sched_fair.c 47.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
37
unsigned int sysctl_sched_latency = 5000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 1000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50

/*
51
 * After fork, child runs first. If set to 0 (default) then
52
 * parent will (try to) run first.
53
 */
54
unsigned int sysctl_sched_child_runs_first __read_mostly;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77
static const struct sched_class fair_sched_class;

78 79 80 81
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

82
#ifdef CONFIG_FAIR_GROUP_SCHED
83

84
/* cpu runqueue to which this cfs_rq is attached */
85 86
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
87
	return cfs_rq->rq;
88 89
}

90 91
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
92

93 94 95 96 97 98 99 100
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

192 193 194 195 196 197
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
198

199 200 201
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
202 203 204 205
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
206 207
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
208

P
Peter Zijlstra 已提交
209
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
210
{
P
Peter Zijlstra 已提交
211
	return &task_rq(p)->cfs;
212 213
}

P
Peter Zijlstra 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

247 248 249 250 251
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
252 253
#endif	/* CONFIG_FAIR_GROUP_SCHED */

254 255 256 257 258

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

259
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
260
{
261 262
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
263 264 265 266 267
		min_vruntime = vruntime;

	return min_vruntime;
}

268
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
269 270 271 272 273 274 275 276
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

277 278 279 280 281 282
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

283
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
284
{
285
	return se->vruntime - cfs_rq->min_vruntime;
286 287
}

288 289 290 291 292 293 294 295 296 297 298 299
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
300
		if (!cfs_rq->curr)
301 302 303 304 305 306 307 308
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
}

309 310 311
/*
 * Enqueue an entity into the rb-tree:
 */
312
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
313 314 315 316
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
317
	s64 key = entity_key(cfs_rq, se);
318 319 320 321 322 323 324 325 326 327 328 329
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
330
		if (key < entity_key(cfs_rq, entry)) {
331 332 333 334 335 336 337 338 339 340 341
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
342
	if (leftmost)
I
Ingo Molnar 已提交
343
		cfs_rq->rb_leftmost = &se->run_node;
344 345 346 347 348

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

349
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
350
{
P
Peter Zijlstra 已提交
351 352 353 354 355 356
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
357

358 359 360 361 362
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
363 364 365 366 367 368
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
369 370
}

371
static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
372
{
373
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
374

375 376
	if (!last)
		return NULL;
377 378

	return rb_entry(last, struct sched_entity, run_node);
379 380
}

381 382 383 384
/**************************************************************
 * Scheduling class statistics methods:
 */

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
401

402
/*
403
 * delta /= w
404 405 406 407
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
408 409
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
410 411 412 413

	return delta;
}

414 415 416 417 418 419 420 421
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
422 423 424
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
425
	unsigned long nr_latency = sched_nr_latency;
426 427

	if (unlikely(nr_running > nr_latency)) {
428
		period = sysctl_sched_min_granularity;
429 430 431 432 433 434
		period *= nr_running;
	}

	return period;
}

435 436 437 438
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
439
 * s = p*P[w/rw]
440
 */
P
Peter Zijlstra 已提交
441
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
442
{
M
Mike Galbraith 已提交
443
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
444

M
Mike Galbraith 已提交
445
	for_each_sched_entity(se) {
L
Lin Ming 已提交
446
		struct load_weight *load;
447
		struct load_weight lw;
L
Lin Ming 已提交
448 449 450

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
451

M
Mike Galbraith 已提交
452
		if (unlikely(!se->on_rq)) {
453
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
454 455 456 457 458 459 460

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
461 462
}

463
/*
464
 * We calculate the vruntime slice of a to be inserted task
465
 *
466
 * vs = s/w
467
 */
468
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
469
{
470
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
471 472
}

473 474 475 476 477
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
478 479
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
480
{
481
	unsigned long delta_exec_weighted;
482

