slab.c 109.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165 166 167 168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

171 172 173 174 175 176
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
194
	void *entry[];	/*
A
Andrew Morton 已提交
195 196 197
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
198 199 200 201
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
202
			 */
L
Linus Torvalds 已提交
203 204
};

J
Joonsoo Kim 已提交
205 206 207 208 209
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
227 228 229
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
230 231 232 233
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
234
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
235 236
};

237 238 239
/*
 * Need this for bootstrapping a per node allocator.
 */
240
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
241
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242
#define	CACHE_CACHE 0
243
#define	SIZE_AC MAX_NUMNODES
244
#define	SIZE_NODE (2 * MAX_NUMNODES)
245

246
static int drain_freelist(struct kmem_cache *cache,
247
			struct kmem_cache_node *n, int tofree);
248
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
249 250
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
251
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
252
static void cache_reap(struct work_struct *unused);
253

254 255
static int slab_early_init = 1;

256
#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
257
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
258

259
static void kmem_cache_node_init(struct kmem_cache_node *parent)
260 261 262 263 264 265
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
266
	parent->colour_next = 0;
267 268 269 270 271
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
272 273 274
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
275
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
276 277
	} while (0)

A
Andrew Morton 已提交
278 279
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
280 281 282 283
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
284 285 286 287 288

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
289 290 291
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
292
 *
A
Adrian Bunk 已提交
293
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
294 295
 * which could lock up otherwise freeable slabs.
 */
296 297
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
298 299 300 301 302 303

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
304
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
305 306 307 308 309
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
310 311
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
312
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
313
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
314 315 316 317 318
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
319 320 321 322 323 324 325 326 327
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
328
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
329 330 331
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
332
#define	STATS_INC_NODEFREES(x)	do { } while (0)
333
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
334
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
335 336 337 338 339 340 341 342
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
343 344
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
345
 * 0		: objp
346
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
347 348
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
349
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
350
 * 		redzone word.
351
 * cachep->obj_offset: The real object.
352 353
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
354
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
355
 */
356
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
357
{
358
	return cachep->obj_offset;
L
Linus Torvalds 已提交
359 360
}

361
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
362 363
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
364 365
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
366 367
}

368
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
369 370 371
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
372
		return (unsigned long long *)(objp + cachep->size -
373
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
374
					      REDZONE_ALIGN);
375
	return (unsigned long long *) (objp + cachep->size -
376
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
377 378
}

379
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
380 381
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
382
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
383 384 385 386
}

#else

387
#define obj_offset(x)			0
388 389
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
390 391 392 393
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
#define OBJECT_FREE (0)
#define OBJECT_ACTIVE (1)

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void set_obj_status(struct page *page, int idx, int val)
{
	int freelist_size;
	char *status;
	struct kmem_cache *cachep = page->slab_cache;

	freelist_size = cachep->num * sizeof(freelist_idx_t);
	status = (char *)page->freelist + freelist_size;
	status[idx] = val;
}

static inline unsigned int get_obj_status(struct page *page, int idx)
{
	int freelist_size;
	char *status;
	struct kmem_cache *cachep = page->slab_cache;

	freelist_size = cachep->num * sizeof(freelist_idx_t);
	status = (char *)page->freelist + freelist_size;

	return status[idx];
}

#else
static inline void set_obj_status(struct page *page, int idx, int val) {}

#endif

L
Linus Torvalds 已提交
427
/*
428 429
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
430
 */
431 432 433
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
434
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
435

436 437
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
438
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
439
	return page->slab_cache;
440 441
}

442
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
443 444
				 unsigned int idx)
{
445
	return page->s_mem + cache->size * idx;
446 447
}

448
/*
449 450 451
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
452 453 454
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
455
					const struct page *page, void *obj)
456
{
457
	u32 offset = (obj - page->s_mem);
458
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
459 460
}

L
Linus Torvalds 已提交
461
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
462
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
463 464

/* internal cache of cache description objs */
465
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
466 467 468
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
469
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
470
	.name = "kmem_cache",
L
Linus Torvalds 已提交
471 472
};

473
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
474

475
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
476 477 478 479
{
	return cachep->array[smp_processor_id()];
}

480 481 482 483 484 485 486 487 488 489 490 491 492 493
static size_t calculate_freelist_size(int nr_objs, size_t align)
{
	size_t freelist_size;

	freelist_size = nr_objs * sizeof(freelist_idx_t);
	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
		freelist_size += nr_objs * sizeof(char);

	if (align)
		freelist_size = ALIGN(freelist_size, align);

	return freelist_size;
}

494 495
static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
				size_t idx_size, size_t align)
L
Linus Torvalds 已提交
496
{
497
	int nr_objs;
498
	size_t remained_size;
499
	size_t freelist_size;
500
	int extra_space = 0;
501

502 503
	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
		extra_space = sizeof(char);
504 505 506 507 508 509 510 511
	/*
	 * Ignore padding for the initial guess. The padding
	 * is at most @align-1 bytes, and @buffer_size is at
	 * least @align. In the worst case, this result will
	 * be one greater than the number of objects that fit
	 * into the memory allocation when taking the padding
	 * into account.
	 */
512
	nr_objs = slab_size / (buffer_size + idx_size + extra_space);
513 514 515 516 517

	/*
	 * This calculated number will be either the right
	 * amount, or one greater than what we want.
	 */
518 519 520
	remained_size = slab_size - nr_objs * buffer_size;
	freelist_size = calculate_freelist_size(nr_objs, align);
	if (remained_size < freelist_size)
521 522 523
		nr_objs--;

	return nr_objs;
524
}
L
Linus Torvalds 已提交
525

A
Andrew Morton 已提交
526 527 528
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
529 530 531 532 533 534 535
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
536

537 538 539 540 541
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
J
Joonsoo Kim 已提交
542
	 * - One unsigned int for each object
543 544 545 546 547 548 549 550 551 552 553 554 555
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

	} else {
556
		nr_objs = calculate_nr_objs(slab_size, buffer_size,
557
					sizeof(freelist_idx_t), align);
558
		mgmt_size = calculate_freelist_size(nr_objs, align);
559 560 561
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
562 563
}

564
#if DEBUG
565
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
566

A
Andrew Morton 已提交
567 568
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
569 570
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
571
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
572
	dump_stack();
573
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
574
}
575
#endif
L
Linus Torvalds 已提交
576

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

593 594 595 596 597 598 599 600 601 602 603
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

604 605 606 607 608 609 610
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
611
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
612 613 614 615 616

static void init_reap_node(int cpu)
{
	int node;

617
	node = next_node(cpu_to_mem(cpu), node_online_map);
618
	if (node == MAX_NUMNODES)
619
		node = first_node(node_online_map);
620

621
	per_cpu(slab_reap_node, cpu) = node;
622 623 624 625
}

static void next_reap_node(void)
{
626
	int node = __this_cpu_read(slab_reap_node);
627 628 629 630

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
631
	__this_cpu_write(slab_reap_node, node);
632 633 634 635 636 637 638
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
639 640 641 642 643 644 645
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
646
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
647
{
648
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
649 650 651 652 653 654

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
655
	if (keventd_up() && reap_work->work.func == NULL) {
656
		init_reap_node(cpu);
657
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
658 659
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
660 661 662
	}
}

663
static void init_arraycache(struct array_cache *ac, int limit, int batch)
L
Linus Torvalds 已提交
664
{
665 666
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
667
	 * However, when such objects are allocated or transferred to another
668 669 670 671
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
672 673 674 675 676 677
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
L
Linus Torvalds 已提交
678
	}
679 680 681 682 683
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
684
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
685 686 687 688 689
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
L
Linus Torvalds 已提交
690 691
}

692
static inline bool is_slab_pfmemalloc(struct page *page)
693 694 695 696 697 698 699 700
{
	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
701
	struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
702
	struct page *page;
703 704 705 706 707
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

708
	spin_lock_irqsave(&n->list_lock, flags);
709 710
	list_for_each_entry(page, &n->slabs_full, lru)
		if (is_slab_pfmemalloc(page))
711 712
			goto out;

713 714
	list_for_each_entry(page, &n->slabs_partial, lru)
		if (is_slab_pfmemalloc(page))
715 716
			goto out;

717 718
	list_for_each_entry(page, &n->slabs_free, lru)
		if (is_slab_pfmemalloc(page))
719 720 721 722
			goto out;

	pfmemalloc_active = false;
out:
723
	spin_unlock_irqrestore(&n->list_lock, flags);
724 725
}

726
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
727 728 729 730 731 732 733
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
734
		struct kmem_cache_node *n;
735 736 737 738 739 740 741

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
742
		for (i = 0; i < ac->avail; i++) {
743 744 745 746 747 748 749 750 751 752 753 754 755
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
756
		n = get_node(cachep, numa_mem_id());
757
		if (!list_empty(&n->slabs_free) && force_refill) {
758
			struct page *page = virt_to_head_page(objp);
759
			ClearPageSlabPfmemalloc(page);
760 761 762 763 764 765 766 767 768 769 770 771 772
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

773 774 775 776 777 778 779 780 781 782 783 784 785 786
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
787 788 789 790
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
791
		struct page *page = virt_to_head_page(objp);
792 793 794 795
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

796 797 798 799 800 801 802 803 804
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

805 806 807
	ac->entry[ac->avail++] = objp;
}

808 809 810 811 812 813 814 815 816 817
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
818
	int nr = min3(from->avail, max, to->limit - to->avail);
819 820 821 822 823 824 825 826 827 828 829 830

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

831 832 833
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
834
#define reap_alien(cachep, n) do { } while (0)
835

J
Joonsoo Kim 已提交
836 837
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
838
{
J
Joonsoo Kim 已提交
839
	return NULL;
840 841
}

J
Joonsoo Kim 已提交
842
static inline void free_alien_cache(struct alien_cache **ac_ptr)
843 844 845 846 847 848 849 850 851 852 853 854 855 856
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

857
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
858 859 860 861 862 863 864
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

865
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
866
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
867

