sched_fair.c 40.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77
static const struct sched_class fair_sched_class;

78 79 80 81
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

P
Peter Zijlstra 已提交
82 83 84 85 86
static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}

87
#ifdef CONFIG_FAIR_GROUP_SCHED
88

89
/* cpu runqueue to which this cfs_rq is attached */
90 91
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
92
	return cfs_rq->rq;
93 94
}

95 96
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
97

P
Peter Zijlstra 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

189
#else	/* CONFIG_FAIR_GROUP_SCHED */
190

191 192 193
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
194 195 196 197
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
198 199
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
200

P
Peter Zijlstra 已提交
201
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
202
{
P
Peter Zijlstra 已提交
203
	return &task_rq(p)->cfs;
204 205
}

P
Peter Zijlstra 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

239 240 241 242 243
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
244 245
#endif	/* CONFIG_FAIR_GROUP_SCHED */

246 247 248 249 250

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

251
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
252
{
253 254
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
255 256 257 258 259
		min_vruntime = vruntime;

	return min_vruntime;
}

260
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
261 262 263 264 265 266 267 268
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

269
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
270
{
271
	return se->vruntime - cfs_rq->min_vruntime;
272 273
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

		if (vruntime == cfs_rq->min_vruntime)
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
}

295 296 297
/*
 * Enqueue an entity into the rb-tree:
 */
298
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
299 300 301 302
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
303
	s64 key = entity_key(cfs_rq, se);
304 305 306 307 308 309 310 311 312 313 314 315
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
316
		if (key < entity_key(cfs_rq, entry)) {
317 318 319 320 321 322 323 324 325 326 327
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
328
	if (leftmost)
I
Ingo Molnar 已提交
329
		cfs_rq->rb_leftmost = &se->run_node;
330 331 332 333 334

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

335
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
336
{
P
Peter Zijlstra 已提交
337 338 339 340 341 342
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
343

344 345 346
	if (cfs_rq->next == se)
		cfs_rq->next = NULL;

347 348 349 350 351
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
352 353 354 355 356 357
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
358 359
}

360
static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
361
{
362
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
363

364 365
	if (!last)
		return NULL;
366 367

	return rb_entry(last, struct sched_entity, run_node);
368 369
}

370 371 372 373
/**************************************************************
 * Scheduling class statistics methods:
 */

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
390

391
/*
392
 * delta *= P[w / rw]
393 394 395 396 397 398 399 400 401 402 403 404 405
 */
static inline unsigned long
calc_delta_weight(unsigned long delta, struct sched_entity *se)
{
	for_each_sched_entity(se) {
		delta = calc_delta_mine(delta,
				se->load.weight, &cfs_rq_of(se)->load);
	}

	return delta;
}

/*
406
 * delta /= w
407 408 409 410
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
411 412
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
413 414 415 416

	return delta;
}

417 418 419 420 421 422 423 424
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
425 426 427
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
428
	unsigned long nr_latency = sched_nr_latency;
429 430

	if (unlikely(nr_running > nr_latency)) {
431
		period = sysctl_sched_min_granularity;
432 433 434 435 436 437
		period *= nr_running;
	}

	return period;
}

438 439 440 441
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
442
 * s = p*P[w/rw]
443
 */
P
Peter Zijlstra 已提交
444
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
445
{
446 447 448 449 450 451
	unsigned long nr_running = cfs_rq->nr_running;

	if (unlikely(!se->on_rq))
		nr_running++;

	return calc_delta_weight(__sched_period(nr_running), se);
452 453
}

454
/*
455
 * We calculate the vruntime slice of a to be inserted task
456
 *
457
 * vs = s/w
458
 */
459
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
460
{
461
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
462 463
}

464 465 466 467 468
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
469 470
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
471
{
472
	unsigned long delta_exec_weighted;
473

474
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
475 476

	curr->sum_exec_runtime += delta_exec;
477
	schedstat_add(cfs_rq, exec_clock, delta_exec);
478
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
479
	curr->vruntime += delta_exec_weighted;
480
	update_min_vruntime(cfs_rq);
481 482
}

