sched_fair.c 43.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77
static const struct sched_class fair_sched_class;

78 79 80 81
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

P
Peter Zijlstra 已提交
82 83 84 85 86
static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}

87
#ifdef CONFIG_FAIR_GROUP_SCHED
88

89
/* cpu runqueue to which this cfs_rq is attached */
90 91
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
92
	return cfs_rq->rq;
93 94
}

95 96
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
97

P
Peter Zijlstra 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

189
#else	/* CONFIG_FAIR_GROUP_SCHED */
190

191 192 193
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
194 195 196 197
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
198 199
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
200

P
Peter Zijlstra 已提交
201
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
202
{
P
Peter Zijlstra 已提交
203
	return &task_rq(p)->cfs;
204 205
}

P
Peter Zijlstra 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

239 240 241 242 243
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
244 245
#endif	/* CONFIG_FAIR_GROUP_SCHED */

246 247 248 249 250

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

251
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
252
{
253 254
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
255 256 257 258 259
		min_vruntime = vruntime;

	return min_vruntime;
}

260
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
261 262 263 264 265 266 267 268
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

269
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
270
{
271
	return se->vruntime - cfs_rq->min_vruntime;
272 273
}

274 275 276 277 278 279 280 281 282 283 284 285
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
286
		if (!cfs_rq->curr)
287 288 289 290 291 292 293 294
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
}

295 296 297
/*
 * Enqueue an entity into the rb-tree:
 */
298
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
299 300 301 302
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
303
	s64 key = entity_key(cfs_rq, se);
304 305 306 307 308 309 310 311 312 313 314 315
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
316
		if (key < entity_key(cfs_rq, entry)) {
317 318 319 320 321 322 323 324 325 326 327
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
328
	if (leftmost)
I
Ingo Molnar 已提交
329
		cfs_rq->rb_leftmost = &se->run_node;
330 331 332 333 334

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

335
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
336
{
P
Peter Zijlstra 已提交
337 338 339 340 341 342
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
343

344 345 346 347 348
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
349 350 351 352 353 354
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
355 356
}

357
static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
358
{
359
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
360

361 362
	if (!last)
		return NULL;
363 364

	return rb_entry(last, struct sched_entity, run_node);
365 366
}

367 368 369 370
/**************************************************************
 * Scheduling class statistics methods:
 */

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
387

388
/*
389
 * delta /= w
390 391 392 393
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
394 395
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
396 397 398 399

	return delta;
}

400 401 402 403 404 405 406 407
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
408 409 410
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
411
	unsigned long nr_latency = sched_nr_latency;
412 413

	if (unlikely(nr_running > nr_latency)) {
414
		period = sysctl_sched_min_granularity;
415 416 417 418 419 420
		period *= nr_running;
	}

	return period;
}

421 422 423 424
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
425
 * s = p*P[w/rw]
426
 */
P
Peter Zijlstra 已提交
427
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
428
{
M
Mike Galbraith 已提交
429
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
430

M
Mike Galbraith 已提交
431
	for_each_sched_entity(se) {
L
Lin Ming 已提交
432 433 434 435
		struct load_weight *load;

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
436

M
Mike Galbraith 已提交
437 438 439 440 441 442 443 444 445
		if (unlikely(!se->on_rq)) {
			struct load_weight lw = cfs_rq->load;

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
446 447
}

448
/*
449
 * We calculate the vruntime slice of a to be inserted task
450
 *
451
 * vs = s/w
452
 */
453
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
454
{
455
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
456 457
}

458 459 460 461 462
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
463 464
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
465
{
466
	unsigned long delta_exec_weighted;
467

468
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
469 470

	curr->sum_exec_runtime += delta_exec;
471
	schedstat_add(cfs_rq, exec_clock, delta_exec);
472
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
473
	curr->vruntime += delta_exec_weighted;
474
	update_min_vruntime(cfs_rq);
475 476
}

477
static void update_curr(struct cfs_rq *cfs_rq)
478
{
479
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
480
	u64 now = rq_of(cfs_rq)->clock;
481 482 483 484 485 486 487 488 489 490
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
491
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
492 493
	if (!delta_exec)
		return;
494