J
Joonsoo Kim 已提交
868 869 870
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
871
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
J
Joonsoo Kim 已提交
872 873 874 875
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
876
	spin_lock_init(&alc->lock);
J
Joonsoo Kim 已提交
877 878 879 880
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
881
{
J
Joonsoo Kim 已提交
882
	struct alien_cache **alc_ptr;
883
	size_t memsize = sizeof(void *) * nr_node_ids;
884 885 886 887
	int i;

	if (limit > 1)
		limit = 12;
J
Joonsoo Kim 已提交
888 889 890 891 892 893 894 895 896 897 898 899 900
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
901 902
		}
	}
J
Joonsoo Kim 已提交
903
	return alc_ptr;
904 905
}

J
Joonsoo Kim 已提交
906
static void free_alien_cache(struct alien_cache **alc_ptr)
907 908 909
{
	int i;

J
Joonsoo Kim 已提交
910
	if (!alc_ptr)
911 912
		return;
	for_each_node(i)
J
Joonsoo Kim 已提交
913 914
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
915 916
}

917
static void __drain_alien_cache(struct kmem_cache *cachep,
918 919
				struct array_cache *ac, int node,
				struct list_head *list)
920
{
921
	struct kmem_cache_node *n = get_node(cachep, node);
922 923

	if (ac->avail) {
924
		spin_lock(&n->list_lock);
925 926 927 928 929
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
930 931
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
932

933
		free_block(cachep, ac->entry, ac->avail, node, list);
934
		ac->avail = 0;
935
		spin_unlock(&n->list_lock);
936 937 938
	}
}

939 940 941
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
942
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
943
{
944
	int node = __this_cpu_read(slab_reap_node);
945

946
	if (n->alien) {
J
Joonsoo Kim 已提交
947 948 949 950 951
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
952
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
953 954 955
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
956
				spin_unlock_irq(&alc->lock);
957
				slabs_destroy(cachep, &list);
J
Joonsoo Kim 已提交
958
			}
959 960 961 962
		}
	}
}

A
Andrew Morton 已提交
963
static void drain_alien_cache(struct kmem_cache *cachep,
J
Joonsoo Kim 已提交
964
				struct alien_cache **alien)
965
{
P
Pekka Enberg 已提交
966
	int i = 0;
J
Joonsoo Kim 已提交
967
	struct alien_cache *alc;
968 969 970 971
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
J
Joonsoo Kim 已提交
972 973
		alc = alien[i];
		if (alc) {
974 975
			LIST_HEAD(list);

J
Joonsoo Kim 已提交
976
			ac = &alc->ac;
977
			spin_lock_irqsave(&alc->lock, flags);
978
			__drain_alien_cache(cachep, ac, i, &list);
979
			spin_unlock_irqrestore(&alc->lock, flags);
980
			slabs_destroy(cachep, &list);
981 982 983
		}
	}
}
984

985
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
986
{
J
Joonsoo Kim 已提交
987
	int nodeid = page_to_nid(virt_to_page(objp));
988
	struct kmem_cache_node *n;
J
Joonsoo Kim 已提交
989 990
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
P
Pekka Enberg 已提交
991
	int node;
992
	LIST_HEAD(list);
P
Pekka Enberg 已提交
993

994
	node = numa_mem_id();
995 996 997 998 999

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
J
Joonsoo Kim 已提交
1000
	if (likely(nodeid == node))
1001 1002
		return 0;

1003
	n = get_node(cachep, node);
1004
	STATS_INC_NODEFREES(cachep);
1005 1006
	if (n->alien && n->alien[nodeid]) {
		alien = n->alien[nodeid];
J
Joonsoo Kim 已提交
1007
		ac = &alien->ac;
1008
		spin_lock(&alien->lock);
J
Joonsoo Kim 已提交
1009
		if (unlikely(ac->avail == ac->limit)) {
1010
			STATS_INC_ACOVERFLOW(cachep);
1011
			__drain_alien_cache(cachep, ac, nodeid, &list);
1012
		}
J
Joonsoo Kim 已提交
1013
		ac_put_obj(cachep, ac, objp);
1014
		spin_unlock(&alien->lock);
1015
		slabs_destroy(cachep, &list);
1016
	} else {
1017 1018
		n = get_node(cachep, nodeid);
		spin_lock(&n->list_lock);
1019
		free_block(cachep, &objp, 1, nodeid, &list);
1020
		spin_unlock(&n->list_lock);
1021
		slabs_destroy(cachep, &list);
1022 1023 1024
	}
	return 1;
}
1025 1026
#endif

1027
/*
1028
 * Allocates and initializes node for a node on each slab cache, used for
1029
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1030
 * will be allocated off-node since memory is not yet online for the new node.
1031
 * When hotplugging memory or a cpu, existing node are not replaced if
1032 1033
 * already in use.
 *
1034
 * Must hold slab_mutex.
1035
 */
1036
static int init_cache_node_node(int node)
1037 1038
{
	struct kmem_cache *cachep;
1039
	struct kmem_cache_node *n;
1040
	const size_t memsize = sizeof(struct kmem_cache_node);
1041

1042
	list_for_each_entry(cachep, &slab_caches, list) {
1043
		/*
1044
		 * Set up the kmem_cache_node for cpu before we can
1045 1046 1047
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1048 1049
		n = get_node(cachep, node);
		if (!n) {
1050 1051
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1052
				return -ENOMEM;
1053
			kmem_cache_node_init(n);
1054 1055
			n->next_reap = jiffies + REAPTIMEOUT_NODE +
			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1056 1057

			/*
1058 1059
			 * The kmem_cache_nodes don't come and go as CPUs
			 * come and go.  slab_mutex is sufficient
1060 1061
			 * protection here.
			 */
1062
			cachep->node[node] = n;
1063 1064
		}

1065 1066
		spin_lock_irq(&n->list_lock);
		n->free_limit =
1067 1068
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1069
		spin_unlock_irq(&n->list_lock);
1070 1071 1072 1073
	}
	return 0;
}

1074 1075 1076 1077 1078 1079
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1080
static void cpuup_canceled(long cpu)
1081 1082
{
	struct kmem_cache *cachep;
1083
	struct kmem_cache_node *n = NULL;
1084
	int node = cpu_to_mem(cpu);
1085
	const struct cpumask *mask = cpumask_of_node(node);
1086

1087
	list_for_each_entry(cachep, &slab_caches, list) {
1088 1089
		struct array_cache *nc;
		struct array_cache *shared;
J
Joonsoo Kim 已提交
1090
		struct alien_cache **alien;
1091
		LIST_HEAD(list);
1092 1093 1094 1095

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
1096
		n = get_node(cachep, node);
1097

1098
		if (!n)
1099 1100
			goto free_array_cache;

1101
		spin_lock_irq(&n->list_lock);
1102

1103 1104
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1105
		if (nc)
1106
			free_block(cachep, nc->entry, nc->avail, node, &list);
1107

1108
		if (!cpumask_empty(mask)) {
1109
			spin_unlock_irq(&n->list_lock);
1110 1111 1112
			goto free_array_cache;
		}

1113
		shared = n->shared;
1114 1115
		if (shared) {
			free_block(cachep, shared->entry,
1116
				   shared->avail, node, &list);
1117
			n->shared = NULL;
1118 1119
		}

1120 1121
		alien = n->alien;
		n->alien = NULL;
1122

1123
		spin_unlock_irq(&n->list_lock);
1124 1125 1126 1127 1128 1129 1130

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
1131
		slabs_destroy(cachep, &list);
1132 1133 1134 1135 1136 1137 1138
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1139
	list_for_each_entry(cachep, &slab_caches, list) {
1140
		n = get_node(cachep, node);
1141
		if (!n)
1142
			continue;
1143
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1144 1145 1146
	}
}

1147
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1148
{
1149
	struct kmem_cache *cachep;
1150
	struct kmem_cache_node *n = NULL;
1151
	int node = cpu_to_mem(cpu);
1152
	int err;
L
Linus Torvalds 已提交
1153

1154 1155 1156 1157
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1158
	 * kmem_cache_node and not this cpu's kmem_cache_node
1159
	 */
1160
	err = init_cache_node_node(node);
1161 1162
	if (err < 0)
		goto bad;
1163 1164 1165 1166 1167

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1168
	list_for_each_entry(cachep, &slab_caches, list) {
1169 1170
		struct array_cache *nc;
		struct array_cache *shared = NULL;
J
Joonsoo Kim 已提交
1171
		struct alien_cache **alien = NULL;
1172 1173

		nc = alloc_arraycache(node, cachep->limit,
1174
					cachep->batchcount, GFP_KERNEL);
1175 1176 1177 1178 1179
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1180
				0xbaadf00d, GFP_KERNEL);
1181 1182
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1183
				goto bad;
1184
			}
1185 1186
		}
		if (use_alien_caches) {
1187
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1188 1189 1190
			if (!alien) {
				kfree(shared);
				kfree(nc);
1191
				goto bad;
1192
			}
1193 1194
		}
		cachep->array[cpu] = nc;
1195
		n = get_node(cachep, node);
1196
		BUG_ON(!n);
1197

1198 1199
		spin_lock_irq(&n->list_lock);
		if (!n->shared) {
1200 1201 1202 1203
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
1204
			n->shared = shared;
1205 1206
			shared = NULL;
		}
1207
#ifdef CONFIG_NUMA
1208 1209
		if (!n->alien) {
			n->alien = alien;
1210
			alien = NULL;
L
Linus Torvalds 已提交
1211
		}
1212
#endif
1213
		spin_unlock_irq(&n->list_lock);
1214 1215 1216
		kfree(shared);
		free_alien_cache(alien);
	}
1217

1218 1219
	return 0;
bad:
1220
	cpuup_canceled(cpu);
1221 1222 1223
	return -ENOMEM;
}