483
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
484 485

	curr->sum_exec_runtime += delta_exec;
486
	schedstat_add(cfs_rq, exec_clock, delta_exec);
487
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
488
	curr->vruntime += delta_exec_weighted;
489
	update_min_vruntime(cfs_rq);
490 491
}

492
static void update_curr(struct cfs_rq *cfs_rq)
493
{
494
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
495
	u64 now = rq_of(cfs_rq)->clock;
496 497 498 499 500 501 502 503 504 505
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
506
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
507 508
	if (!delta_exec)
		return;
509

I
Ingo Molnar 已提交
510 511
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
512 513 514 515 516

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
517
		account_group_exec_runtime(curtask, delta_exec);
518
	}
519 520 521
}

static inline void
522
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
523
{
524
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
525 526 527 528 529
}

/*
 * Task is being enqueued - update stats:
 */
530
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
531 532 533 534 535
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
536
	if (se != cfs_rq->curr)
537
		update_stats_wait_start(cfs_rq, se);
538 539 540
}

static void
541
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
542
{
543 544
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
545 546 547
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
548 549 550 551 552 553
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
			rq_of(cfs_rq)->clock - se->wait_start);
	}
#endif
554
	schedstat_set(se->wait_start, 0);
555 556 557
}

static inline void
558
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
559 560 561 562 563
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
564
	if (se != cfs_rq->curr)
565
		update_stats_wait_end(cfs_rq, se);
566 567 568 569 570 571
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
572
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
573 574 575 576
{
	/*
	 * We are starting a new run period:
	 */
577
	se->exec_start = rq_of(cfs_rq)->clock;
578 579 580 581 582 583
}

/**************************************************
 * Scheduling class queueing methods:
 */

584 585 586 587 588 589 590 591 592 593 594 595 596
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

597 598 599 600
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
601 602
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
603
	if (entity_is_task(se)) {
604
		add_cfs_task_weight(cfs_rq, se->load.weight);
605 606
		list_add(&se->group_node, &cfs_rq->tasks);
	}
607 608 609 610 611 612 613 614
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
615 616
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
617
	if (entity_is_task(se)) {
618
		add_cfs_task_weight(cfs_rq, -se->load.weight);
619 620
		list_del_init(&se->group_node);
	}
621 622 623 624
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

625
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
626 627
{
#ifdef CONFIG_SCHEDSTATS
628 629 630 631 632
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

633
	if (se->sleep_start) {
634
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
635 636 637 638 639 640 641 642 643

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
644

645
		if (tsk) {
646
			account_scheduler_latency(tsk, delta >> 10, 1);
647 648
			trace_sched_stat_sleep(tsk, delta);
		}
649 650
	}
	if (se->block_start) {
651
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
652 653 654 655 656 657 658 659 660

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
661

662
		if (tsk) {
663 664 665
			if (tsk->in_iowait) {
				se->iowait_sum += delta;
				se->iowait_count++;
666
				trace_sched_stat_iowait(tsk, delta);
667 668
			}

669 670 671 672 673 674 675 676 677 678 679
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
680
		}
681 682 683 684
	}
#endif
}

P
Peter Zijlstra 已提交
685 686 687 688 689 690 691 692 693 694 695 696 697
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

698 699 700
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
701
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
702

703 704 705 706 707 708
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
709
	if (initial && sched_feat(START_DEBIT))
710
		vruntime += sched_vslice(cfs_rq, se);
711

712 713 714
	/* sleeps up to a single latency don't count. */
	if (!initial && sched_feat(FAIR_SLEEPERS)) {
		unsigned long thresh = sysctl_sched_latency;
715

716 717 718 719 720 721 722 723 724
		/*
		 * Convert the sleeper threshold into virtual time.
		 * SCHED_IDLE is a special sub-class.  We care about
		 * fairness only relative to other SCHED_IDLE tasks,
		 * all of which have the same weight.
		 */
		if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
				 task_of(se)->policy != SCHED_IDLE))
			thresh = calc_delta_fair(thresh, se);
725