483
static void update_curr(struct cfs_rq *cfs_rq)
484
{
485
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
486
	u64 now = rq_of(cfs_rq)->clock;
487 488 489 490 491 492 493 494 495 496
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
497
	delta_exec = (unsigned long)(now - curr->exec_start);
498

I
Ingo Molnar 已提交
499 500
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
501 502 503 504 505

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
506
		account_group_exec_runtime(curtask, delta_exec);
507
	}
508 509 510
}

static inline void
511
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
512
{
513
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
514 515 516 517 518
}

/*
 * Task is being enqueued - update stats:
 */
519
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
520 521 522 523 524
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
525
	if (se != cfs_rq->curr)
526
		update_stats_wait_start(cfs_rq, se);
527 528 529
}

static void
530
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
531
{
532 533
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
534 535 536
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
537
	schedstat_set(se->wait_start, 0);
538 539 540
}

static inline void
541
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
542 543 544 545 546
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
547
	if (se != cfs_rq->curr)
548
		update_stats_wait_end(cfs_rq, se);
549 550 551 552 553 554
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
555
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
556 557 558 559
{
	/*
	 * We are starting a new run period:
	 */
560
	se->exec_start = rq_of(cfs_rq)->clock;
561 562 563 564 565 566
}

/**************************************************
 * Scheduling class queueing methods:
 */

567 568 569 570 571 572 573 574 575 576 577 578 579
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

580 581 582 583
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
584 585
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
586
	if (entity_is_task(se)) {
587
		add_cfs_task_weight(cfs_rq, se->load.weight);
588 589
		list_add(&se->group_node, &cfs_rq->tasks);
	}
590 591 592 593 594 595 596 597
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
598 599
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
600
	if (entity_is_task(se)) {
601
		add_cfs_task_weight(cfs_rq, -se->load.weight);
602 603
		list_del_init(&se->group_node);
	}
604 605 606 607
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

608
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
609 610 611
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
612
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
A
Arjan van de Ven 已提交
613
		struct task_struct *tsk = task_of(se);
614 615 616 617 618 619 620 621 622

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
623 624

		account_scheduler_latency(tsk, delta >> 10, 1);
625 626
	}
	if (se->block_start) {
627
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
A
Arjan van de Ven 已提交
628
		struct task_struct *tsk = task_of(se);
629 630 631 632 633 634 635 636 637

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
638 639 640 641 642 643 644

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
645

I
Ingo Molnar 已提交
646 647 648
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
A
Arjan van de Ven 已提交
649
		account_scheduler_latency(tsk, delta >> 10, 0);
650 651 652 653
	}
#endif
}

P
Peter Zijlstra 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

667 668 669
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
670
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
671

672 673 674 675 676 677
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
678
	if (initial && sched_feat(START_DEBIT))
679
		vruntime += sched_vslice(cfs_rq, se);
680

I
Ingo Molnar 已提交
681
	if (!initial) {
682
		/* sleeps upto a single latency don't count. */
683 684 685 686 687 688 689 690 691 692 693
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
			unsigned long thresh = sysctl_sched_latency;

			/*
			 * convert the sleeper threshold into virtual time
			 */
			if (sched_feat(NORMALIZED_SLEEPER))
				thresh = calc_delta_fair(thresh, se);

			vruntime -= thresh;
		}
694

695 696
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
697 698
	}

P
Peter Zijlstra 已提交
699
	se->vruntime = vruntime;
700 701
}

702
static void
703
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
704 705
{
	/*
706
	 * Update run-time statistics of the 'current'.
707
	 */
708
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
709
	account_entity_enqueue(cfs_rq, se);
710

I
Ingo Molnar 已提交
711
	if (wakeup) {
712
		place_entity(cfs_rq, se, 0);
713
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
714
	}
715

716
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
717
	check_spread(cfs_rq, se);
718 719
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
720 721 722
}

static void
723
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
724
{
725 726 727 728 729
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