1224
static int cpuup_callback(struct notifier_block *nfb,
1225 1226 1227 1228 1229 1230 1231 1232
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1233
		mutex_lock(&slab_mutex);
1234
		err = cpuup_prepare(cpu);
1235
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1236 1237
		break;
	case CPU_ONLINE:
1238
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1239 1240 1241
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1242
  	case CPU_DOWN_PREPARE:
1243
  	case CPU_DOWN_PREPARE_FROZEN:
1244
		/*
1245
		 * Shutdown cache reaper. Note that the slab_mutex is
1246 1247 1248 1249
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1250
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1251
		/* Now the cache_reaper is guaranteed to be not running. */
1252
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1253 1254
  		break;
  	case CPU_DOWN_FAILED:
1255
  	case CPU_DOWN_FAILED_FROZEN:
1256 1257
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1258
	case CPU_DEAD:
1259
	case CPU_DEAD_FROZEN:
1260 1261
		/*
		 * Even if all the cpus of a node are down, we don't free the
1262
		 * kmem_cache_node of any cache. This to avoid a race between
1263
		 * cpu_down, and a kmalloc allocation from another cpu for
1264
		 * memory from the node of the cpu going down.  The node
1265 1266 1267
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1268
		/* fall through */
1269
#endif
L
Linus Torvalds 已提交
1270
	case CPU_UP_CANCELED:
1271
	case CPU_UP_CANCELED_FROZEN:
1272
		mutex_lock(&slab_mutex);
1273
		cpuup_canceled(cpu);
1274
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1275 1276
		break;
	}
1277
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1278 1279
}

1280
static struct notifier_block cpucache_notifier = {
1281 1282
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1283

1284 1285 1286 1287 1288 1289
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1290
 * Must hold slab_mutex.
1291
 */
1292
static int __meminit drain_cache_node_node(int node)
1293 1294 1295 1296
{
	struct kmem_cache *cachep;
	int ret = 0;

1297
	list_for_each_entry(cachep, &slab_caches, list) {
1298
		struct kmem_cache_node *n;
1299

1300
		n = get_node(cachep, node);
1301
		if (!n)
1302 1303
			continue;

1304
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1305

1306 1307
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1328
		mutex_lock(&slab_mutex);
1329
		ret = init_cache_node_node(nid);
1330
		mutex_unlock(&slab_mutex);
1331 1332
		break;
	case MEM_GOING_OFFLINE:
1333
		mutex_lock(&slab_mutex);
1334
		ret = drain_cache_node_node(nid);
1335
		mutex_unlock(&slab_mutex);
1336 1337 1338 1339 1340 1341 1342 1343
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1344
	return notifier_from_errno(ret);
1345 1346 1347
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1348
/*
1349
 * swap the static kmem_cache_node with kmalloced memory
1350
 */
1351
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1352
				int nodeid)
1353
{
1354
	struct kmem_cache_node *ptr;
1355

1356
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1357 1358
	BUG_ON(!ptr);

1359
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1360 1361 1362 1363 1364
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1365
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1366
	cachep->node[nodeid] = ptr;
1367 1368
}

1369
/*
1370 1371
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1372
 */
1373
static void __init set_up_node(struct kmem_cache *cachep, int index)
1374 1375 1376 1377
{
	int node;

	for_each_online_node(node) {
1378
		cachep->node[node] = &init_kmem_cache_node[index + node];
1379
		cachep->node[node]->next_reap = jiffies +
1380 1381
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1382 1383 1384
	}
}

C
Christoph Lameter 已提交
1385 1386
/*
 * The memory after the last cpu cache pointer is used for the
1387
 * the node pointer.
C
Christoph Lameter 已提交
1388
 */
1389
static void setup_node_pointer(struct kmem_cache *cachep)
C
Christoph Lameter 已提交
1390
{
1391
	cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
C
Christoph Lameter 已提交
1392 1393
}

A
Andrew Morton 已提交
1394 1395 1396
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1397 1398 1399
 */
void __init kmem_cache_init(void)
{
1400 1401
	int i;

1402 1403
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1404
	kmem_cache = &kmem_cache_boot;
1405
	setup_node_pointer(kmem_cache);
1406

1407
	if (num_possible_nodes() == 1)
1408 1409
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1410
	for (i = 0; i < NUM_INIT_LISTS; i++)
1411
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1412

1413
	set_up_node(kmem_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1414 1415 1416

	/*
	 * Fragmentation resistance on low memory - only use bigger
1417 1418
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1419
	 */
1420
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1421
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1422 1423 1424

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1425 1426 1427
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1428
	 *    Initially an __init data area is used for the head array and the
1429
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1430
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1431
	 * 2) Create the first kmalloc cache.
1432
	 *    The struct kmem_cache for the new cache is allocated normally.
1433 1434 1435
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1436
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1437
	 *    kmalloc cache with kmalloc allocated arrays.
1438
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1439 1440
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1441 1442
	 */

1443
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1444

E
Eric Dumazet 已提交
1445
	/*
1446
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1447
	 */
1448 1449
	create_boot_cache(kmem_cache, "kmem_cache",
		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1450
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1451 1452
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
L
Linus Torvalds 已提交
1453 1454 1455

	/* 2+3) create the kmalloc caches */

A
Andrew Morton 已提交
1456 1457
	/*
	 * Initialize the caches that provide memory for the array cache and the
1458
	 * kmem_cache_node structures first.  Without this, further allocations will
A
Andrew Morton 已提交
1459
	 * bug.
1460 1461
	 */

1462 1463
	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1464

1465 1466 1467 1468
	if (INDEX_AC != INDEX_NODE)
		kmalloc_caches[INDEX_NODE] =
			create_kmalloc_cache("kmalloc-node",
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1469

1470 1471
	slab_early_init = 0;

L
Linus Torvalds 已提交
1472 1473
	/* 4) Replace the bootstrap head arrays */
	{
1474
		struct array_cache *ptr;
1475

1476
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1477

1478
		memcpy(ptr, cpu_cache_get(kmem_cache),
P
Pekka Enberg 已提交
1479
		       sizeof(struct arraycache_init));
1480

1481
		kmem_cache->array[smp_processor_id()] = ptr;
1482

1483
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1484

1485
		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
P
Pekka Enberg 已提交
1486
		       != &initarray_generic.cache);
1487
		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
P
Pekka Enberg 已提交
1488
		       sizeof(struct arraycache_init));
1489

1490
		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
L
Linus Torvalds 已提交
1491
	}
1492
	/* 5) Replace the bootstrap kmem_cache_node */
1493
	{
P
Pekka Enberg 已提交
1494 1495
		int nid;

1496
		for_each_online_node(nid) {
1497
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1498

1499
			init_list(kmalloc_caches[INDEX_AC],
1500
				  &init_kmem_cache_node[SIZE_AC + nid], nid);
1501

1502 1503 1504
			if (INDEX_AC != INDEX_NODE) {
				init_list(kmalloc_caches[INDEX_NODE],
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1505 1506 1507
			}
		}
	}
L
Linus Torvalds 已提交
1508

1509
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1510 1511 1512 1513 1514 1515
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1516
	slab_state = UP;
P
Peter Zijlstra 已提交
1517

1518
	/* 6) resize the head arrays to their final sizes */
1519 1520
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1521 1522
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1523
	mutex_unlock(&slab_mutex);
1524

1525 1526 1527
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1528 1529 1530
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1531 1532 1533
	 */
	register_cpu_notifier(&cpucache_notifier);

1534 1535 1536
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1537
	 * node.
1538 1539 1540 1541
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1542 1543 1544
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1545 1546 1547 1548 1549 1550 1551
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1552 1553
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1554
	 */
1555
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1556
		start_cpu_timer(cpu);
1557 1558

	/* Done! */
1559
	slab_state = FULL;
L
Linus Torvalds 已提交
1560 1561 1562 1563
	return 0;
}
__initcall(cpucache_init);

1564 1565 1566
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1567
#if DEBUG
1568
	struct kmem_cache_node *n;
1569
	struct page *page;
1570 1571
	unsigned long flags;
	int node;
1572 1573 1574 1575 1576
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1577 1578 1579 1580 1581

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1582
		cachep->name, cachep->size, cachep->gfporder);
1583

1584
	for_each_kmem_cache_node(cachep, node, n) {
1585 1586 1587
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1588
		spin_lock_irqsave(&n->list_lock, flags);
1589
		list_for_each_entry(page, &n->slabs_full, lru) {
1590 1591 1592
			active_objs += cachep->num;
			active_slabs++;
		}
1593 1594
		list_for_each_entry(page, &n->slabs_partial, lru) {
			active_objs += page->active;
1595 1596
			active_slabs++;
		}
1597
		list_for_each_entry(page, &n->slabs_free, lru)
1598 1599
			num_slabs++;

1600 1601
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1602 1603 1604 1605 1606 1607 1608 1609

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
1610
#endif
1611 1612
}

L
Linus Torvalds 已提交
1613 1614 1615 1616 1617 1618 1619
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1620 1621
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1622 1623
{
	struct page *page;
1624
	int nr_pages;
1625

1626
	flags |= cachep->allocflags;
1627 1628
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1629

1630 1631 1632
	if (memcg_charge_slab(cachep, flags, cachep->gfporder))
		return NULL;

L
Linus Torvalds 已提交
1633
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1634
	if (!page) {
1635
		memcg_uncharge_slab(cachep, cachep->gfporder);
1636
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1637
		return NULL;
1638
	}
L
Linus Torvalds 已提交
1639

1640
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1641 1642 1643
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1644
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1645
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1646 1647 1648 1649 1650
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1651 1652 1653
	__SetPageSlab(page);
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
1654

1655 1656 1657 1658 1659 1660 1661 1662
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1663

1664
	return page;
L
Linus Torvalds 已提交
1665 1666 1667 1668 1669
}

/*
 * Interface to system's page release.
 */
1670
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1671
{
1672
	const unsigned long nr_freed = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1673

1674
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1675

1676 1677 1678 1679 1680 1681
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1682

1683
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1684
	__ClearPageSlabPfmemalloc(page);
1685
	__ClearPageSlab(page);
1686 1687
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1688

L
Linus Torvalds 已提交
1689 1690
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1691 1692
	__free_pages(page, cachep->gfporder);
	memcg_uncharge_slab(cachep, cachep->gfporder);
L
Linus Torvalds 已提交
1693 1694 1695 1696
}

static void kmem_rcu_free(struct rcu_head *head)
{
1697 1698
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1699

