE_0_SHIFT;
	else
		return delta;
403 404 405 406 407
}

/*
 * Task is being enqueued - update stats:
 */
408
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
409 410 411 412 413
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
414
	if (se != cfs_rq->curr)
415
		update_stats_wait_start(cfs_rq, se);
416 417 418
	/*
	 * Update the key:
	 */
I
Ingo Molnar 已提交
419
	se->fair_key = se->vruntime;
420 421 422 423 424 425
}

/*
 * Note: must be called with a freshly updated rq->fair_clock.
 */
static inline void
I
Ingo Molnar 已提交
426 427
__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se,
			unsigned long delta_fair)
428
{
429 430
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
431

I
Ingo Molnar 已提交
432
	delta_fair = calc_weighted(delta_fair, se);
433 434 435 436 437

	add_wait_runtime(cfs_rq, se, delta_fair);
}

static void
438
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
439 440 441
{
	unsigned long delta_fair;

442 443 444
	if (unlikely(!se->wait_start_fair))
		return;

445 446 447
	delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
			(u64)(cfs_rq->fair_clock - se->wait_start_fair));

I
Ingo Molnar 已提交
448
	__update_stats_wait_end(cfs_rq, se, delta_fair);
449 450

	se->wait_start_fair = 0;
I
Ingo Molnar 已提交
451
	schedstat_set(se->wait_start, 0);
452 453 454
}

static inline void
455
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
456
{
457
	update_curr(cfs_rq);
458 459 460 461
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
462
	if (se != cfs_rq->curr)
463
		update_stats_wait_end(cfs_rq, se);
464 465 466 467 468 469
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
470
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
471 472 473 474
{
	/*
	 * We are starting a new run period:
	 */
475
	se->exec_start = rq_of(cfs_rq)->clock;
476 477 478 479 480 481
}

/*
 * We are descheduling a task - update its stats:
 */
static inline void
482
update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
483 484 485 486 487 488 489 490
{
	se->exec_start = 0;
}

/**************************************************
 * Scheduling class queueing methods:
 */

I
Ingo Molnar 已提交
491 492
static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se,
			      unsigned long delta_fair)
493
{
I
Ingo Molnar 已提交
494
	unsigned long load = cfs_rq->load.weight;
495 496
	long prev_runtime;

497 498 499 500 501 502 503
	/*
	 * Do not boost sleepers if there's too much bonus 'in flight'
	 * already:
	 */
	if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit))
		return;

P
Peter Zijlstra 已提交
504
	if (sched_feat(SLEEPER_LOAD_AVG))
505 506 507 508 509 510
		load = rq_of(cfs_rq)->cpu_load[2];

	/*
	 * Fix up delta_fair with the effect of us running
	 * during the whole sleep period:
	 */
P
Peter Zijlstra 已提交
511
	if (sched_feat(SLEEPER_AVG))
512 513 514
		delta_fair = div64_likely32((u64)delta_fair * load,
						load + se->load.weight);

I
Ingo Molnar 已提交
515
	delta_fair = calc_weighted(delta_fair, se);
516 517 518 519 520 521 522 523 524 525 526

	prev_runtime = se->wait_runtime;
	__add_wait_runtime(cfs_rq, se, delta_fair);
	delta_fair = se->wait_runtime - prev_runtime;

	/*
	 * Track the amount of bonus we've given to sleepers:
	 */
	cfs_rq->sleeper_bonus += delta_fair;
}

527
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
528 529 530 531 532
{
	struct task_struct *tsk = task_of(se);
	unsigned long delta_fair;

	if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
P
Peter Zijlstra 已提交
533
			 !sched_feat(FAIR_SLEEPERS))
534 535 536 537 538
		return;

	delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
		(u64)(cfs_rq->fair_clock - se->sleep_start_fair));

I
Ingo Molnar 已提交
539
	__enqueue_sleeper(cfs_rq, se, delta_fair);
540 541 542 543 544

	se->sleep_start_fair = 0;

#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
545
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
546 547 548 549 550 551 552 553 554 555 556

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
	}
	if (se->block_start) {
557
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
558 559 560 561 562 563 564 565 566