I
Ingo Molnar 已提交
495 496
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
497 498 499 500 501

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
502
		account_group_exec_runtime(curtask, delta_exec);
503
	}
504 505 506
}

static inline void
507
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
508
{
509
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
510 511 512 513 514
}

/*
 * Task is being enqueued - update stats:
 */
515
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
516 517 518 519 520
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
521
	if (se != cfs_rq->curr)
522
		update_stats_wait_start(cfs_rq, se);
523 524 525
}

static void
526
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
527
{
528 529
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
530 531 532
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
533
	schedstat_set(se->wait_start, 0);
534 535 536
}

static inline void
537
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
538 539 540 541 542
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
543
	if (se != cfs_rq->curr)
544
		update_stats_wait_end(cfs_rq, se);
545 546 547 548 549 550
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
551
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
552 553 554 555
{
	/*
	 * We are starting a new run period:
	 */
556
	se->exec_start = rq_of(cfs_rq)->clock;
557 558 559 560 561 562
}

/**************************************************
 * Scheduling class queueing methods:
 */

563 564 565 566 567 568 569 570 571 572 573 574 575
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

576 577 578 579
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
580 581
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
582
	if (entity_is_task(se)) {
583
		add_cfs_task_weight(cfs_rq, se->load.weight);
584 585
		list_add(&se->group_node, &cfs_rq->tasks);
	}
586 587 588 589 590 591 592 593
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
594 595
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
596
	if (entity_is_task(se)) {
597
		add_cfs_task_weight(cfs_rq, -se->load.weight);
598 599
		list_del_init(&se->group_node);
	}
600 601 602 603
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

604
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
605 606 607
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
608
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
A
Arjan van de Ven 已提交
609
		struct task_struct *tsk = task_of(se);
610 611 612 613 614 615 616 617 618

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
619 620

		account_scheduler_latency(tsk, delta >> 10, 1);
621 622
	}
	if (se->block_start) {
623
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
A
Arjan van de Ven 已提交
624
		struct task_struct *tsk = task_of(se);
625 626 627 628 629 630 631 632 633

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
634 635 636 637 638 639 640

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
641

I
Ingo Molnar 已提交
642 643 644
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
A
Arjan van de Ven 已提交
645
		account_scheduler_latency(tsk, delta >> 10, 0);
646 647 648 649
	}
#endif
}

P
Peter Zijlstra 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

663 664 665
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
666
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
667

668 669 670 671 672 673
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
674
	if (initial && sched_feat(START_DEBIT))
675
		vruntime += sched_vslice(cfs_rq, se);
676

I
Ingo Molnar 已提交
677
	if (!initial) {
678
		/* sleeps upto a single latency don't count. */
679 680 681 682
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
			unsigned long thresh = sysctl_sched_latency;

			/*
683 684 685 686
			 * Convert the sleeper threshold into virtual time.
			 * SCHED_IDLE is a special sub-class.  We care about
			 * fairness only relative to other SCHED_IDLE tasks,
			 * all of which have the same weight.
687
			 */
688 689
			if (sched_feat(NORMALIZED_SLEEPER) &&
					task_of(se)->policy != SCHED_IDLE)
690 691 692 693
				thresh = calc_delta_fair(thresh, se);

			vruntime -= thresh;
		}
694

695 696
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
697 698
	}

P
Peter Zijlstra 已提交
699
	se->vruntime = vruntime;
700 701
}

702
static void
703
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
704 705
{
	/*
706
	 * Update run-time statistics of the 'current'.
707
	 */
708
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
709
	account_entity_enqueue(cfs_rq, se);
710

I
Ingo Molnar 已提交
711
	if (wakeup) {
712
		place_entity(cfs_rq, se, 0);
713
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
714
	}
715

716
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
717
	check_spread(cfs_rq, se);
718 719
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
720 721
}