1700 1701 1702 1703
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1704 1705 1706 1707 1708
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1709
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1710
			    unsigned long caller)
L
Linus Torvalds 已提交
1711
{
1712
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1713

1714
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1715

P
Pekka Enberg 已提交
1716
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1717 1718
		return;

P
Pekka Enberg 已提交
1719 1720 1721 1722
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1723 1724 1725 1726 1727 1728 1729
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1730
				*addr++ = svalue;
L
Linus Torvalds 已提交
1731 1732 1733 1734 1735 1736 1737
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1738
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1739 1740 1741
}
#endif

1742
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1743
{
1744
	int size = cachep->object_size;
1745
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1746 1747

	memset(addr, val, size);
P
Pekka Enberg 已提交
1748
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1749 1750 1751 1752 1753
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1754 1755 1756
	unsigned char error = 0;
	int bad_count = 0;

1757
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
1758 1759 1760 1761 1762 1763
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1764 1765
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1780 1781 1782 1783 1784
}
#endif

#if DEBUG

1785
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1786 1787 1788 1789 1790
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1791
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1792 1793
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1794 1795 1796
	}

	if (cachep->flags & SLAB_STORE_USER) {
J
Joe Perches 已提交
1797 1798 1799
		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1800
	}
1801
	realobj = (char *)objp + obj_offset(cachep);
1802
	size = cachep->object_size;
P
Pekka Enberg 已提交
1803
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1804 1805
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1806 1807
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1808 1809 1810 1811
		dump_line(realobj, i, limit);
	}
}

1812
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1813 1814 1815 1816 1817
{
	char *realobj;
	int size, i;
	int lines = 0;

1818
	realobj = (char *)objp + obj_offset(cachep);
1819
	size = cachep->object_size;
L
Linus Torvalds 已提交
1820

P
Pekka Enberg 已提交
1821
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1822
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1823
		if (i == size - 1)
L
Linus Torvalds 已提交
1824 1825 1826 1827 1828 1829
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1830
				printk(KERN_ERR
1831 1832
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
1833 1834 1835
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1836
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1837
			limit = 16;
P
Pekka Enberg 已提交
1838 1839
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1852
		struct page *page = virt_to_head_page(objp);
1853
		unsigned int objnr;
L
Linus Torvalds 已提交
1854

1855
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1856
		if (objnr) {
1857
			objp = index_to_obj(cachep, page, objnr - 1);
1858
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1859
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1860
			       realobj, size);
L
Linus Torvalds 已提交
1861 1862
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1863
		if (objnr + 1 < cachep->num) {
1864
			objp = index_to_obj(cachep, page, objnr + 1);
1865
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1866
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1867
			       realobj, size);
L
Linus Torvalds 已提交
1868 1869 1870 1871 1872 1873
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1874
#if DEBUG
1875 1876
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1877 1878 1879
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1880
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1881 1882 1883

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
1884
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
1885
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1886
				kernel_map_pages(virt_to_page(objp),
1887
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1888 1889 1890 1891 1892 1893 1894 1895 1896
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1897
					   "was overwritten");
L
Linus Torvalds 已提交
1898 1899
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1900
					   "was overwritten");
L
Linus Torvalds 已提交
1901 1902
		}
	}
1903
}
L
Linus Torvalds 已提交
1904
#else
1905 1906
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1907 1908
{
}
L
Linus Torvalds 已提交
1909 1910
#endif

1911 1912 1913
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1914
 * @page: page pointer being destroyed
1915
 *
1916
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1917 1918
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1919
 */
1920
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1921
{
1922
	void *freelist;
1923

1924 1925
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
L
Linus Torvalds 已提交
1926
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
		struct rcu_head *head;

		/*
		 * RCU free overloads the RCU head over the LRU.
		 * slab_page has been overloeaded over the LRU,
		 * however it is not used from now on so that
		 * we can use it safely.
		 */
		head = (void *)&page->rcu_head;
		call_rcu(head, kmem_rcu_free);
L
Linus Torvalds 已提交
1937 1938

	} else {
1939
		kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1940
	}
1941 1942

	/*
1943
	 * From now on, we don't use freelist
1944 1945 1946
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1947
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1948 1949
}

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

	list_for_each_entry_safe(page, n, list, lru) {
		list_del(&page->lru);
		slab_destroy(cachep, page);
	}
}

1960
/**
1961 1962 1963 1964 1965 1966 1967
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1968 1969 1970 1971 1972
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1973
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1974
			size_t size, size_t align, unsigned long flags)
1975
{
1976
	unsigned long offslab_limit;
1977
	size_t left_over = 0;
1978
	int gfporder;
1979

1980
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1981 1982 1983
		unsigned int num;
		size_t remainder;

1984
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1985 1986
		if (!num)
			continue;
1987

1988 1989 1990 1991
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1992
		if (flags & CFLGS_OFF_SLAB) {
1993
			size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1994 1995 1996 1997 1998
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
1999 2000
			if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
				freelist_size_per_obj += sizeof(char);
2001
			offslab_limit = size;
2002
			offslab_limit /= freelist_size_per_obj;
2003 2004 2005 2006

 			if (num > offslab_limit)
				break;
		}
2007

2008
		/* Found something acceptable - save it away */
2009
		cachep->num = num;
2010
		cachep->gfporder = gfporder;
2011 2012
		left_over = remainder;

2013 2014 2015 2016 2017 2018 2019 2020
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2021 2022 2023 2024
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2025
		if (gfporder >= slab_max_order)
2026 2027
			break;

2028 2029 2030
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2031
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2032 2033 2034 2035 2036
			break;
	}
	return left_over;
}

2037
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2038
{
2039
	if (slab_state >= FULL)
2040
		return enable_cpucache(cachep, gfp);
2041

2042
	if (slab_state == DOWN) {
2043
		/*
2044
		 * Note: Creation of first cache (kmem_cache).
2045
		 * The setup_node is taken care
2046 2047 2048 2049 2050 2051 2052
		 * of by the caller of __kmem_cache_create
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;
		slab_state = PARTIAL;
	} else if (slab_state == PARTIAL) {
		/*
		 * Note: the second kmem_cache_create must create the cache
2053 2054 2055 2056 2057 2058
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
2059 2060
		 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
		 * the second cache, then we need to set up all its node/,
2061 2062
		 * otherwise the creation of further caches will BUG().
		 */
2063 2064 2065
		set_up_node(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_NODE)
			slab_state = PARTIAL_NODE;
2066
		else
2067
			slab_state = PARTIAL_ARRAYCACHE;
2068
	} else {
2069
		/* Remaining boot caches */
2070
		cachep->array[smp_processor_id()] =
2071
			kmalloc(sizeof(struct arraycache_init), gfp);
2072

2073
		if (slab_state == PARTIAL_ARRAYCACHE) {
2074 2075
			set_up_node(cachep, SIZE_NODE);
			slab_state = PARTIAL_NODE;
2076 2077
		} else {
			int node;
2078
			for_each_online_node(node) {
2079
				cachep->node[node] =
2080
				    kmalloc_node(sizeof(struct kmem_cache_node),
2081
						gfp, node);
2082
				BUG_ON(!cachep->node[node]);
2083
				kmem_cache_node_init(cachep->node[node]);
2084 2085 2086
			}
		}
	}
2087
	cachep->node[numa_mem_id()]->next_reap =
2088 2089
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
2090 2091 2092 2093 2094 2095 2096

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2097
	return 0;
2098 2099
}

L
Linus Torvalds 已提交
2100
/**
2101
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2102
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2103 2104 2105 2106
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2107
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2121
int
2122
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2123
{
2124
	size_t left_over, freelist_size, ralign;
2125
	gfp_t gfp;
2126
	int err;
2127
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2137 2138
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2139
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2140 2141 2142 2143 2144 2145 2146
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif

A
Andrew Morton 已提交
2147 2148
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2149 2150 2151
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2152 2153 2154
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2155 2156
	}

2157
	/*
D
David Woodhouse 已提交
2158 2159 2160
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2161
	 */
D
David Woodhouse 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2172

2173
	/* 3) caller mandated alignment */
2174 2175
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2176
	}
2177 2178
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2179
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2180
	/*
2181
	 * 4) Store it.
L
Linus Torvalds 已提交
2182
	 */
2183
	cachep->align = ralign;
L
Linus Torvalds 已提交
2184

2185 2186 2187 2188 2189
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

2190
	setup_node_pointer(cachep);
L
Linus Torvalds 已提交
2191 2192
#if DEBUG

2193 2194 2195 2196
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2197 2198
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2199 2200
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2201 2202
	}
	if (flags & SLAB_STORE_USER) {
2203
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2204 2205
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2206
		 */
D
David Woodhouse 已提交
2207 2208 2209 2210
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2211 2212
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2213
	if (size >= kmalloc_size(INDEX_NODE + 1)
2214 2215 2216
	    && cachep->object_size > cache_line_size()
	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2217 2218 2219 2220 2221
		size = PAGE_SIZE;
	}
#endif
#endif

2222 2223 2224
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2225 2226
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2227
	 */
2228
	if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2229
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2230 2231 2232 2233 2234 2235
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

2236
	size = ALIGN(size, cachep->align);
2237 2238 2239 2240 2241 2242
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
L
Linus Torvalds 已提交
2243

2244
	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
L
Linus Torvalds 已提交
2245

2246
	if (!cachep->num)
2247
		return -E2BIG;
L
Linus Torvalds 已提交
2248

2249
	freelist_size = calculate_freelist_size(cachep->num, cachep->align);
L
Linus Torvalds 已提交
2250 2251 2252 2253 2254

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
2255
	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
L
Linus Torvalds 已提交
2256
		flags &= ~CFLGS_OFF_SLAB;
2257
		left_over -= freelist_size;
L
Linus Torvalds 已提交
2258 2259 2260 2261
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
2262
		freelist_size = calculate_freelist_size(cachep->num, 0);
2263 2264 2265 2266 2267 2268 2269 2270 2271