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
567 568 569 570 571 572 573 574 575 576

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
577 578 579 580 581
	}
#endif
}

static void
582
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
583 584 585 586
{
	/*
	 * Update the fair clock.
	 */
587
	update_curr(cfs_rq);
588

I
Ingo Molnar 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602
	if (wakeup) {
		u64 min_runtime, latency;

		min_runtime = cfs_rq->min_vruntime;
		min_runtime += sysctl_sched_latency/2;

		if (sched_feat(NEW_FAIR_SLEEPERS)) {
			latency = calc_weighted(sysctl_sched_latency, se);
			if (min_runtime > latency)
				min_runtime -= latency;
		}

		se->vruntime = max(se->vruntime, min_runtime);

603
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
604
	}
605

606
	update_stats_enqueue(cfs_rq, se);
607 608 609 610
	__enqueue_entity(cfs_rq, se);
}

static void
611
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
612
{
613
	update_stats_dequeue(cfs_rq, se);
614 615 616 617 618 619 620
	if (sleep) {
		se->sleep_start_fair = cfs_rq->fair_clock;
#ifdef CONFIG_SCHEDSTATS
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
621
				se->sleep_start = rq_of(cfs_rq)->clock;
622
			if (tsk->state & TASK_UNINTERRUPTIBLE)
623
				se->block_start = rq_of(cfs_rq)->clock;
624 625 626 627 628 629 630 631 632
		}
#endif
	}
	__dequeue_entity(cfs_rq, se);
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
633
static void
634 635 636 637
__check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
			  struct sched_entity *curr, unsigned long granularity)
{
	s64 __delta = curr->fair_key - se->fair_key;
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
	unsigned long ideal_runtime, delta_exec;

	/*
	 * ideal_runtime is compared against sum_exec_runtime, which is
	 * walltime, hence do not scale.
	 */
	ideal_runtime = max(sysctl_sched_latency / cfs_rq->nr_running,
			(unsigned long)sysctl_sched_min_granularity);

	/*
	 * If we executed more than what the latency constraint suggests,
	 * reduce the rescheduling granularity. This way the total latency
	 * of how much a task is not scheduled converges to
	 * sysctl_sched_latency:
	 */
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	if (delta_exec > ideal_runtime)
		granularity = 0;
656 657 658 659 660

	/*
	 * Take scheduling granularity into account - do not
	 * preempt the current task unless the best task has
	 * a larger than sched_granularity fairness advantage:
661 662
	 *
	 * scale granularity as key space is in fair_clock.
663
	 */
664
	if (__delta > niced_granularity(curr, granularity))
665 666 667 668
		resched_task(rq_of(cfs_rq)->curr);
}

static inline void
669
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
670 671 672 673 674 675 676 677
{
	/*
	 * Any task has to be enqueued before it get to execute on
	 * a CPU. So account for the time it spent waiting on the
	 * runqueue. (note, here we rely on pick_next_task() having
	 * done a put_prev_task_fair() shortly before this, which
	 * updated rq->fair_clock - used by update_stats_wait_end())
	 */
678
	update_stats_wait_end(cfs_rq, se);
679
	update_stats_curr_start(cfs_rq, se);
680
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
681 682 683 684 685 686 687 688 689 690 691
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
	if (rq_of(cfs_rq)->ls.load.weight >= 2*se->load.weight) {
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
692
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
693 694
}

695
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
696 697 698
{
	struct sched_entity *se = __pick_next_entity(cfs_rq);

699
	set_next_entity(cfs_rq, se);
700 701 702 703

	return se;
}

704
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
705 706 707 708 709 710
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
711
		update_curr(cfs_rq);
712

713
	update_stats_curr_end(cfs_rq, prev);
714 715

	if (prev->on_rq)
716
		update_stats_wait_start(cfs_rq, prev);
717
	cfs_rq->curr = NULL;
718 719 720 721 722
}

static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
	struct sched_entity *next;
I
Ingo Molnar 已提交
723

724 725 726 727
	/*
	 * Dequeue and enqueue the task to update its
	 * position within the tree:
	 */
728
	dequeue_entity(cfs_rq, curr, 0);
729
	enqueue_entity(cfs_rq, curr, 0);
730 731 732 733 734 735 736 737