730
	update_stats_dequeue(cfs_rq, se);
731
	if (sleep) {
P
Peter Zijlstra 已提交
732
#ifdef CONFIG_SCHEDSTATS
733 734 735 736
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
737
				se->sleep_start = rq_of(cfs_rq)->clock;
738
			if (tsk->state & TASK_UNINTERRUPTIBLE)
739
				se->block_start = rq_of(cfs_rq)->clock;
740
		}
741
#endif
P
Peter Zijlstra 已提交
742 743
	}

744
	if (se != cfs_rq->curr)
745 746
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
747
	update_min_vruntime(cfs_rq);
748 749 750 751 752
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
753
static void
I
Ingo Molnar 已提交
754
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
755
{
756 757
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
758
	ideal_runtime = sched_slice(cfs_rq, curr);
759
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
I
Ingo Molnar 已提交
760
	if (delta_exec > ideal_runtime)
761 762 763
		resched_task(rq_of(cfs_rq)->curr);
}

764
static void
765
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
766
{
767 768 769 770 771 772 773 774 775 776 777
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

778
	update_stats_curr_start(cfs_rq, se);
779
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
780 781 782 783 784 785
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
786
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
787 788 789 790
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
791
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
792 793
}

794 795 796
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

797
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
798
{
799 800
	struct sched_entity *se = __pick_next_entity(cfs_rq);

801
	if (!cfs_rq->next || wakeup_preempt_entity(cfs_rq->next, se) == 1)
802 803 804 805 806
		return se;

	return cfs_rq->next;
}

807
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
808 809 810 811 812 813
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
814
		update_curr(cfs_rq);
815

P
Peter Zijlstra 已提交
816
	check_spread(cfs_rq, prev);
817
	if (prev->on_rq) {
818
		update_stats_wait_start(cfs_rq, prev);
819 820 821
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
822
	cfs_rq->curr = NULL;
823 824
}

P
Peter Zijlstra 已提交
825 826
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
827 828
{
	/*
829
	 * Update run-time statistics of the 'current'.
830
	 */
831
	update_curr(cfs_rq);
832

P
Peter Zijlstra 已提交
833 834 835 836 837
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
838 839 840 841
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
842 843 844 845 846 847 848 849
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

850
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
851
		check_preempt_tick(cfs_rq, curr);
852 853 854 855 856 857
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
881
		if (rq->curr != p)
882
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
883

884
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
885 886
	}
}
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
903
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
904 905 906 907
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
908 909 910 911

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
912 913
#endif

914 915 916 917 918
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
919
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
920 921
{
	struct cfs_rq *cfs_rq;
922
	struct sched_entity *se = &p->se;
923 924

	for_each_sched_entity(se) {
925
		if (se->on_rq)
926 927
			break;
		cfs_rq = cfs_rq_of(se);
928
		enqueue_entity(cfs_rq, se, wakeup);
929
		wakeup = 1;
930
	}
P
Peter Zijlstra 已提交
931

932
	hrtick_update(rq);
933 934 935 936 937 938 939
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
940
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
941 942
{
	struct cfs_rq *cfs_rq;
943
	struct sched_entity *se = &p->se;
944 945 946

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
947
		dequeue_entity(cfs_rq, se, sleep);
948
		/* Don't dequeue parent if it has other entities besides us */
949
		if (cfs_rq->load.weight)
950
			break;
951
		sleep = 1;
952
	}
P
Peter Zijlstra 已提交
953

954
	hrtick_update(rq);
955 956 957
}

/*
958 959 960
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
961
 */
962
static void yield_task_fair(struct rq *rq)
963
{
964 965 966
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
967 968

	/*
969 970 971 972 973
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

974
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
975
		update_rq_clock(rq);
976
		/*
977
		 * Update run-time statistics of the 'current'.
978
		 */
D
Dmitry Adamushko 已提交
979
		update_curr(cfs_rq);
980 981 982 983 984

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
985
	 */
D
Dmitry Adamushko 已提交
986
	rightmost = __pick_last_entity(cfs_rq);
987 988 989
	/*
	 * Already in the rightmost position?
	 */
990
	if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
991 992 993 994
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
995 996
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
997
	 */
998
	se->vruntime = rightmost->vruntime + 1;
999 1000
}