726 727 728 729 730 731
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
732

733
		vruntime -= thresh;
734 735
	}

736 737 738
	/* ensure we never gain time by being placed backwards. */
	vruntime = max_vruntime(se->vruntime, vruntime);

P
Peter Zijlstra 已提交
739
	se->vruntime = vruntime;
740 741
}

742
static void
743
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
744 745
{
	/*
746
	 * Update run-time statistics of the 'current'.
747
	 */
748
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
749
	account_entity_enqueue(cfs_rq, se);
750

I
Ingo Molnar 已提交
751
	if (wakeup) {
752
		place_entity(cfs_rq, se, 0);
753
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
754
	}
755

756
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
757
	check_spread(cfs_rq, se);
758 759
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
760 761
}

P
Peter Zijlstra 已提交
762
static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
763
{
764
	if (!se || cfs_rq->last == se)
P
Peter Zijlstra 已提交
765 766
		cfs_rq->last = NULL;

767
	if (!se || cfs_rq->next == se)
P
Peter Zijlstra 已提交
768 769 770
		cfs_rq->next = NULL;
}

P
Peter Zijlstra 已提交
771 772 773 774 775 776
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	for_each_sched_entity(se)
		__clear_buddies(cfs_rq_of(se), se);
}

777
static void
778
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
779
{
780 781 782 783 784
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

785
	update_stats_dequeue(cfs_rq, se);
786
	if (sleep) {
P
Peter Zijlstra 已提交
787
#ifdef CONFIG_SCHEDSTATS
788 789 790 791
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
792
				se->sleep_start = rq_of(cfs_rq)->clock;
793
			if (tsk->state & TASK_UNINTERRUPTIBLE)
794
				se->block_start = rq_of(cfs_rq)->clock;
795
		}
796
#endif
P
Peter Zijlstra 已提交
797 798
	}

P
Peter Zijlstra 已提交
799
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
800

801
	if (se != cfs_rq->curr)
802 803
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
804
	update_min_vruntime(cfs_rq);
805 806 807 808 809
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
810
static void
I
Ingo Molnar 已提交
811
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
812
{
813 814
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
815
	ideal_runtime = sched_slice(cfs_rq, curr);
816
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
817
	if (delta_exec > ideal_runtime) {
818
		resched_task(rq_of(cfs_rq)->curr);
819 820 821 822 823 824
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
	}
825 826
}

827
static void
828
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
829
{
830 831 832 833 834 835 836 837 838 839 840
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

841
	update_stats_curr_start(cfs_rq, se);
842
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
843 844 845 846 847 848
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
849
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
850 851 852 853
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
854
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
855 856
}

857 858 859
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

860
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
861
{
862 863
	struct sched_entity *se = __pick_next_entity(cfs_rq);

P
Peter Zijlstra 已提交
864 865
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
		return cfs_rq->next;
866

P
Peter Zijlstra 已提交
867 868 869 870
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
		return cfs_rq->last;

	return se;
871 872
}

873
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
874 875 876 877 878 879
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
880
		update_curr(cfs_rq);
881

P
Peter Zijlstra 已提交
882
	check_spread(cfs_rq, prev);
883
	if (prev->on_rq) {
884
		update_stats_wait_start(cfs_rq, prev);
885 886 887
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
888
	cfs_rq->curr = NULL;
889 890
}

P
Peter Zijlstra 已提交
891 892
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
893 894
{
	/*
895
	 * Update run-time statistics of the 'current'.
896
	 */
897
	update_curr(cfs_rq);
898

P
Peter Zijlstra 已提交
899 900 901 902 903
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
904 905 906 907
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
908 909 910 911 912 913 914 915
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

916
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
917
		check_preempt_tick(cfs_rq, curr);
918 919 920 921 922 923
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
947
		if (rq->curr != p)
948
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
949

950
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
951 952
	}
}
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
969
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
970 971 972 973
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
974 975 976 977