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2272 2273 2274 2275
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
2276 2277
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
P
Pekka Enberg 已提交
2278
	cachep->colour = left_over / cachep->colour_off;
2279
	cachep->freelist_size = freelist_size;
L
Linus Torvalds 已提交
2280
	cachep->flags = flags;
2281
	cachep->allocflags = __GFP_COMP;
2282
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2283
		cachep->allocflags |= GFP_DMA;
2284
	cachep->size = size;
2285
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2286

2287
	if (flags & CFLGS_OFF_SLAB) {
2288
		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2289
		/*
2290
		 * This is a possibility for one of the kmalloc_{dma,}_caches.
2291
		 * But since we go off slab only for object size greater than
2292 2293
		 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
		 * in ascending order,this should not happen at all.
2294 2295
		 * But leave a BUG_ON for some lucky dude.
		 */
2296
		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2297
	}
L
Linus Torvalds 已提交
2298

2299 2300
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2301
		__kmem_cache_shutdown(cachep);
2302
		return err;
2303
	}
L
Linus Torvalds 已提交
2304

2305
	return 0;
L
Linus Torvalds 已提交
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2319
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2320 2321 2322
{
#ifdef CONFIG_SMP
	check_irq_off();
2323
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
L
Linus Torvalds 已提交
2324 2325
#endif
}
2326

2327
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2328 2329 2330
{
#ifdef CONFIG_SMP
	check_irq_off();
2331
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2332 2333 2334
#endif
}

L
Linus Torvalds 已提交
2335 2336 2337 2338
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2339
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2340 2341
#endif

2342
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2343 2344 2345
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2346 2347
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2348
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2349
	struct array_cache *ac;
2350
	int node = numa_mem_id();
2351
	struct kmem_cache_node *n;
2352
	LIST_HEAD(list);
L
Linus Torvalds 已提交
2353 2354

	check_irq_off();
2355
	ac = cpu_cache_get(cachep);
2356 2357
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2358
	free_block(cachep, ac->entry, ac->avail, node, &list);
2359
	spin_unlock(&n->list_lock);
2360
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
2361 2362 2363
	ac->avail = 0;
}

2364
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2365
{
2366
	struct kmem_cache_node *n;
2367 2368
	int node;

2369
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2370
	check_irq_on();
2371 2372
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2373
			drain_alien_cache(cachep, n->alien);
2374

2375 2376
	for_each_kmem_cache_node(cachep, node, n)
		drain_array(cachep, n, n->shared, 1, node);
L
Linus Torvalds 已提交
2377 2378
}

2379 2380 2381 2382 2383 2384 2385
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2386
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2387
{
2388 2389
	struct list_head *p;
	int nr_freed;
2390
	struct page *page;
L
Linus Torvalds 已提交
2391

2392
	nr_freed = 0;
2393
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2394

2395 2396 2397 2398
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2399 2400
			goto out;
		}
L
Linus Torvalds 已提交
2401

2402
		page = list_entry(p, struct page, lru);
L
Linus Torvalds 已提交
2403
#if DEBUG
2404
		BUG_ON(page->active);
L
Linus Torvalds 已提交
2405
#endif
2406
		list_del(&page->lru);
2407 2408 2409 2410
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2411 2412
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2413
		slab_destroy(cache, page);
2414
		nr_freed++;
L
Linus Torvalds 已提交
2415
	}
2416 2417
out:
	return nr_freed;
L
Linus Torvalds 已提交
2418 2419
}

2420
int __kmem_cache_shrink(struct kmem_cache *cachep)
2421
{
2422 2423
	int ret = 0;
	int node;
2424
	struct kmem_cache_node *n;
2425 2426 2427 2428

	drain_cpu_caches(cachep);

	check_irq_on();
2429
	for_each_kmem_cache_node(cachep, node, n) {
2430
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2431

2432 2433
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2434 2435 2436 2437
	}
	return (ret ? 1 : 0);
}

2438
int __kmem_cache_shutdown(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2439
{
2440
	int i;
2441
	struct kmem_cache_node *n;
2442
	int rc = __kmem_cache_shrink(cachep);
L
Linus Torvalds 已提交
2443

2444 2445
	if (rc)
		return rc;
L
Linus Torvalds 已提交
2446

2447 2448
	for_each_online_cpu(i)
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2449

2450
	/* NUMA: free the node structures */
2451 2452 2453 2454 2455
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2456 2457
	}
	return 0;
L
Linus Torvalds 已提交
2458 2459
}

2460 2461
/*
 * Get the memory for a slab management obj.
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2473
 */
2474
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2475 2476
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2477
{
2478
	void *freelist;
2479
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2480

L
Linus Torvalds 已提交
2481 2482
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2483
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2484
					      local_flags, nodeid);
2485
		if (!freelist)
L
Linus Torvalds 已提交
2486 2487
			return NULL;
	} else {
2488 2489
		freelist = addr + colour_off;
		colour_off += cachep->freelist_size;
L
Linus Torvalds 已提交
2490
	}
2491 2492 2493
	page->active = 0;
	page->s_mem = addr + colour_off;
	return freelist;
L
Linus Torvalds 已提交
2494 2495
}

2496
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2497
{
2498
	return ((freelist_idx_t *)page->freelist)[idx];
2499 2500 2501
}

static inline void set_free_obj(struct page *page,
2502
					unsigned int idx, freelist_idx_t val)
2503
{
2504
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2505 2506
}

2507
static void cache_init_objs(struct kmem_cache *cachep,
2508
			    struct page *page)
L
Linus Torvalds 已提交
2509 2510 2511 2512
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2513
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2526 2527 2528
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2529 2530
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2531
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2532 2533 2534 2535

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2536
					   " end of an object");
L
Linus Torvalds 已提交
2537 2538
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2539
					   " start of an object");
L
Linus Torvalds 已提交
2540
		}
2541
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2542
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2543
			kernel_map_pages(virt_to_page(objp),
2544
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2545 2546
#else
		if (cachep->ctor)
2547
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2548
#endif
2549
		set_obj_status(page, i, OBJECT_FREE);
2550
		set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2551 2552 2553
	}
}

2554
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2555
{
2556 2557
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2558
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2559
		else
2560
			BUG_ON(cachep->allocflags & GFP_DMA);
2561
	}
L
Linus Torvalds 已提交
2562 2563
}

2564
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
A
Andrew Morton 已提交
2565
				int nodeid)
2566
{
2567
	void *objp;
2568

2569
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2570
	page->active++;
2571
#if DEBUG
J
Joonsoo Kim 已提交
2572
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2573 2574 2575 2576 2577
#endif

	return objp;
}

2578
static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
A
Andrew Morton 已提交
2579
				void *objp, int nodeid)
2580
{
2581
	unsigned int objnr = obj_to_index(cachep, page, objp);
2582
#if DEBUG
J
Joonsoo Kim 已提交
2583
	unsigned int i;
2584

2585
	/* Verify that the slab belongs to the intended node */
J
Joonsoo Kim 已提交
2586
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2587

2588
	/* Verify double free bug */
2589
	for (i = page->active; i < cachep->num; i++) {
2590
		if (get_free_obj(page, i) == objnr) {
2591 2592 2593 2594
			printk(KERN_ERR "slab: double free detected in cache "
					"'%s', objp %p\n", cachep->name, objp);
			BUG();
		}
2595 2596
	}
#endif
2597
	page->active--;
2598
	set_free_obj(page, page->active, objnr);
2599 2600
}

2601 2602 2603
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2604
 * virtual address for kfree, ksize, and slab debugging.
2605
 */
2606
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2607
			   void *freelist)
L
Linus Torvalds 已提交
2608
{
2609
	page->slab_cache = cache;
2610
	page->freelist = freelist;
L
Linus Torvalds 已提交
2611 2612 2613 2614 2615 2616
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2617
static int cache_grow(struct kmem_cache *cachep,
2618
		gfp_t flags, int nodeid, struct page *page)
L
Linus Torvalds 已提交
2619
{
2620
	void *freelist;
P
Pekka Enberg 已提交
2621 2622
	size_t offset;
	gfp_t local_flags;
2623
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2624

A
Andrew Morton 已提交
2625 2626 2627
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2628
	 */
C
Christoph Lameter 已提交
2629 2630
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2631

2632
	/* Take the node list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2633
	check_irq_off();
2634
	n = get_node(cachep, nodeid);
2635
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2636 2637

	/* Get colour for the slab, and cal the next value. */
2638 2639 2640 2641 2642
	offset = n->colour_next;
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2643

2644
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2657 2658 2659
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2660
	 */
2661 2662 2663
	if (!page)
		page = kmem_getpages(cachep, local_flags, nodeid);
	if (!page)
L
Linus Torvalds 已提交
2664 2665 2666
		goto failed;

	/* Get slab management. */
2667
	freelist = alloc_slabmgmt(cachep, page, offset,
C
Christoph Lameter 已提交
2668
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2669
	if (!freelist)
L
Linus Torvalds 已提交
2670 2671
		goto opps1;

2672
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2673

2674
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2675 2676 2677 2678

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2679
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2680 2681

	/* Make slab active. */
2682
	list_add_tail(&page->lru, &(n->slabs_free));
L
Linus Torvalds 已提交
2683
	STATS_INC_GROWN(cachep);
2684 2685
	n->free_objects += cachep->num;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2686
	return 1;
A
Andrew Morton 已提交
2687
opps1:
2688
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2689
failed:
L
Linus Torvalds 已提交
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2706 2707
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2708 2709 2710
	}
}

2711 2712
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2713
	unsigned long long redzone1, redzone2;
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2729
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2730 2731 2732
			obj, redzone1, redzone2);
}

2733
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2734
				   unsigned long caller)
L
Linus Torvalds 已提交
2735 2736
{
	unsigned int objnr;
2737
	struct page *page;
L
Linus Torvalds 已提交
2738

2739 2740
	BUG_ON(virt_to_cache(objp) != cachep);

2741
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2742
	kfree_debugcheck(objp);
2743
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2744 2745

	if (cachep->flags & SLAB_RED_ZONE) {
2746
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2747 2748 2749 2750
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
2751
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2752