	/*
	 * Reschedule if another task tops the current one.
	 */
	next = __pick_next_entity(cfs_rq);
	if (next == curr)
		return;

738 739
	__check_preempt_curr_fair(cfs_rq, next, curr,
			sched_granularity(cfs_rq));
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
}

/**************************************************
 * CFS operations on tasks:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	/* A later patch will take group into account */
	return &cpu_rq(this_cpu)->cfs;
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) tasks belong to the same group ? */
static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
{
	if (curr->se.cfs_rq == p->se.cfs_rq)
		return 1;

	return 0;
}

#else	/* CONFIG_FAIR_GROUP_SCHED */

#define for_each_sched_entity(se) \
		for (; se; se = NULL)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
{
	return 1;
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
835
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
836 837 838 839 840 841 842 843
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		if (se->on_rq)
			break;
		cfs_rq = cfs_rq_of(se);
844
		enqueue_entity(cfs_rq, se, wakeup);
845 846 847 848 849 850 851 852
	}
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
853
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
854 855 856 857 858 859
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
860
		dequeue_entity(cfs_rq, se, sleep);
861 862 863 864 865 866 867
		/* Don't dequeue parent if it has other entities besides us */
		if (cfs_rq->load.weight)
			break;
	}
}

/*
868 869 870
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
871 872 873 874
 */
static void yield_task_fair(struct rq *rq, struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
875 876 877
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct sched_entity *rightmost, *se = &p->se;
	struct rb_node *parent;
878 879

	/*
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

	if (likely(!sysctl_sched_compat_yield)) {
		__update_rq_clock(rq);
		/*
		 * Dequeue and enqueue the task to update its
		 * position within the tree:
		 */
		dequeue_entity(cfs_rq, &p->se, 0);
		enqueue_entity(cfs_rq, &p->se, 0);

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
898
	 */
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
	do {
		parent = *link;
		link = &parent->rb_right;
	} while (*link);

	rightmost = rb_entry(parent, struct sched_entity, run_node);
	/*
	 * Already in the rightmost position?
	 */
	if (unlikely(rightmost == se))
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
	 */
	se->fair_key = rightmost->fair_key + 1;

	if (cfs_rq->rb_leftmost == &se->run_node)
		cfs_rq->rb_leftmost = rb_next(&se->run_node);
	/*
	 * Relink the task to the rightmost position:
	 */
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
924 925 926 927 928 929 930 931 932 933 934 935
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	unsigned long gran;

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
936
		update_rq_clock(rq);
937
		update_curr(cfs_rq);
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
		resched_task(curr);
		return;
	}

	gran = sysctl_sched_wakeup_granularity;
	/*
	 * Batch tasks prefer throughput over latency:
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		gran = sysctl_sched_batch_wakeup_granularity;

	if (is_same_group(curr, p))
		__check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
}

953
static struct task_struct *pick_next_task_fair(struct rq *rq)
954 955 956 957 958 959 960 961
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
962
		se = pick_next_entity(cfs_rq);
963 964 965 966 967 968 969 970 971
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	return task_of(se);
}

/*
 * Account for a descheduled task:
 */
972
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
973 974 975 976 977 978
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
979
		put_prev_entity(cfs_rq, se);
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	}
}

/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
static inline struct task_struct *
__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
{
	struct task_struct *p;

	if (!curr)
		return NULL;

	p = rb_entry(curr, struct task_struct, se.run_node);
	cfs_rq->rb_load_balance_curr = rb_next(curr);

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
}

1022
#ifdef CONFIG_FAIR_GROUP_SCHED
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
{
	struct sched_entity *curr;
	struct task_struct *p;

	if (!cfs_rq->nr_running)
		return MAX_PRIO;

	curr = __pick_next_entity(cfs_rq);
	p = task_of(curr);

	return p->prio;
}
1036
#endif
1037

P
Peter Williams 已提交
1038
static unsigned long
1039
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1040 1041 1042
		  unsigned long max_nr_move, unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
{
	struct cfs_rq *busy_cfs_rq;
	unsigned long load_moved, total_nr_moved = 0, nr_moved;
	long rem_load_move = max_load_move;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1053
#ifdef CONFIG_FAIR_GROUP_SCHED
1054
		struct cfs_rq *this_cfs_rq;
1055
		long imbalance;
1056 1057 1058 1059
		unsigned long maxload;

		this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);