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
978 979
#endif

980 981 982 983 984
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
985
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
986 987
{
	struct cfs_rq *cfs_rq;
988
	struct sched_entity *se = &p->se;
989 990

	for_each_sched_entity(se) {
991
		if (se->on_rq)
992 993
			break;
		cfs_rq = cfs_rq_of(se);
994
		enqueue_entity(cfs_rq, se, wakeup);
995
		wakeup = 1;
996
	}
P
Peter Zijlstra 已提交
997

998
	hrtick_update(rq);
999 1000 1001 1002 1003 1004 1005
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
1006
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1007 1008
{
	struct cfs_rq *cfs_rq;
1009
	struct sched_entity *se = &p->se;
1010 1011 1012

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1013
		dequeue_entity(cfs_rq, se, sleep);
1014
		/* Don't dequeue parent if it has other entities besides us */
1015
		if (cfs_rq->load.weight)
1016
			break;
1017
		sleep = 1;
1018
	}
P
Peter Zijlstra 已提交
1019

1020
	hrtick_update(rq);
1021 1022 1023
}

/*
1024 1025 1026
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
1027
 */
1028
static void yield_task_fair(struct rq *rq)
1029
{
1030 1031 1032
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
1033 1034

	/*
1035 1036 1037 1038 1039
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

P
Peter Zijlstra 已提交
1040 1041
	clear_buddies(cfs_rq, se);

1042
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1043
		update_rq_clock(rq);
1044
		/*
1045
		 * Update run-time statistics of the 'current'.
1046
		 */
D
Dmitry Adamushko 已提交
1047
		update_curr(cfs_rq);
1048 1049 1050 1051 1052

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
1053
	 */
D
Dmitry Adamushko 已提交
1054
	rightmost = __pick_last_entity(cfs_rq);
1055 1056 1057
	/*
	 * Already in the rightmost position?
	 */
1058
	if (unlikely(!rightmost || entity_before(rightmost, se)))
1059 1060 1061 1062
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
1063 1064
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
1065
	 */
1066
	se->vruntime = rightmost->vruntime + 1;
1067 1068
}

1069
#ifdef CONFIG_SMP
1070

1071
#ifdef CONFIG_FAIR_GROUP_SCHED
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 *
 * The problem is that perfectly aligning the shares is rather expensive, hence
 * we try to avoid doing that too often - see update_shares(), which ratelimits
 * this change.
 *
 * We compensate this by not only taking the current delta into account, but
 * also considering the delta between when the shares were last adjusted and
 * now.
 *
 * We still saw a performance dip, some tracing learned us that between
 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 * significantly. Therefore try to bias the error in direction of failing
 * the affine wakeup.
 *
 */
1093 1094
static long effective_load(struct task_group *tg, int cpu,
		long wl, long wg)
1095
{
P
Peter Zijlstra 已提交
1096
	struct sched_entity *se = tg->se[cpu];
1097 1098 1099 1100

	if (!tg->parent)
		return wl;

1101 1102 1103 1104 1105 1106 1107
	/*
	 * By not taking the decrease of shares on the other cpu into
	 * account our error leans towards reducing the affine wakeups.
	 */
	if (!wl && sched_feat(ASYM_EFF_LOAD))
		return wl;

P
Peter Zijlstra 已提交
1108
	for_each_sched_entity(se) {
1109
		long S, rw, s, a, b;
1110 1111 1112 1113 1114 1115 1116 1117 1118
		long more_w;

		/*
		 * Instead of using this increment, also add the difference
		 * between when the shares were last updated and now.
		 */
		more_w = se->my_q->load.weight - se->my_q->rq_weight;
		wl += more_w;
		wg += more_w;
P
Peter Zijlstra 已提交
1119 1120 1121

		S = se->my_q->tg->shares;
		s = se->my_q->shares;
1122
		rw = se->my_q->rq_weight;
1123

1124 1125
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1126

1127 1128 1129 1130 1131
		wl = s*(a-b);

		if (likely(b))
			wl /= b;