P
Peter Zijlstra 已提交
722
static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
723 724 725 726 727 728 729 730
{
	if (cfs_rq->last == se)
		cfs_rq->last = NULL;

	if (cfs_rq->next == se)
		cfs_rq->next = NULL;
}

P
Peter Zijlstra 已提交
731 732 733 734 735 736
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	for_each_sched_entity(se)
		__clear_buddies(cfs_rq_of(se), se);
}

737
static void
738
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
739
{
740 741 742 743 744
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

745
	update_stats_dequeue(cfs_rq, se);
746
	if (sleep) {
P
Peter Zijlstra 已提交
747
#ifdef CONFIG_SCHEDSTATS
748 749 750 751
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
752
				se->sleep_start = rq_of(cfs_rq)->clock;
753
			if (tsk->state & TASK_UNINTERRUPTIBLE)
754
				se->block_start = rq_of(cfs_rq)->clock;
755
		}
756
#endif
P
Peter Zijlstra 已提交
757 758
	}

P
Peter Zijlstra 已提交
759
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
760

761
	if (se != cfs_rq->curr)
762 763
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
764
	update_min_vruntime(cfs_rq);
765 766 767 768 769
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
770
static void
I
Ingo Molnar 已提交
771
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
772
{
773 774
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
775
	ideal_runtime = sched_slice(cfs_rq, curr);
776
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
777
	if (delta_exec > ideal_runtime) {
778
		resched_task(rq_of(cfs_rq)->curr);
779 780 781 782 783 784
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
	}
785 786
}

787
static void
788
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
789
{
790 791 792 793 794 795 796 797 798 799 800
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

801
	update_stats_curr_start(cfs_rq, se);
802
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
803 804 805 806 807 808
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
809
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
810 811 812 813
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
814
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
815 816
}

817 818 819
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

820
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
821
{
822 823
	struct sched_entity *se = __pick_next_entity(cfs_rq);

P
Peter Zijlstra 已提交
824 825
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
		return cfs_rq->next;
826

P
Peter Zijlstra 已提交
827 828 829 830
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
		return cfs_rq->last;

	return se;
831 832
}

833
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
834 835 836 837 838 839
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
840
		update_curr(cfs_rq);
841

P
Peter Zijlstra 已提交
842
	check_spread(cfs_rq, prev);
843
	if (prev->on_rq) {
844
		update_stats_wait_start(cfs_rq, prev);
845 846 847
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
848
	cfs_rq->curr = NULL;
849 850
}

P
Peter Zijlstra 已提交
851 852
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
853 854
{
	/*
855
	 * Update run-time statistics of the 'current'.
856
	 */
857
	update_curr(cfs_rq);
858

P
Peter Zijlstra 已提交
859 860 861 862 863
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
864 865 866 867
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
868 869 870 871 872 873 874 875
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

876
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
877
		check_preempt_tick(cfs_rq, curr);
878 879 880 881 882 883
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
907
		if (rq->curr != p)
908
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
909

910
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
911 912
	}
}
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
929
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
930 931 932 933
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
934 935 936 937

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
938 939
#endif

940 941 942 943 944
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
945
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
946 947
{
	struct cfs_rq *cfs_rq;
948
	struct sched_entity *se = &p->se;
949 950

	for_each_sched_entity(se) {
951
		if (se->on_rq)
952 953
			break;
		cfs_rq = cfs_rq_of(se);
954
		enqueue_entity(cfs_rq, se, wakeup);
955
		wakeup = 1;
956
	}
P
Peter Zijlstra 已提交
957

958
	hrtick_update(rq);
959 960 961 962 963 964 965
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
966
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
967 968
{
	struct cfs_rq *cfs_rq;
969
	struct sched_entity *se = &p->se;
970 971 972

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
973
		dequeue_entity(cfs_rq, se, sleep);
974
		/* Don't dequeue parent if it has other entities besides us */
975
		if (cfs_rq->load.weight)
976
			break;
977
		sleep = 1;
978
	}
P
Peter Zijlstra 已提交
979

980
	hrtick_update(rq);
981 982 983
}

/*
984 985 986
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
987
 */
988
static void yield_task_fair(struct rq *rq)
989
{
990 991 992
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
993 994