2753
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2754 2755

	BUG_ON(objnr >= cachep->num);
2756
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2757

2758
	set_obj_status(page, objnr, OBJECT_FREE);
L
Linus Torvalds 已提交
2759 2760
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2761
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2762
			store_stackinfo(cachep, objp, caller);
P
Pekka Enberg 已提交
2763
			kernel_map_pages(virt_to_page(objp),
2764
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2780 2781
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
2782 2783
{
	int batchcount;
2784
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2785
	struct array_cache *ac;
P
Pekka Enberg 已提交
2786 2787
	int node;

L
Linus Torvalds 已提交
2788
	check_irq_off();
2789
	node = numa_mem_id();
2790 2791 2792
	if (unlikely(force_refill))
		goto force_grow;
retry:
2793
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2794 2795
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2796 2797 2798 2799
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2800 2801 2802
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2803
	n = get_node(cachep, node);
2804

2805 2806
	BUG_ON(ac->avail > 0 || !n);
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2807

2808
	/* See if we can refill from the shared array */
2809 2810
	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
		n->shared->touched = 1;
2811
		goto alloc_done;
2812
	}
2813

L
Linus Torvalds 已提交
2814 2815
	while (batchcount > 0) {
		struct list_head *entry;
2816
		struct page *page;
L
Linus Torvalds 已提交
2817
		/* Get slab alloc is to come from. */
2818 2819 2820 2821 2822
		entry = n->slabs_partial.next;
		if (entry == &n->slabs_partial) {
			n->free_touched = 1;
			entry = n->slabs_free.next;
			if (entry == &n->slabs_free)
L
Linus Torvalds 已提交
2823 2824 2825
				goto must_grow;
		}

2826
		page = list_entry(entry, struct page, lru);
L
Linus Torvalds 已提交
2827
		check_spinlock_acquired(cachep);
2828 2829 2830 2831 2832 2833

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2834
		BUG_ON(page->active >= cachep->num);
2835

2836
		while (page->active < cachep->num && batchcount--) {
L
Linus Torvalds 已提交
2837 2838 2839 2840
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2841
			ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2842
									node));
L
Linus Torvalds 已提交
2843 2844 2845
		}

		/* move slabp to correct slabp list: */
2846 2847
		list_del(&page->lru);
		if (page->active == cachep->num)
2848
			list_add(&page->lru, &n->slabs_full);
L
Linus Torvalds 已提交
2849
		else
2850
			list_add(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
2851 2852
	}

A
Andrew Morton 已提交
2853
must_grow:
2854
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
2855
alloc_done:
2856
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2857 2858 2859

	if (unlikely(!ac->avail)) {
		int x;
2860
force_grow:
2861
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2862

A
Andrew Morton 已提交
2863
		/* cache_grow can reenable interrupts, then ac could change. */
2864
		ac = cpu_cache_get(cachep);
2865
		node = numa_mem_id();
2866 2867 2868

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
2869 2870
			return NULL;

A
Andrew Morton 已提交
2871
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2872 2873 2874
			goto retry;
	}
	ac->touched = 1;
2875 2876

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
2877 2878
}

A
Andrew Morton 已提交
2879 2880
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2881 2882 2883 2884 2885 2886 2887 2888
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2889
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2890
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
2891
{
2892 2893
	struct page *page;

P
Pekka Enberg 已提交
2894
	if (!objp)
L
Linus Torvalds 已提交
2895
		return objp;
P
Pekka Enberg 已提交
2896
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2897
#ifdef CONFIG_DEBUG_PAGEALLOC
2898
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2899
			kernel_map_pages(virt_to_page(objp),
2900
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2901 2902 2903 2904 2905 2906 2907 2908
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
2909
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2910 2911

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2912 2913 2914 2915
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
2916
			printk(KERN_ERR
2917
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
2918 2919
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2920 2921 2922 2923
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2924 2925 2926

	page = virt_to_head_page(objp);
	set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2927
	objp += obj_offset(cachep);
2928
	if (cachep->ctor && cachep->flags & SLAB_POISON)
2929
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
2930 2931
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2932
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
2933
		       objp, (int)ARCH_SLAB_MINALIGN);
2934
	}
L
Linus Torvalds 已提交
2935 2936 2937 2938 2939 2940
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
2941
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2942
{
2943
	if (unlikely(cachep == kmem_cache))
A
Akinobu Mita 已提交
2944
		return false;
2945

2946
	return should_failslab(cachep->object_size, flags, cachep->flags);
2947 2948
}

2949
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2950
{
P
Pekka Enberg 已提交
2951
	void *objp;
L
Linus Torvalds 已提交
2952
	struct array_cache *ac;
2953
	bool force_refill = false;
L
Linus Torvalds 已提交
2954

2955
	check_irq_off();
2956

2957
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2958 2959
	if (likely(ac->avail)) {
		ac->touched = 1;
2960 2961
		objp = ac_get_obj(cachep, ac, flags, false);

2962
		/*
2963 2964
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
2965
		 */
2966 2967 2968 2969 2970
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
2971
	}
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
2982 2983 2984 2985 2986
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
2987 2988
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
2989 2990 2991
	return objp;
}

2992
#ifdef CONFIG_NUMA
2993
/*
2994
 * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set.
2995 2996 2997 2998 2999 3000 3001 3002
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3003
	if (in_interrupt() || (flags & __GFP_THISNODE))
3004
		return NULL;
3005
	nid_alloc = nid_here = numa_mem_id();
3006
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3007
		nid_alloc = cpuset_slab_spread_node();
3008
	else if (current->mempolicy)
3009
		nid_alloc = mempolicy_slab_node();
3010
	if (nid_alloc != nid_here)
3011
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3012 3013 3014
	return NULL;
}

3015 3016
/*
 * Fallback function if there was no memory available and no objects on a
3017
 * certain node and fall back is permitted. First we scan all the
3018
 * available node for available objects. If that fails then we
3019 3020 3021
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3022
 */
3023
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3024
{
3025 3026
	struct zonelist *zonelist;
	gfp_t local_flags;
3027
	struct zoneref *z;
3028 3029
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3030
	void *obj = NULL;
3031
	int nid;
3032
	unsigned int cpuset_mems_cookie;
3033 3034 3035 3036

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3037
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3038

3039
retry_cpuset:
3040
	cpuset_mems_cookie = read_mems_allowed_begin();
3041
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3042

3043 3044 3045 3046 3047
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3048 3049
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3050

3051
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3052 3053
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3054 3055
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3056 3057 3058
				if (obj)
					break;
		}
3059 3060
	}

3061
	if (!obj) {
3062 3063 3064 3065 3066 3067
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3068 3069
		struct page *page;

3070 3071 3072
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3073
		page = kmem_getpages(cache, local_flags, numa_mem_id());
3074 3075
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3076
		if (page) {
3077 3078 3079
			/*
			 * Insert into the appropriate per node queues
			 */
3080 3081
			nid = page_to_nid(page);
			if (cache_grow(cache, flags, nid, page)) {
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3092
				/* cache_grow already freed obj */
3093 3094 3095
				obj = NULL;
			}
		}
3096
	}
3097

3098
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3099
		goto retry_cpuset;
3100 3101 3102
	return obj;
}

3103 3104
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3105
 */
3106
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3107
				int nodeid)
3108 3109
{
	struct list_head *entry;
3110
	struct page *page;
3111
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
3112 3113 3114
	void *obj;
	int x;

3115
	VM_BUG_ON(nodeid > num_online_nodes());
3116
	n = get_node(cachep, nodeid);
3117
	BUG_ON(!n);
P
Pekka Enberg 已提交
3118

A
Andrew Morton 已提交
3119
retry:
3120
	check_irq_off();
3121 3122 3123 3124 3125 3126
	spin_lock(&n->list_lock);
	entry = n->slabs_partial.next;
	if (entry == &n->slabs_partial) {
		n->free_touched = 1;
		entry = n->slabs_free.next;
		if (entry == &n->slabs_free)
P
Pekka Enberg 已提交
3127 3128 3129
			goto must_grow;
	}

3130
	page = list_entry(entry, struct page, lru);
P
Pekka Enberg 已提交
3131 3132 3133 3134 3135 3136
	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3137
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3138

3139
	obj = slab_get_obj(cachep, page, nodeid);
3140
	n->free_objects--;
P
Pekka Enberg 已提交
3141
	/* move slabp to correct slabp list: */
3142
	list_del(&page->lru);
P
Pekka Enberg 已提交
3143

3144 3145
	if (page->active == cachep->num)
		list_add(&page->lru, &n->slabs_full);
A
Andrew Morton 已提交
3146
	else
3147
		list_add(&page->lru, &n->slabs_partial);
3148

3149
	spin_unlock(&n->list_lock);
P
Pekka Enberg 已提交
3150
	goto done;
3151

A
Andrew Morton 已提交
3152
must_grow:
3153
	spin_unlock(&n->list_lock);
3154
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3155 3156
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3157

3158
	return fallback_alloc(cachep, flags);
3159

A
Andrew Morton 已提交
3160
done:
P
Pekka Enberg 已提交
3161
	return obj;
3162
}
3163 3164

static __always_inline void *
3165
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3166
		   unsigned long caller)
3167 3168 3169
{
	unsigned long save_flags;
	void *ptr;
3170
	int slab_node = numa_mem_id();
3171

3172
	flags &= gfp_allowed_mask;
3173

3174 3175
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3176
	if (slab_should_failslab(cachep, flags))
3177 3178
		return NULL;

3179 3180
	cachep = memcg_kmem_get_cache(cachep, flags);

3181 3182 3183
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3184
	if (nodeid == NUMA_NO_NODE)
3185
		nodeid = slab_node;
3186

3187
	if (unlikely(!get_node(cachep, nodeid))) {
3188 3189 3190 3191 3192
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3193
	if (nodeid == slab_node) {
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3209
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3210
				 flags);
3211

3212
	if (likely(ptr)) {
3213
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3214 3215 3216
		if (unlikely(flags & __GFP_ZERO))
			memset(ptr, 0, cachep->object_size);
	}
3217