1132 1133 1134 1135 1136 1137 1138
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1139 1140
		wg = 0;
	}
1141

P
Peter Zijlstra 已提交
1142
	return wl;
1143
}
P
Peter Zijlstra 已提交
1144

1145
#else
P
Peter Zijlstra 已提交
1146

1147 1148
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1149
{
1150
	return wl;
1151
}
P
Peter Zijlstra 已提交
1152

1153 1154
#endif

1155
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1156
{
1157 1158 1159
	struct task_struct *curr = current;
	unsigned long this_load, load;
	int idx, this_cpu, prev_cpu;
1160
	unsigned long tl_per_task;
1161 1162
	unsigned int imbalance;
	struct task_group *tg;
1163
	unsigned long weight;
1164
	int balanced;
1165

1166 1167 1168 1169 1170
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
1171

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	if (sync) {
	       if (sched_feat(SYNC_LESS) &&
		   (curr->se.avg_overlap > sysctl_sched_migration_cost ||
		    p->se.avg_overlap > sysctl_sched_migration_cost))
		       sync = 0;
	} else {
		if (sched_feat(SYNC_MORE) &&
		    (curr->se.avg_overlap < sysctl_sched_migration_cost &&
		     p->se.avg_overlap < sysctl_sched_migration_cost))
			sync = 1;
	}
1183

1184 1185 1186 1187 1188
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1189 1190 1191 1192
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

1193
		this_load += effective_load(tg, this_cpu, -weight, -weight);
1194 1195
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
1196

1197 1198
	tg = task_group(p);
	weight = p->se.load.weight;
1199

1200 1201
	imbalance = 100 + (sd->imbalance_pct - 100) / 2;

1202 1203
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1204 1205 1206
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
1207 1208 1209 1210
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
1211 1212
	balanced = !this_load ||
		100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
1213
		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1214

1215
	/*
I
Ingo Molnar 已提交
1216 1217 1218
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1219
	 */
1220 1221
	if (sync && balanced)
		return 1;
1222 1223 1224 1225

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1226 1227 1228
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1229 1230 1231 1232 1233
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
1234
		schedstat_inc(sd, ttwu_move_affine);
1235 1236 1237 1238 1239 1240 1241
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1242 1243 1244 1245 1246
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
1247
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1248
		  int this_cpu, int load_idx)
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
1331
static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1332
{
1333
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1334 1335 1336 1337
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
	int new_cpu = cpu;
	int want_affine = 0;
1338
	int want_sd = 1;
1339
	int sync = wake_flags & WF_SYNC;
1340

1341
	if (sd_flag & SD_BALANCE_WAKE) {
1342 1343 1344 1345
		if (sched_feat(AFFINE_WAKEUPS))
			want_affine = 1;
		new_cpu = prev_cpu;
	}
1346

P
Peter Zijlstra 已提交
1347
	rcu_read_lock();
1348 1349
	for_each_domain(cpu, tmp) {
		/*
1350 1351
		 * If power savings logic is enabled for a domain, see if we
		 * are not overloaded, if so, don't balance wider.
1352
		 */
P
Peter Zijlstra 已提交
1353
		if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
			unsigned long power = 0;
			unsigned long nr_running = 0;
			unsigned long capacity;
			int i;

			for_each_cpu(i, sched_domain_span(tmp)) {
				power += power_of(i);
				nr_running += cpu_rq(i)->cfs.nr_running;
			}

			capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);

P
Peter Zijlstra 已提交
1366 1367 1368 1369
			if (tmp->flags & SD_POWERSAVINGS_BALANCE)
				nr_running /= 2;

			if (nr_running < capacity)
1370
				want_sd = 0;
1371
		}
1372

1373 1374 1375
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {

1376
			affine_sd = tmp;
1377 1378 1379
			want_affine = 0;
		}

1380 1381 1382
		if (!want_sd && !want_affine)
			break;