1001 1002 1003 1004 1005
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
1006 1007
 * Domains may include CPUs that are not usable for migration,
 * hence we need to mask them out (cpu_active_map)
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
1027
	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1028 1029 1030
		return cpu;

	for_each_domain(cpu, sd) {
1031 1032 1033
		if ((sd->flags & SD_WAKE_IDLE)
		    || ((sd->flags & SD_WAKE_IDLE_FAR)
			&& !task_hot(p, task_rq(p)->clock, sd))) {
1034
			cpus_and(tmp, sd->span, p->cpus_allowed);
1035
			cpus_and(tmp, tmp, cpu_active_map);
1036
			for_each_cpu_mask_nr(i, tmp) {
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
1051
#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1052 1053 1054 1055 1056 1057 1058
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
1059

1060
#ifdef CONFIG_FAIR_GROUP_SCHED
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 *
 * The problem is that perfectly aligning the shares is rather expensive, hence
 * we try to avoid doing that too often - see update_shares(), which ratelimits
 * this change.
 *
 * We compensate this by not only taking the current delta into account, but
 * also considering the delta between when the shares were last adjusted and
 * now.
 *
 * We still saw a performance dip, some tracing learned us that between
 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 * significantly. Therefore try to bias the error in direction of failing
 * the affine wakeup.
 *
 */
1082 1083
static long effective_load(struct task_group *tg, int cpu,
		long wl, long wg)
1084
{
P
Peter Zijlstra 已提交
1085
	struct sched_entity *se = tg->se[cpu];
1086 1087 1088 1089

	if (!tg->parent)
		return wl;

1090 1091 1092 1093 1094 1095 1096
	/*
	 * By not taking the decrease of shares on the other cpu into
	 * account our error leans towards reducing the affine wakeups.
	 */
	if (!wl && sched_feat(ASYM_EFF_LOAD))
		return wl;

P
Peter Zijlstra 已提交
1097
	for_each_sched_entity(se) {
1098
		long S, rw, s, a, b;
1099 1100 1101 1102 1103 1104 1105 1106 1107
		long more_w;

		/*
		 * Instead of using this increment, also add the difference
		 * between when the shares were last updated and now.
		 */
		more_w = se->my_q->load.weight - se->my_q->rq_weight;
		wl += more_w;
		wg += more_w;
P
Peter Zijlstra 已提交
1108 1109 1110

		S = se->my_q->tg->shares;
		s = se->my_q->shares;
1111
		rw = se->my_q->rq_weight;
1112

1113 1114
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1115

1116 1117 1118 1119 1120
		wl = s*(a-b);

		if (likely(b))
			wl /= b;

1121 1122 1123 1124 1125 1126 1127
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1128 1129
		wg = 0;
	}
1130

P
Peter Zijlstra 已提交
1131
	return wl;
1132
}
P
Peter Zijlstra 已提交
1133

1134
#else
P
Peter Zijlstra 已提交
1135

1136 1137
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1138
{
1139
	return wl;
1140
}
P
Peter Zijlstra 已提交
1141

1142 1143
#endif

1144
static int
1145
wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
I
Ingo Molnar 已提交
1146 1147
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
1148 1149
	    unsigned int imbalance)
{
I
Ingo Molnar 已提交
1150
	struct task_struct *curr = this_rq->curr;
1151
	struct task_group *tg;
1152 1153
	unsigned long tl = this_load;
	unsigned long tl_per_task;
1154
	unsigned long weight;
1155
	int balanced;
1156

1157
	if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1158 1159
		return 0;

M
Mike Galbraith 已提交
1160 1161 1162
	if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
			p->se.avg_overlap > sysctl_sched_migration_cost))
		sync = 0;
1163

1164 1165 1166 1167 1168
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1169 1170 1171 1172 1173 1174 1175
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

		tl += effective_load(tg, this_cpu, -weight, -weight);
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
1176

1177 1178
	tg = task_group(p);
	weight = p->se.load.weight;
1179

1180 1181
	balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1182

1183
	/*
I
Ingo Molnar 已提交
1184 1185 1186
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1187
	 */
1188 1189
	if (sync && balanced)
		return 1;
1190 1191 1192 1193