3218 3219 3220 3221 3222 3223 3224 3225
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3226
	if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) {
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3237 3238
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3254
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3255 3256 3257 3258
{
	unsigned long save_flags;
	void *objp;

3259
	flags &= gfp_allowed_mask;
3260

3261 3262
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3263
	if (slab_should_failslab(cachep, flags))
3264 3265
		return NULL;

3266 3267
	cachep = memcg_kmem_get_cache(cachep, flags);

3268 3269 3270 3271 3272
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3273
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3274
				 flags);
3275 3276
	prefetchw(objp);

3277
	if (likely(objp)) {
3278
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3279 3280 3281
		if (unlikely(flags & __GFP_ZERO))
			memset(objp, 0, cachep->object_size);
	}
3282

3283 3284
	return objp;
}
3285 3286

/*
3287
 * Caller needs to acquire correct kmem_cache_node's list_lock
3288
 * @list: List of detached free slabs should be freed by caller
3289
 */
3290 3291
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
L
Linus Torvalds 已提交
3292 3293
{
	int i;
3294
	struct kmem_cache_node *n = get_node(cachep, node);
L
Linus Torvalds 已提交
3295 3296

	for (i = 0; i < nr_objects; i++) {
3297
		void *objp;
3298
		struct page *page;
L
Linus Torvalds 已提交
3299

3300 3301 3302
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3303 3304
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3305
		check_spinlock_acquired_node(cachep, node);
3306
		slab_put_obj(cachep, page, objp, node);
L
Linus Torvalds 已提交
3307
		STATS_DEC_ACTIVE(cachep);
3308
		n->free_objects++;
L
Linus Torvalds 已提交
3309 3310

		/* fixup slab chains */
3311
		if (page->active == 0) {
3312 3313
			if (n->free_objects > n->free_limit) {
				n->free_objects -= cachep->num;
3314
				list_add_tail(&page->lru, list);
L
Linus Torvalds 已提交
3315
			} else {
3316
				list_add(&page->lru, &n->slabs_free);
L
Linus Torvalds 已提交
3317 3318 3319 3320 3321 3322
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3323
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3324 3325 3326 3327
		}
	}
}

3328
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3329 3330
{
	int batchcount;
3331
	struct kmem_cache_node *n;
3332
	int node = numa_mem_id();
3333
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3334 3335 3336 3337 3338 3339

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3340
	n = get_node(cachep, node);
3341 3342 3343
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3344
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3345 3346 3347
		if (max) {
			if (batchcount > max)
				batchcount = max;
3348
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3349
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3350 3351 3352 3353 3354
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3355
	free_block(cachep, ac->entry, batchcount, node, &list);
A
Andrew Morton 已提交
3356
free_done:
L
Linus Torvalds 已提交
3357 3358 3359 3360 3361
#if STATS
	{
		int i = 0;
		struct list_head *p;

3362 3363
		p = n->slabs_free.next;
		while (p != &(n->slabs_free)) {
3364
			struct page *page;
L
Linus Torvalds 已提交
3365

3366 3367
			page = list_entry(p, struct page, lru);
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3368 3369 3370 3371 3372 3373 3374

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3375
	spin_unlock(&n->list_lock);
3376
	slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3377
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3378
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3379 3380 3381
}

/*
A
Andrew Morton 已提交
3382 3383
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3384
 */
3385
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3386
				unsigned long caller)
L
Linus Torvalds 已提交
3387
{
3388
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3389 3390

	check_irq_off();
3391
	kmemleak_free_recursive(objp, cachep->flags);
3392
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3393

3394
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3395

3396 3397 3398 3399 3400 3401 3402
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3403
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3404 3405
		return;

L
Linus Torvalds 已提交
3406 3407 3408 3409 3410 3411
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3412

3413
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3424
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3425
{
3426
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3427

3428
	trace_kmem_cache_alloc(_RET_IP_, ret,
3429
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3430 3431

	return ret;
L
Linus Torvalds 已提交
3432 3433 3434
}
EXPORT_SYMBOL(kmem_cache_alloc);

3435
#ifdef CONFIG_TRACING
3436
void *
3437
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3438
{
3439 3440
	void *ret;

3441
	ret = slab_alloc(cachep, flags, _RET_IP_);
3442 3443

	trace_kmalloc(_RET_IP_, ret,
3444
		      size, cachep->size, flags);
3445
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3446
}
3447
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3448 3449
#endif

L
Linus Torvalds 已提交
3450
#ifdef CONFIG_NUMA
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3462 3463
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3464
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3465

3466
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3467
				    cachep->object_size, cachep->size,
3468
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3469 3470

	return ret;
3471
}
L
Linus Torvalds 已提交
3472 3473
EXPORT_SYMBOL(kmem_cache_alloc_node);

3474
#ifdef CONFIG_TRACING
3475
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3476
				  gfp_t flags,
3477 3478
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3479
{
3480 3481
	void *ret;

3482
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3483

3484
	trace_kmalloc_node(_RET_IP_, ret,
3485
			   size, cachep->size,
3486 3487
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3488
}
3489
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3490 3491
#endif

3492
static __always_inline void *
3493
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3494
{
3495
	struct kmem_cache *cachep;
3496

3497
	cachep = kmalloc_slab(size, flags);
3498 3499
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3500
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3501
}
3502

3503
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3504 3505
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3506
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3507
}
3508
EXPORT_SYMBOL(__kmalloc_node);
3509 3510

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3511
		int node, unsigned long caller)
3512
{
3513
	return __do_kmalloc_node(size, flags, node, caller);
3514 3515 3516 3517 3518
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3519
	return __do_kmalloc_node(size, flags, node, 0);
3520 3521
}
EXPORT_SYMBOL(__kmalloc_node);
3522
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3523
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3524 3525

/**
3526
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3527
 * @size: how many bytes of memory are required.
3528
 * @flags: the type of memory to allocate (see kmalloc).
3529
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3530
 */
3531
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3532
					  unsigned long caller)
L
Linus Torvalds 已提交
3533
{
3534
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3535
	void *ret;
L
Linus Torvalds 已提交
3536

3537
	cachep = kmalloc_slab(size, flags);
3538 3539
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3540
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3541

3542
	trace_kmalloc(caller, ret,
3543
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3544 3545

	return ret;
3546 3547 3548
}


3549
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3550 3551
void *__kmalloc(size_t size, gfp_t flags)
{
3552
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3553 3554 3555
}
EXPORT_SYMBOL(__kmalloc);

3556
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3557
{
3558
	return __do_kmalloc(size, flags, caller);
3559 3560
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3561 3562 3563 3564

#else
void *__kmalloc(size_t size, gfp_t flags)
{
3565
	return __do_kmalloc(size, flags, 0);
3566 3567
}
EXPORT_SYMBOL(__kmalloc);
3568 3569
#endif

L
Linus Torvalds 已提交
3570 3571 3572 3573 3574 3575 3576 3577
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3578
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3579 3580
{
	unsigned long flags;
3581 3582 3583
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3584 3585

	local_irq_save(flags);
3586
	debug_check_no_locks_freed(objp, cachep->object_size);
3587
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3588
		debug_check_no_obj_freed(objp, cachep->object_size);
3589
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3590
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3591

3592
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3593 3594 3595 3596 3597 3598 3599
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3600 3601
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3602 3603 3604 3605 3606
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3607
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3608 3609
	unsigned long flags;

3610 3611
	trace_kfree(_RET_IP_, objp);

3612
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3613 3614 3615
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3616
	c = virt_to_cache(objp);
3617 3618 3619
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3620
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3621 3622 3623 3624
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3625
/*
3626
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3627
 */
3628
static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3629 3630
{
	int node;
3631
	struct kmem_cache_node *n;
3632
	struct array_cache *new_shared;
J
Joonsoo Kim 已提交
3633
	struct alien_cache **new_alien = NULL;
3634

3635
	for_each_online_node(node) {
3636

3637
                if (use_alien_caches) {
3638
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3639 3640 3641
                        if (!new_alien)
                                goto fail;
                }
3642

3643 3644 3645
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3646
				cachep->shared*cachep->batchcount,
3647
					0xbaadf00d, gfp);
3648 3649 3650 3651
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3652
		}
3653

3654
		n = get_node(cachep, node);
3655 3656
		if (n) {
			struct array_cache *shared = n->shared;
3657
			LIST_HEAD(list);
3658

3659
			spin_lock_irq(&n->list_lock);
3660

3661
			if (shared)
3662
				free_block(cachep, shared->entry,
3663
						shared->avail, node, &list);
3664

3665 3666 3667
			n->shared = new_shared;
			if (!n->alien) {
				n->alien = new_alien;
3668 3669
				new_alien = NULL;
			}
3670
			n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3671
					cachep->batchcount + cachep->num;
3672
			spin_unlock_irq(&n->list_lock);
3673
			slabs_destroy(cachep, &list);
3674
			kfree(shared);
3675 3676 3677
			free_alien_cache(new_alien);
			continue;
		}
3678 3679
		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
		if (!n) {
3680 3681
			free_alien_cache(new_alien);
			kfree(new_shared);
3682
			goto fail;
3683
		}
3684

3685
		kmem_cache_node_init(n);
3686 3687
		n->next_reap = jiffies + REAPTIMEOUT_NODE +
				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3688 3689 3690
		n->shared = new_shared;
		n->alien = new_alien;
		n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3691
					cachep->batchcount + cachep->num;
3692
		cachep->node[node] = n;
3693
	}
3694
	return 0;
3695

A
Andrew Morton 已提交
3696
fail:
3697
	if (!cachep->list.next) {
3698 3699 3700
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3701 3702
			n = get_node(cachep, node);
			if (n) {
3703 3704 3705
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3706
				cachep->node[node] = NULL;
3707 3708 3709 3710
			}
			node--;
		}
	}
3711
	return -ENOMEM;
3712 3713
}