1383
		if (!(tmp->flags & sd_flag))
1384 1385
			continue;

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
		if (want_sd)
			sd = tmp;
	}

	if (sched_feat(LB_SHARES_UPDATE)) {
		/*
		 * Pick the largest domain to update shares over
		 */
		tmp = sd;
		if (affine_sd && (!tmp ||
				  cpumask_weight(sched_domain_span(affine_sd)) >
				  cpumask_weight(sched_domain_span(sd))))
			tmp = affine_sd;

		if (tmp)
			update_shares(tmp);
1402
	}
1403

1404 1405 1406 1407
	if (affine_sd && wake_affine(affine_sd, p, sync)) {
		new_cpu = cpu;
		goto out;
	}
1408

1409
	while (sd) {
1410
		int load_idx = sd->forkexec_idx;
1411
		struct sched_group *group;
1412
		int weight;
1413

1414
		if (!(sd->flags & sd_flag)) {
1415 1416 1417 1418
			sd = sd->child;
			continue;
		}

1419 1420 1421 1422
		if (sd_flag & SD_BALANCE_WAKE)
			load_idx = sd->wake_idx;

		group = find_idlest_group(sd, p, cpu, load_idx);
1423 1424 1425 1426 1427
		if (!group) {
			sd = sd->child;
			continue;
		}

1428
		new_cpu = find_idlest_cpu(group, p, cpu);
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
		weight = cpumask_weight(sched_domain_span(sd));
		sd = NULL;
		for_each_domain(cpu, tmp) {
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
				break;
1442
			if (tmp->flags & sd_flag)
1443 1444 1445 1446 1447
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

P
Peter Zijlstra 已提交
1448 1449
out:
	rcu_read_unlock();
1450
	return new_cpu;
1451
}
1452 1453
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
/*
 * Adaptive granularity
 *
 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
 * with the limit of wakeup_gran -- when it never does a wakeup.
 *
 * So the smaller avg_wakeup is the faster we want this task to preempt,
 * but we don't want to treat the preemptee unfairly and therefore allow it
 * to run for at least the amount of time we'd like to run.
 *
 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
 *
 * NOTE: we use *nr_running to scale with load, this nicely matches the
 *       degrading latency on load.
 */
static unsigned long
adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
{
	u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
	u64 gran = 0;

	if (this_run < expected_wakeup)
		gran = expected_wakeup - this_run;

	return min_t(s64, gran, sysctl_sched_wakeup_granularity);
}

static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1484 1485 1486
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

P
Peter Zijlstra 已提交
1487 1488 1489
	if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
		gran = adaptive_gran(curr, se);

1490
	/*
P
Peter Zijlstra 已提交
1491 1492
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
1493
	 */
P
Peter Zijlstra 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	if (sched_feat(ASYM_GRAN)) {
		/*
		 * By using 'se' instead of 'curr' we penalize light tasks, so
		 * they get preempted easier. That is, if 'se' < 'curr' then
		 * the resulting gran will be larger, therefore penalizing the
		 * lighter, if otoh 'se' > 'curr' then the resulting gran will
		 * be smaller, again penalizing the lighter task.
		 *
		 * This is especially important for buddies when the leftmost
		 * task is higher priority than the buddy.
		 */
		if (unlikely(se->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, se);
	} else {
		if (unlikely(curr->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, curr);
	}
1511 1512 1513 1514

	return gran;
}

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
1537
	gran = wakeup_gran(curr, se);
1538 1539 1540 1541 1542 1543
	if (vdiff > gran)
		return 1;

	return 0;
}

1544 1545
static void set_last_buddy(struct sched_entity *se)
{
1546 1547 1548 1549
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->last = se;
	}
1550 1551 1552 1553
}

static void set_next_buddy(struct sched_entity *se)
{
1554 1555 1556 1557
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->next = se;
	}
1558 1559
}