	/*
995 996 997 998 999
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

P
Peter Zijlstra 已提交
1000 1001
	clear_buddies(cfs_rq, se);

1002
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1003
		update_rq_clock(rq);
1004
		/*
1005
		 * Update run-time statistics of the 'current'.
1006
		 */
D
Dmitry Adamushko 已提交
1007
		update_curr(cfs_rq);
1008 1009 1010 1011 1012

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
1013
	 */
D
Dmitry Adamushko 已提交
1014
	rightmost = __pick_last_entity(cfs_rq);
1015 1016 1017
	/*
	 * Already in the rightmost position?
	 */
1018
	if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1019 1020 1021 1022
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
1023 1024
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
1025
	 */
1026
	se->vruntime = rightmost->vruntime + 1;
1027 1028
}

1029 1030 1031 1032 1033
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
1034
 * Domains may include CPUs that are not usable for migration,
1035
 * hence we need to mask them out (cpu_active_mask)
1036 1037 1038 1039 1040 1041 1042 1043
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	struct sched_domain *sd;
	int i;
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	unsigned int chosen_wakeup_cpu;
	int this_cpu;

	/*
	 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
	 * are idle and this is not a kernel thread and this task's affinity
	 * allows it to be moved to preferred cpu, then just move!
	 */

	this_cpu = smp_processor_id();
	chosen_wakeup_cpu =
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;

	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
		idle_cpu(cpu) && idle_cpu(this_cpu) &&
		p->mm && !(p->flags & PF_KTHREAD) &&
		cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
		return chosen_wakeup_cpu;
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
1072
	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1073 1074 1075
		return cpu;

	for_each_domain(cpu, sd) {
1076 1077 1078
		if ((sd->flags & SD_WAKE_IDLE)
		    || ((sd->flags & SD_WAKE_IDLE_FAR)
			&& !task_hot(p, task_rq(p)->clock, sd))) {
1079 1080 1081
			for_each_cpu_and(i, sched_domain_span(sd),
					 &p->cpus_allowed) {
				if (cpu_active(i) && idle_cpu(i)) {
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
1095
#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1096 1097 1098 1099 1100 1101 1102
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
1103

1104
#ifdef CONFIG_FAIR_GROUP_SCHED
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 *
 * The problem is that perfectly aligning the shares is rather expensive, hence
 * we try to avoid doing that too often - see update_shares(), which ratelimits
 * this change.
 *
 * We compensate this by not only taking the current delta into account, but
 * also considering the delta between when the shares were last adjusted and
 * now.
 *
 * We still saw a performance dip, some tracing learned us that between
 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 * significantly. Therefore try to bias the error in direction of failing
 * the affine wakeup.
 *
 */
1126 1127
static long effective_load(struct task_group *tg, int cpu,
		long wl, long wg)
1128
{
P
Peter Zijlstra 已提交
1129
	struct sched_entity *se = tg->se[cpu];
1130 1131 1132 1133

	if (!tg->parent)
		return wl;

1134 1135 1136 1137 1138 1139 1140
	/*
	 * By not taking the decrease of shares on the other cpu into
	 * account our error leans towards reducing the affine wakeups.
	 */
	if (!wl && sched_feat(ASYM_EFF_LOAD))
		return wl;

P
Peter Zijlstra 已提交
1141
	for_each_sched_entity(se) {
1142
		long S, rw, s, a, b;
1143 1144 1145 1146 1147 1148 1149 1150 1151
		long more_w;

		/*
		 * Instead of using this increment, also add the difference
		 * between when the shares were last updated and now.
		 */
		more_w = se->my_q->load.weight - se->my_q->rq_weight;
		wl += more_w;
		wg += more_w;
P
Peter Zijlstra 已提交
1152 1153 1154

		S = se->my_q->tg->shares;
		s = se->my_q->shares;
1155
		rw = se->my_q->rq_weight;
1156

1157 1158
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1159

1160 1161 1162 1163 1164
		wl = s*(a-b);

		if (likely(b))
			wl /= b;