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1194 1195
	if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
			tl_per_task)) {
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1209 1210 1211
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1212
	int prev_cpu, this_cpu, new_cpu;
1213
	unsigned long load, this_load;
1214
	struct rq *this_rq;
1215 1216
	unsigned int imbalance;
	int idx;
1217

1218 1219
	prev_cpu	= task_cpu(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1220
	this_rq		= cpu_rq(this_cpu);
1221
	new_cpu		= prev_cpu;
1222

1223 1224
	if (prev_cpu == this_cpu)
		goto out;
1225 1226 1227 1228
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1229
	for_each_domain(this_cpu, sd) {
1230
		if (cpu_isset(prev_cpu, sd->span)) {
1231 1232 1233 1234 1235 1236
			this_sd = sd;
			break;
		}
	}

	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1237
		goto out;
1238 1239 1240 1241

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1242
	if (!this_sd)
1243
		goto out;
1244

1245 1246 1247 1248
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1249
	load = source_load(prev_cpu, idx);
1250 1251
	this_load = target_load(this_cpu, idx);

1252
	if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
I
Ingo Molnar 已提交
1253 1254 1255
				     load, this_load, imbalance))
		return this_cpu;

1256 1257 1258 1259 1260 1261 1262 1263
	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1264
			return this_cpu;
1265 1266 1267
		}
	}

1268
out:
1269 1270 1271 1272
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

1273 1274 1275 1276 1277
static unsigned long wakeup_gran(struct sched_entity *se)
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
1278 1279
	 * More easily preempt - nice tasks, while not making it harder for
	 * + nice tasks.
1280
	 */
1281 1282
	if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD)
		gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
1283 1284 1285 1286

	return gran;
}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

	gran = wakeup_gran(curr);
	if (vdiff > gran)
		return 1;

	return 0;
}

1316 1317 1318
/*
 * Preempt the current task with a newly woken task if needed:
 */
1319
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1320 1321
{
	struct task_struct *curr = rq->curr;
1322
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1323
	struct sched_entity *se = &curr->se, *pse = &p->se;
1324 1325

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
1326
		update_rq_clock(rq);
1327
		update_curr(cfs_rq);
1328 1329 1330
		resched_task(curr);
		return;
	}
1331

P
Peter Zijlstra 已提交
1332 1333 1334
	if (unlikely(p->sched_class != &fair_sched_class))
		return;

I
Ingo Molnar 已提交
1335 1336 1337
	if (unlikely(se == pse))
		return;

P
Peter Zijlstra 已提交
1338 1339
	cfs_rq_of(pse)->next = pse;

1340 1341 1342 1343 1344 1345 1346
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 */
	if (test_tsk_need_resched(curr))
		return;

1347 1348 1349 1350 1351 1352
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
1353

1354 1355
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1356

1357 1358 1359
	if (sched_feat(WAKEUP_OVERLAP) && (sync ||
			(se->avg_overlap < sysctl_sched_migration_cost &&
			 pse->avg_overlap < sysctl_sched_migration_cost))) {
1360 1361 1362 1363
		resched_task(curr);
		return;
	}

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	find_matching_se(&se, &pse);

	while (se) {
		BUG_ON(!pse);

		if (wakeup_preempt_entity(se, pse) == 1) {
			resched_task(curr);
			break;
		}

		se = parent_entity(se);
		pse = parent_entity(pse);
	}
1377 1378
}

1379
static struct task_struct *pick_next_task_fair(struct rq *rq)
1380
{
P
Peter Zijlstra 已提交
1381
	struct task_struct *p;
1382 1383 1384 1385 1386 1387 1388
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1389
		se = pick_next_entity(cfs_rq);
1390
		set_next_entity(cfs_rq, se);
1391 1392 1393
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1394 1395 1396 1397
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1398 1399 1400 1401 1402
}

/*
 * Account for a descheduled task:
 */
1403
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1404 1405 1406 1407 1408 1409
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1410
		put_prev_entity(cfs_rq, se);
1411 1412 1413
	}
}