L
Linus Torvalds 已提交
3714
struct ccupdate_struct {
3715
	struct kmem_cache *cachep;
3716
	struct array_cache *new[0];
L
Linus Torvalds 已提交
3717 3718 3719 3720
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3721
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3722 3723 3724
	struct array_cache *old;

	check_irq_off();
3725
	old = cpu_cache_get(new->cachep);
3726

L
Linus Torvalds 已提交
3727 3728 3729 3730
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3731
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3732
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3733
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3734
{
3735
	struct ccupdate_struct *new;
3736
	int i;
L
Linus Torvalds 已提交
3737

3738 3739
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
3740 3741 3742
	if (!new)
		return -ENOMEM;

3743
	for_each_online_cpu(i) {
3744
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3745
						batchcount, gfp);
3746
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3747
			for (i--; i >= 0; i--)
3748 3749
				kfree(new->new[i]);
			kfree(new);
3750
			return -ENOMEM;
L
Linus Torvalds 已提交
3751 3752
		}
	}
3753
	new->cachep = cachep;
L
Linus Torvalds 已提交
3754

3755
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3756

L
Linus Torvalds 已提交
3757 3758 3759
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3760
	cachep->shared = shared;
L
Linus Torvalds 已提交
3761

3762
	for_each_online_cpu(i) {
3763
		LIST_HEAD(list);
3764
		struct array_cache *ccold = new->new[i];
3765 3766 3767
		int node;
		struct kmem_cache_node *n;

L
Linus Torvalds 已提交
3768 3769
		if (!ccold)
			continue;
3770 3771 3772 3773

		node = cpu_to_mem(i);
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3774
		free_block(cachep, ccold->entry, ccold->avail, node, &list);
3775
		spin_unlock_irq(&n->list_lock);
3776
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3777 3778
		kfree(ccold);
	}
3779
	kfree(new);
3780
	return alloc_kmem_cache_node(cachep, gfp);
L
Linus Torvalds 已提交
3781 3782
}

G
Glauber Costa 已提交
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
	struct kmem_cache *c = NULL;
	int i = 0;

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3798
	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
G
Glauber Costa 已提交
3799
	for_each_memcg_cache_index(i) {
3800
		c = cache_from_memcg_idx(cachep, i);
G
Glauber Costa 已提交
3801 3802 3803 3804 3805 3806 3807 3808
		if (c)
			/* return value determined by the parent cache only */
			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
	}

	return ret;
}

3809
/* Called with slab_mutex held always */
3810
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3811 3812
{
	int err;
G
Glauber Costa 已提交
3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3823

G
Glauber Costa 已提交
3824 3825
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3826 3827
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3828 3829
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3830
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3831 3832 3833 3834
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3835
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3836
		limit = 1;
3837
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3838
		limit = 8;
3839
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3840
		limit = 24;
3841
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3842 3843 3844 3845
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3846 3847
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3848 3849 3850 3851 3852 3853 3854 3855
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3856
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3857 3858 3859
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3860 3861 3862
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3863 3864 3865 3866
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3867 3868 3869
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
3870 3871
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3872
		       cachep->name, -err);
3873
	return err;
L
Linus Torvalds 已提交
3874 3875
}

3876
/*
3877 3878
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
3879
 * if drain_array() is used on the shared array.
3880
 */
3881
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3882
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3883
{
3884
	LIST_HEAD(list);
L
Linus Torvalds 已提交
3885 3886
	int tofree;

3887 3888
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3889 3890
	if (ac->touched && !force) {
		ac->touched = 0;
3891
	} else {
3892
		spin_lock_irq(&n->list_lock);
3893 3894 3895 3896
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
3897
			free_block(cachep, ac->entry, tofree, node, &list);
3898 3899 3900 3901
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3902
		spin_unlock_irq(&n->list_lock);
3903
		slabs_destroy(cachep, &list);
L
Linus Torvalds 已提交
3904 3905 3906 3907 3908
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3909
 * @w: work descriptor
L
Linus Torvalds 已提交
3910 3911 3912 3913 3914 3915
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3916 3917
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3918
 */
3919
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
3920
{
3921
	struct kmem_cache *searchp;
3922
	struct kmem_cache_node *n;
3923
	int node = numa_mem_id();
3924
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
3925

3926
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
3927
		/* Give up. Setup the next iteration. */
3928
		goto out;
L
Linus Torvalds 已提交
3929

3930
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
3931 3932
		check_irq_on();

3933
		/*
3934
		 * We only take the node lock if absolutely necessary and we
3935 3936 3937
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3938
		n = get_node(searchp, node);
3939

3940
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
3941

3942
		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
3943

3944 3945 3946 3947
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
3948
		if (time_after(n->next_reap, jiffies))
3949
			goto next;
L
Linus Torvalds 已提交
3950

3951
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
3952

3953
		drain_array(searchp, n, n->shared, 0, node);
L
Linus Torvalds 已提交
3954

3955 3956
		if (n->free_touched)
			n->free_touched = 0;
3957 3958
		else {
			int freed;
L
Linus Torvalds 已提交
3959

3960
			freed = drain_freelist(searchp, n, (n->free_limit +
3961 3962 3963
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
3964
next:
L
Linus Torvalds 已提交
3965 3966 3967
		cond_resched();
	}
	check_irq_on();
3968
	mutex_unlock(&slab_mutex);
3969
	next_reap_node();
3970
out:
A
Andrew Morton 已提交
3971
	/* Set up the next iteration */
3972
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
3973 3974
}

3975
#ifdef CONFIG_SLABINFO
3976
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
3977
{
3978
	struct page *page;
P
Pekka Enberg 已提交
3979 3980 3981 3982
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3983
	const char *name;
L
Linus Torvalds 已提交
3984
	char *error = NULL;
3985
	int node;
3986
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
3987 3988 3989

	active_objs = 0;
	num_slabs = 0;
3990
	for_each_kmem_cache_node(cachep, node, n) {
3991

3992
		check_irq_on();
3993
		spin_lock_irq(&n->list_lock);
3994

3995 3996
		list_for_each_entry(page, &n->slabs_full, lru) {
			if (page->active != cachep->num && !error)
3997 3998 3999 4000
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4001 4002
		list_for_each_entry(page, &n->slabs_partial, lru) {
			if (page->active == cachep->num && !error)
4003
				error = "slabs_partial accounting error";
4004
			if (!page->active && !error)
4005
				error = "slabs_partial accounting error";
4006
			active_objs += page->active;
4007 4008
			active_slabs++;
		}
4009 4010
		list_for_each_entry(page, &n->slabs_free, lru) {
			if (page->active && !error)
4011
				error = "slabs_free accounting error";
4012 4013
			num_slabs++;
		}
4014 4015 4016
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
4017

4018
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4019
	}
P
Pekka Enberg 已提交
4020 4021
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4022
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4023 4024
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4025
	name = cachep->name;
L
Linus Torvalds 已提交
4026 4027 4028
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4043
#if STATS
4044
	{			/* node stats */
L
Linus Torvalds 已提交
4045 4046 4047 4048 4049 4050 4051
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4052
		unsigned long node_frees = cachep->node_frees;
4053
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4054

J
Joe Perches 已提交
4055 4056 4057 4058 4059
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4060 4061 4062 4063 4064 4065 4066 4067 4068
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4069
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4082
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4083
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4084
{
P
Pekka Enberg 已提交
4085
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4086
	int limit, batchcount, shared, res;
4087
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4088

L
Linus Torvalds 已提交
4089 4090 4091 4092
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4093
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4104
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4105
	res = -EINVAL;
4106
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4107
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4108 4109
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4110
				res = 0;
L
Linus Torvalds 已提交
4111
			} else {
4112
				res = do_tune_cpucache(cachep, limit,
4113 4114
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4115 4116 4117 4118
			}
			break;
		}
	}
4119
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4120 4121 4122 4123
	if (res >= 0)
		res = count;
	return res;
}
4124 4125 4126 4127 4128

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4129 4130
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4163 4164
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4165 4166
{
	void *p;
4167
	int i;
4168

4169 4170
	if (n[0] == n[1])
		return;
4171
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4172
		if (get_obj_status(page, i) != OBJECT_ACTIVE)
4173
			continue;
4174

4175 4176 4177 4178 4179 4180 4181 4182 4183
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4184
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4185

4186
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4187
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4188
		if (modname[0])
4189 4190 4191 4192 4193 4194 4195 4196 4197
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4198
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4199
	struct page *page;
4200
	struct kmem_cache_node *n;
4201
	const char *name;
4202
	unsigned long *x = m->private;
4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

4213
	x[1] = 0;
4214

4215
	for_each_kmem_cache_node(cachep, node, n) {
4216 4217

		check_irq_on();
4218
		spin_lock_irq(&n->list_lock);
4219

4220 4221 4222 4223
		list_for_each_entry(page, &n->slabs_full, lru)
			handle_slab(x, cachep, page);
		list_for_each_entry(page, &n->slabs_partial, lru)
			handle_slab(x, cachep, page);
4224
		spin_unlock_irq(&n->list_lock);
4225 4226
	}
	name = cachep->name;
4227
	if (x[0] == x[1]) {
4228
		/* Increase the buffer size */
4229
		mutex_unlock(&slab_mutex);
4230
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4231 4232
		if (!m->private) {
			/* Too bad, we are really out */
4233
			m->private = x;
4234
			mutex_lock(&slab_mutex);
4235 4236
			return -ENOMEM;
		}
4237 4238
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4239
		mutex_lock(&slab_mutex);
4240 4241 4242 4243
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4244 4245 4246
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4247 4248
		seq_putc(m, '\n');
	}
4249

4250 4251 4252
	return 0;
}

4253
static const struct seq_operations slabstats_op = {
4254
	.start = leaks_start,
4255 4256
	.next = slab_next,
	.stop = slab_stop,
4257 4258
	.show = leaks_show,
};
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4289
#endif
4290 4291 4292
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4293 4294
#endif

4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4307
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4308
{
4309 4310
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4311
		return 0;
L
Linus Torvalds 已提交
4312

4313
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4314
}
K
Kirill A. Shutemov 已提交
4315
EXPORT_SYMBOL(ksize);