1165 1166 1167 1168 1169 1170 1171
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1172 1173
		wg = 0;
	}
1174

P
Peter Zijlstra 已提交
1175
	return wl;
1176
}
P
Peter Zijlstra 已提交
1177

1178
#else
P
Peter Zijlstra 已提交
1179

1180 1181
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1182
{
1183
	return wl;
1184
}
P
Peter Zijlstra 已提交
1185

1186 1187
#endif

1188
static int
1189
wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
I
Ingo Molnar 已提交
1190 1191
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
1192 1193
	    unsigned int imbalance)
{
1194 1195
	struct task_struct *curr = this_rq->curr;
	struct task_group *tg;
1196 1197
	unsigned long tl = this_load;
	unsigned long tl_per_task;
1198
	unsigned long weight;
1199
	int balanced;
1200

1201
	if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1202 1203
		return 0;

1204 1205 1206 1207
	if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
			p->se.avg_overlap > sysctl_sched_migration_cost))
		sync = 0;

1208 1209 1210 1211 1212
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1213 1214 1215 1216 1217 1218 1219
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

		tl += effective_load(tg, this_cpu, -weight, -weight);
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
1220

1221 1222
	tg = task_group(p);
	weight = p->se.load.weight;
1223

1224 1225
	balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1226

1227
	/*
I
Ingo Molnar 已提交
1228 1229 1230
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1231
	 */
1232 1233
	if (sync && balanced)
		return 1;
1234 1235 1236 1237

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1238 1239
	if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
			tl_per_task)) {
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1253 1254 1255
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1256
	int prev_cpu, this_cpu, new_cpu;
1257
	unsigned long load, this_load;
1258
	struct rq *this_rq;
1259 1260
	unsigned int imbalance;
	int idx;
1261

1262 1263
	prev_cpu	= task_cpu(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1264
	this_rq		= cpu_rq(this_cpu);
1265
	new_cpu		= prev_cpu;
1266

1267 1268
	if (prev_cpu == this_cpu)
		goto out;
1269 1270 1271 1272
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1273
	for_each_domain(this_cpu, sd) {
1274
		if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
1275 1276 1277 1278 1279
			this_sd = sd;
			break;
		}
	}

1280
	if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
1281
		goto out;
1282 1283 1284 1285

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1286
	if (!this_sd)
1287
		goto out;
1288

1289 1290 1291 1292
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1293
	load = source_load(prev_cpu, idx);
1294 1295
	this_load = target_load(this_cpu, idx);

1296
	if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
I
Ingo Molnar 已提交
1297 1298 1299
				     load, this_load, imbalance))
		return this_cpu;

1300 1301 1302 1303 1304 1305 1306 1307
	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1308
			return this_cpu;
1309 1310 1311
		}
	}

1312
out:
1313 1314 1315 1316
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
/*
 * Adaptive granularity
 *
 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
 * with the limit of wakeup_gran -- when it never does a wakeup.
 *
 * So the smaller avg_wakeup is the faster we want this task to preempt,
 * but we don't want to treat the preemptee unfairly and therefore allow it
 * to run for at least the amount of time we'd like to run.
 *
 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
 *
 * NOTE: we use *nr_running to scale with load, this nicely matches the
 *       degrading latency on load.
 */
static unsigned long
adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
{
	u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
	u64 gran = 0;

	if (this_run < expected_wakeup)
		gran = expected_wakeup - this_run;

	return min_t(s64, gran, sysctl_sched_wakeup_granularity);
}

static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1347 1348 1349
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

P
Peter Zijlstra 已提交
1350 1351 1352
	if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
		gran = adaptive_gran(curr, se);