1414
#ifdef CONFIG_SMP
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1426
static struct task_struct *
1427
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1428
{
D
Dhaval Giani 已提交
1429 1430
	struct task_struct *p = NULL;
	struct sched_entity *se;
1431

1432 1433 1434
	if (next == &cfs_rq->tasks)
		return NULL;

1435 1436 1437
	se = list_entry(next, struct sched_entity, group_node);
	p = task_of(se);
	cfs_rq->balance_iterator = next->next;
1438

1439 1440 1441 1442 1443 1444 1445
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1446
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1447 1448 1449 1450 1451 1452
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1453
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1454 1455
}

1456 1457 1458 1459 1460
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1461
{
1462
	struct rq_iterator cfs_rq_iterator;
1463

1464 1465 1466
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1467

1468 1469 1470
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1471 1472
}

1473
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1474
static unsigned long
1475
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1476
		  unsigned long max_load_move,
1477 1478
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1479 1480
{
	long rem_load_move = max_load_move;
1481 1482
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1483

1484
	rcu_read_lock();
1485
	update_h_load(busiest_cpu);
1486

1487
	list_for_each_entry_rcu(tg, &task_groups, list) {
1488
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1489 1490
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
S
Srivatsa Vaddagiri 已提交
1491
		u64 rem_load, moved_load;
1492

1493 1494 1495
		/*
		 * empty group
		 */
1496
		if (!busiest_cfs_rq->task_weight)
1497 1498
			continue;

S
Srivatsa Vaddagiri 已提交
1499 1500
		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);
1501

1502
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1503
				rem_load, sd, idle, all_pinned, this_best_prio,
1504
				tg->cfs_rq[busiest_cpu]);
1505

1506
		if (!moved_load)
1507 1508
			continue;

1509
		moved_load *= busiest_h_load;
S
Srivatsa Vaddagiri 已提交
1510
		moved_load = div_u64(moved_load, busiest_weight + 1);
1511

1512 1513
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1514 1515
			break;
	}
1516
	rcu_read_unlock();
1517

P
Peter Williams 已提交
1518
	return max_load_move - rem_load_move;
1519
}
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1532

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1556
#endif /* CONFIG_SMP */
1557

1558 1559 1560
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1561
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1562 1563 1564 1565 1566 1567
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1568
		entity_tick(cfs_rq, se, queued);
1569 1570 1571
	}
}

1572
#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1573

1574 1575 1576 1577 1578 1579 1580
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1581
static void task_new_fair(struct rq *rq, struct task_struct *p)
1582 1583
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1584
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1585
	int this_cpu = smp_processor_id();
1586 1587 1588

	sched_info_queued(p);

1589
	update_curr(cfs_rq);
1590
	place_entity(cfs_rq, se, 1);
1591

1592
	/* 'curr' will be NULL if the child belongs to a different group */
1593
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1594
			curr && curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1595
		/*
1596 1597 1598
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1599
		swap(curr->vruntime, se->vruntime);
1600
		resched_task(rq->curr);
1601
	}
1602

1603
	enqueue_task_fair(rq, p, 0);
1604 1605
}

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
1622
		check_preempt_curr(rq, p, 0);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
1639
		check_preempt_curr(rq, p, 0);
1640 1641
}

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1665 1666 1667
/*
 * All the scheduling class methods:
 */
1668 1669
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1670 1671 1672 1673
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
1674
	.check_preempt_curr	= check_preempt_wakeup,
1675 1676 1677 1678

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1679
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1680 1681
	.select_task_rq		= select_task_rq_fair,

1682
	.load_balance		= load_balance_fair,
1683
	.move_one_task		= move_one_task_fair,
1684
#endif
1685

1686
	.set_curr_task          = set_curr_task_fair,
1687 1688
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1689 1690 1691

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1692 1693 1694 1695

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1696 1697 1698
};

#ifdef CONFIG_SCHED_DEBUG
1699
static void print_cfs_stats(struct seq_file *m, int cpu)
1700 1701 1702
{
	struct cfs_rq *cfs_rq;

1703
	rcu_read_lock();
1704
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1705
		print_cfs_rq(m, cpu, cfs_rq);
1706
	rcu_read_unlock();
1707 1708
}
#endif