1560 1561 1562
/*
 * Preempt the current task with a newly woken task if needed:
 */
1563
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1564 1565
{
	struct task_struct *curr = rq->curr;
1566
	struct sched_entity *se = &curr->se, *pse = &p->se;
1567
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1568
	int sync = wake_flags & WF_SYNC;
1569

1570
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1571

1572
	if (unlikely(rt_prio(p->prio))) {
1573 1574 1575
		resched_task(curr);
		return;
	}
1576

P
Peter Zijlstra 已提交
1577 1578 1579
	if (unlikely(p->sched_class != &fair_sched_class))
		return;

I
Ingo Molnar 已提交
1580 1581 1582
	if (unlikely(se == pse))
		return;

P
Peter Zijlstra 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	/*
	 * Only set the backward buddy when the current task is still on the
	 * rq. This can happen when a wakeup gets interleaved with schedule on
	 * the ->pre_schedule() or idle_balance() point, either of which can
	 * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class, for
	 * obvious reasons its a bad idea to schedule back to the idle thread.
	 */
	if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1593
		set_last_buddy(se);
1594
	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK))
M
Mike Galbraith 已提交
1595
		set_next_buddy(pse);
P
Peter Zijlstra 已提交
1596

1597 1598 1599 1600 1601 1602 1603
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 */
	if (test_tsk_need_resched(curr))
		return;

1604
	/*
1605
	 * Batch and idle tasks do not preempt (their preemption is driven by
1606 1607
	 * the tick):
	 */
1608
	if (unlikely(p->policy != SCHED_NORMAL))
1609
		return;
1610

1611 1612 1613
	/* Idle tasks are by definition preempted by everybody. */
	if (unlikely(curr->policy == SCHED_IDLE)) {
		resched_task(curr);
1614
		return;
1615
	}
1616

P
Peter Zijlstra 已提交
1617 1618 1619 1620
	if ((sched_feat(WAKEUP_SYNC) && sync) ||
	    (sched_feat(WAKEUP_OVERLAP) &&
	     (se->avg_overlap < sysctl_sched_migration_cost &&
	      pse->avg_overlap < sysctl_sched_migration_cost))) {
1621 1622 1623 1624
		resched_task(curr);
		return;
	}

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	if (sched_feat(WAKEUP_RUNNING)) {
		if (pse->avg_running < se->avg_running) {
			set_next_buddy(pse);
			resched_task(curr);
			return;
		}
	}

	if (!sched_feat(WAKEUP_PREEMPT))
		return;

1636 1637
	find_matching_se(&se, &pse);

1638
	BUG_ON(!pse);
1639

1640 1641
	if (wakeup_preempt_entity(se, pse) == 1)
		resched_task(curr);
1642 1643
}

1644
static struct task_struct *pick_next_task_fair(struct rq *rq)
1645
{
P
Peter Zijlstra 已提交
1646
	struct task_struct *p;
1647 1648 1649 1650 1651 1652 1653
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1654
		se = pick_next_entity(cfs_rq);
1655 1656 1657
		/*
		 * If se was a buddy, clear it so that it will have to earn
		 * the favour again.
1658 1659 1660 1661 1662
		 *
		 * If se was not a buddy, clear the buddies because neither
		 * was elegible to run, let them earn it again.
		 *
		 * IOW. unconditionally clear buddies.
1663
		 */
1664
		__clear_buddies(cfs_rq, NULL);
1665
		set_next_entity(cfs_rq, se);
1666 1667 1668
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1669 1670 1671 1672
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1673 1674 1675 1676 1677
}

/*
 * Account for a descheduled task:
 */
1678
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1679 1680 1681 1682 1683 1684
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1685
		put_prev_entity(cfs_rq, se);
1686 1687 1688
	}
}

1689
#ifdef CONFIG_SMP
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1701
static struct task_struct *
1702
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1703
{
D
Dhaval Giani 已提交
1704 1705
	struct task_struct *p = NULL;
	struct sched_entity *se;
1706

1707 1708 1709
	if (next == &cfs_rq->tasks)
		return NULL;