1060
		imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1061 1062 1063 1064 1065 1066 1067 1068
		/* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
		if (imbalance <= 0)
			continue;

		/* Don't pull more than imbalance/2 */
		imbalance /= 2;
		maxload = min(rem_load_move, imbalance);

1069 1070
		*this_best_prio = cfs_rq_best_prio(this_cfs_rq);
#else
1071
# define maxload rem_load_move
1072
#endif
1073 1074 1075 1076 1077 1078
		/* pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		nr_moved = balance_tasks(this_rq, this_cpu, busiest,
				max_nr_move, maxload, sd, idle, all_pinned,
1079
				&load_moved, this_best_prio, &cfs_rq_iterator);
1080 1081 1082 1083 1084 1085 1086 1087 1088

		total_nr_moved += nr_moved;
		max_nr_move -= nr_moved;
		rem_load_move -= load_moved;

		if (max_nr_move <= 0 || rem_load_move <= 0)
			break;
	}

P
Peter Williams 已提交
1089
	return max_load_move - rem_load_move;
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
}

/*
 * scheduler tick hitting a task of our scheduling class:
 */
static void task_tick_fair(struct rq *rq, struct task_struct *curr)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		entity_tick(cfs_rq, se);
	}
}

/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1113
static void task_new_fair(struct rq *rq, struct task_struct *p)
1114 1115
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1116
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1117 1118 1119

	sched_info_queued(p);

1120
	update_curr(cfs_rq);
1121
	update_stats_enqueue(cfs_rq, se);
1122 1123 1124 1125 1126
	/*
	 * Child runs first: we let it run before the parent
	 * until it reschedules once. We set up the key so that
	 * it will preempt the parent:
	 */
I
Ingo Molnar 已提交
1127
	se->fair_key = curr->fair_key -
1128
		niced_granularity(curr, sched_granularity(cfs_rq)) - 1;
1129 1130 1131 1132
	/*
	 * The first wait is dominated by the child-runs-first logic,
	 * so do not credit it with that waiting time yet:
	 */
P
Peter Zijlstra 已提交
1133
	if (sched_feat(SKIP_INITIAL))
I
Ingo Molnar 已提交
1134
		se->wait_start_fair = 0;
1135 1136 1137 1138 1139

	/*
	 * The statistical average of wait_runtime is about
	 * -granularity/2, so initialize the task with that:
	 */
P
Peter Zijlstra 已提交
1140
	if (sched_feat(START_DEBIT))
I
Ingo Molnar 已提交
1141
		se->wait_runtime = -(sched_granularity(cfs_rq) / 2);
1142

I
Ingo Molnar 已提交
1143 1144
	se->vruntime = cfs_rq->min_vruntime;
	update_stats_enqueue(cfs_rq, se);
1145
	__enqueue_entity(cfs_rq, se);
1146
	resched_task(rq->curr);
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
}

#ifdef CONFIG_FAIR_GROUP_SCHED
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
1157
	struct sched_entity *se = &rq->curr->se;
I
Ingo Molnar 已提交
1158

1159 1160
	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
}
#else
static void set_curr_task_fair(struct rq *rq)
{
}
#endif

/*
 * All the scheduling class methods:
 */
struct sched_class fair_sched_class __read_mostly = {
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

	.check_preempt_curr	= check_preempt_curr_fair,

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

	.load_balance		= load_balance_fair,

	.set_curr_task          = set_curr_task_fair,
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
};

#ifdef CONFIG_SCHED_DEBUG
1189
static void print_cfs_stats(struct seq_file *m, int cpu)
1190 1191 1192
{
	struct cfs_rq *cfs_rq;

1193
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1194
		print_cfs_rq(m, cpu, cfs_rq);
1195 1196
}
#endif