1353
	/*
P
Peter Zijlstra 已提交
1354 1355
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
1356
	 */
P
Peter Zijlstra 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	if (sched_feat(ASYM_GRAN)) {
		/*
		 * By using 'se' instead of 'curr' we penalize light tasks, so
		 * they get preempted easier. That is, if 'se' < 'curr' then
		 * the resulting gran will be larger, therefore penalizing the
		 * lighter, if otoh 'se' > 'curr' then the resulting gran will
		 * be smaller, again penalizing the lighter task.
		 *
		 * This is especially important for buddies when the leftmost
		 * task is higher priority than the buddy.
		 */
		if (unlikely(se->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, se);
	} else {
		if (unlikely(curr->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, curr);
	}
1374 1375 1376 1377

	return gran;
}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
1400
	gran = wakeup_gran(curr, se);
1401 1402 1403 1404 1405 1406
	if (vdiff > gran)
		return 1;

	return 0;
}

1407 1408
static void set_last_buddy(struct sched_entity *se)
{
1409 1410 1411 1412
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->last = se;
	}
1413 1414 1415 1416
}

static void set_next_buddy(struct sched_entity *se)
{
1417 1418 1419 1420
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->next = se;
	}
1421 1422
}

1423 1424 1425
/*
 * Preempt the current task with a newly woken task if needed:
 */
1426
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1427 1428
{
	struct task_struct *curr = rq->curr;
1429
	struct sched_entity *se = &curr->se, *pse = &p->se;
1430
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1431

1432
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1433

1434
	if (unlikely(rt_prio(p->prio))) {
1435 1436 1437
		resched_task(curr);
		return;
	}
1438

P
Peter Zijlstra 已提交
1439 1440 1441
	if (unlikely(p->sched_class != &fair_sched_class))
		return;

I
Ingo Molnar 已提交
1442 1443 1444
	if (unlikely(se == pse))
		return;

P
Peter Zijlstra 已提交
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	/*
	 * Only set the backward buddy when the current task is still on the
	 * rq. This can happen when a wakeup gets interleaved with schedule on
	 * the ->pre_schedule() or idle_balance() point, either of which can
	 * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class, for
	 * obvious reasons its a bad idea to schedule back to the idle thread.
	 */
	if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1455 1456
		set_last_buddy(se);
	set_next_buddy(pse);
P
Peter Zijlstra 已提交
1457

1458 1459 1460 1461 1462 1463 1464
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 */
	if (test_tsk_need_resched(curr))
		return;

1465
	/*
1466
	 * Batch and idle tasks do not preempt (their preemption is driven by
1467 1468
	 * the tick):
	 */
1469
	if (unlikely(p->policy != SCHED_NORMAL))
1470
		return;
1471

1472 1473 1474
	/* Idle tasks are by definition preempted by everybody. */
	if (unlikely(curr->policy == SCHED_IDLE)) {
		resched_task(curr);
1475
		return;
1476
	}
1477

1478 1479
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1480

1481 1482 1483
	if (sched_feat(WAKEUP_OVERLAP) && (sync ||
			(se->avg_overlap < sysctl_sched_migration_cost &&
			 pse->avg_overlap < sysctl_sched_migration_cost))) {
1484 1485 1486 1487
		resched_task(curr);
		return;
	}

1488 1489
	find_matching_se(&se, &pse);

1490
	BUG_ON(!pse);
1491

1492 1493
	if (wakeup_preempt_entity(se, pse) == 1)
		resched_task(curr);
1494 1495
}

1496
static struct task_struct *pick_next_task_fair(struct rq *rq)
1497
{
P
Peter Zijlstra 已提交
1498
	struct task_struct *p;
1499 1500 1501 1502 1503 1504 1505
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1506
		se = pick_next_entity(cfs_rq);
1507 1508 1509 1510
		/*
		 * If se was a buddy, clear it so that it will have to earn
		 * the favour again.
		 */
P
Peter Zijlstra 已提交
1511
		__clear_buddies(cfs_rq, se);
1512
		set_next_entity(cfs_rq, se);
1513 1514 1515
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1516 1517 1518 1519
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1520 1521 1522 1523 1524
}

/*
 * Account for a descheduled task:
 */
1525
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1526 1527 1528 1529 1530 1531
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1532
		put_prev_entity(cfs_rq, se);
1533 1534 1535
	}
}