1710 1711 1712
	se = list_entry(next, struct sched_entity, group_node);
	p = task_of(se);
	cfs_rq->balance_iterator = next->next;
1713

1714 1715 1716 1717 1718 1719 1720
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1721
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1722 1723 1724 1725 1726 1727
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1728
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1729 1730
}

1731 1732 1733 1734 1735
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1736
{
1737
	struct rq_iterator cfs_rq_iterator;
1738

1739 1740 1741
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1742

1743 1744 1745
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1746 1747
}

1748
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1749
static unsigned long
1750
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1751
		  unsigned long max_load_move,
1752 1753
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1754 1755
{
	long rem_load_move = max_load_move;
1756 1757
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1758

1759
	rcu_read_lock();
1760
	update_h_load(busiest_cpu);
1761

1762
	list_for_each_entry_rcu(tg, &task_groups, list) {
1763
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1764 1765
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
S
Srivatsa Vaddagiri 已提交
1766
		u64 rem_load, moved_load;
1767

1768 1769 1770
		/*
		 * empty group
		 */
1771
		if (!busiest_cfs_rq->task_weight)
1772 1773
			continue;

S
Srivatsa Vaddagiri 已提交
1774 1775
		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);
1776

1777
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1778
				rem_load, sd, idle, all_pinned, this_best_prio,
1779
				tg->cfs_rq[busiest_cpu]);
1780

1781
		if (!moved_load)
1782 1783
			continue;

1784
		moved_load *= busiest_h_load;
S
Srivatsa Vaddagiri 已提交
1785
		moved_load = div_u64(moved_load, busiest_weight + 1);
1786

1787 1788
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1789 1790
			break;
	}
1791
	rcu_read_unlock();
1792

P
Peter Williams 已提交
1793
	return max_load_move - rem_load_move;
1794
}
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1807

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1831
#endif /* CONFIG_SMP */
1832

1833 1834 1835
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1836
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1837 1838 1839 1840 1841 1842
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1843
		entity_tick(cfs_rq, se, queued);
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	}
}

/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1854
static void task_new_fair(struct rq *rq, struct task_struct *p)
1855 1856
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1857
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1858
	int this_cpu = smp_processor_id();
1859 1860 1861

	sched_info_queued(p);

1862
	update_curr(cfs_rq);
1863 1864
	if (curr)
		se->vruntime = curr->vruntime;
1865
	place_entity(cfs_rq, se, 1);
1866

1867
	/* 'curr' will be NULL if the child belongs to a different group */
1868
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1869
			curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
1870
		/*
1871 1872 1873
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1874
		swap(curr->vruntime, se->vruntime);
1875
		resched_task(rq->curr);
1876
	}
1877

1878
	enqueue_task_fair(rq, p, 0);
1879 1880
}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
1897
		check_preempt_curr(rq, p, 0);
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
1914
		check_preempt_curr(rq, p, 0);
1915 1916
}

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1940 1941 1942
/*
 * All the scheduling class methods:
 */
1943 1944
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1945 1946 1947 1948
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
1949
	.check_preempt_curr	= check_preempt_wakeup,
1950 1951 1952 1953

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1954
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1955 1956
	.select_task_rq		= select_task_rq_fair,

1957
	.load_balance		= load_balance_fair,
1958
	.move_one_task		= move_one_task_fair,
1959
#endif
1960

1961
	.set_curr_task          = set_curr_task_fair,
1962 1963
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1964 1965 1966

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1967 1968 1969 1970

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1971 1972 1973
};

#ifdef CONFIG_SCHED_DEBUG
1974
static void print_cfs_stats(struct seq_file *m, int cpu)
1975 1976 1977
{
	struct cfs_rq *cfs_rq;

1978
	rcu_read_lock();
1979
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1980
		print_cfs_rq(m, cpu, cfs_rq);
1981
	rcu_read_unlock();
1982 1983
}
#endif