1536
#ifdef CONFIG_SMP
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1548
static struct task_struct *
1549
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1550
{
D
Dhaval Giani 已提交
1551 1552
	struct task_struct *p = NULL;
	struct sched_entity *se;
1553

1554 1555 1556
	if (next == &cfs_rq->tasks)
		return NULL;

1557 1558 1559
	se = list_entry(next, struct sched_entity, group_node);
	p = task_of(se);
	cfs_rq->balance_iterator = next->next;
1560

1561 1562 1563 1564 1565 1566 1567
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1568
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1569 1570 1571 1572 1573 1574
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1575
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1576 1577
}

1578 1579 1580 1581 1582
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1583
{
1584
	struct rq_iterator cfs_rq_iterator;
1585

1586 1587 1588
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1589

1590 1591 1592
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1593 1594
}

1595
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1596
static unsigned long
1597
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1598
		  unsigned long max_load_move,
1599 1600
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1601 1602
{
	long rem_load_move = max_load_move;
1603 1604
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1605

1606
	rcu_read_lock();
1607
	update_h_load(busiest_cpu);
1608

1609
	list_for_each_entry_rcu(tg, &task_groups, list) {
1610
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1611 1612
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
S
Srivatsa Vaddagiri 已提交
1613
		u64 rem_load, moved_load;
1614

1615 1616 1617
		/*
		 * empty group
		 */
1618
		if (!busiest_cfs_rq->task_weight)
1619 1620
			continue;

S
Srivatsa Vaddagiri 已提交
1621 1622
		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);
1623

1624
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1625
				rem_load, sd, idle, all_pinned, this_best_prio,
1626
				tg->cfs_rq[busiest_cpu]);
1627

1628
		if (!moved_load)
1629 1630
			continue;

1631
		moved_load *= busiest_h_load;
S
Srivatsa Vaddagiri 已提交
1632
		moved_load = div_u64(moved_load, busiest_weight + 1);
1633

1634 1635
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1636 1637
			break;
	}
1638
	rcu_read_unlock();
1639

P
Peter Williams 已提交
1640
	return max_load_move - rem_load_move;
1641
}
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1654

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1678
#endif /* CONFIG_SMP */
1679

1680 1681 1682
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1683
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1684 1685 1686 1687 1688 1689
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1690
		entity_tick(cfs_rq, se, queued);
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
	}
}

/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1701
static void task_new_fair(struct rq *rq, struct task_struct *p)
1702 1703
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1704
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1705
	int this_cpu = smp_processor_id();
1706 1707 1708

	sched_info_queued(p);

1709
	update_curr(cfs_rq);
1710
	place_entity(cfs_rq, se, 1);
1711

1712
	/* 'curr' will be NULL if the child belongs to a different group */
1713
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1714
			curr && curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1715
		/*
1716 1717 1718
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1719
		swap(curr->vruntime, se->vruntime);
1720
		resched_task(rq->curr);
1721
	}
1722

1723
	enqueue_task_fair(rq, p, 0);
1724 1725
}

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
1742
		check_preempt_curr(rq, p, 0);
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
1759
		check_preempt_curr(rq, p, 0);
1760 1761
}

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1785 1786 1787
/*
 * All the scheduling class methods:
 */
1788 1789
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1790 1791 1792 1793
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
1794
	.check_preempt_curr	= check_preempt_wakeup,
1795 1796 1797 1798

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1799
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1800 1801
	.select_task_rq		= select_task_rq_fair,

1802
	.load_balance		= load_balance_fair,
1803
	.move_one_task		= move_one_task_fair,
1804
#endif
1805

1806
	.set_curr_task          = set_curr_task_fair,
1807 1808
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1809 1810 1811

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1812 1813 1814 1815

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1816 1817 1818
};

#ifdef CONFIG_SCHED_DEBUG
1819
static void print_cfs_stats(struct seq_file *m, int cpu)
1820 1821 1822
{
	struct cfs_rq *cfs_rq;

1823
	rcu_read_lock();
1824
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1825
		print_cfs_rq(m, cpu, cfs_rq);
1826
	rcu_read_unlock();
1827 1828
}
#endif