core.c 220.2 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
136 137
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
138 139
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
140

141 142 143 144 145 146 147
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

148 149 150 151 152 153
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
154 155 156 157
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
158
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
159
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
161

162 163 164
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
165
static atomic_t nr_freq_events __read_mostly;
166
static atomic_t nr_switch_events __read_mostly;
167

P
Peter Zijlstra 已提交
168 169 170 171
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

172
/*
173
 * perf event paranoia level:
174 175
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
176
 *   1 - disallow cpu events for unpriv
177
 *   2 - disallow kernel profiling for unpriv
178
 */
179
int sysctl_perf_event_paranoid __read_mostly = 1;
180

181 182
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183 184

/*
185
 * max perf event sample rate
186
 */
187 188 189 190 191 192 193 194 195
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
196 197
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198

199
static void update_perf_cpu_limits(void)
200 201 202 203
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
204
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
205
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206
}
P
Peter Zijlstra 已提交
207

208 209
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
210 211 212 213
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
214
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
215 216 217 218 219

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
238 239 240

	return 0;
}
241

242 243 244 245 246 247 248
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
249
static DEFINE_PER_CPU(u64, running_sample_length);
250

251
static void perf_duration_warn(struct irq_work *w)
252
{
253
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254
	u64 avg_local_sample_len;
255
	u64 local_samples_len;
256

257
	local_samples_len = __this_cpu_read(running_sample_length);
258 259 260 261 262
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
263
			avg_local_sample_len, allowed_ns >> 1,
264 265 266 267 268 269 270
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
271
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 273
	u64 avg_local_sample_len;
	u64 local_samples_len;
274

P
Peter Zijlstra 已提交
275
	if (allowed_ns == 0)
276 277 278
		return;

	/* decay the counter by 1 average sample */
279
	local_samples_len = __this_cpu_read(running_sample_length);
280 281
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
282
	__this_cpu_write(running_sample_length, local_samples_len);
283 284 285 286 287 288 289 290

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
291
	if (avg_local_sample_len <= allowed_ns)
292 293 294 295 296 297 298 299 300 301
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
302

303 304 305 306 307 308
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
309 310
}

311
static atomic64_t perf_event_id;
312

313 314 315 316
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
317 318 319 320 321
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
322

323
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
324

325
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
326
{
327
	return "pmu";
T
Thomas Gleixner 已提交
328 329
}

330 331 332 333 334
static inline u64 perf_clock(void)
{
	return local_clock();
}

335 336 337 338 339
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
340 341 342 343 344 345
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
362 363 364 365 366 367 368 369
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
386 387 388 389
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
390
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
429 430
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
431
	/*
432 433
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
434
	 */
435
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
436 437
		return;

438
	cgrp = perf_cgroup_from_task(current, event->ctx);
439 440 441 442 443
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
444 445 446
}

static inline void
447 448
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
449 450 451 452
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

453 454 455 456 457 458
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
459 460
		return;

461
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
462
	info = this_cpu_ptr(cgrp->info);
463
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
464 465 466 467 468 469 470 471 472 473 474
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
475
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
495 496
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
497 498 499 500 501 502 503 504 505

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
506 507
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
508 509 510 511 512 513 514 515 516 517 518

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
519
				WARN_ON_ONCE(cpuctx->cgrp);
520 521 522 523
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
524 525
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
526
				 */
527
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
528 529
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
530 531
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
532 533 534 535 536 537
		}
	}

	local_irq_restore(flags);
}

538 539
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
540
{
541 542 543
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

544
	rcu_read_lock();
545 546
	/*
	 * we come here when we know perf_cgroup_events > 0
547 548
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
549
	 */
550
	cgrp1 = perf_cgroup_from_task(task, NULL);
551 552 553 554 555 556

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
557
		cgrp2 = perf_cgroup_from_task(next, NULL);
558 559 560 561 562 563 564 565

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
566 567

	rcu_read_unlock();
S
Stephane Eranian 已提交
568 569
}

570 571
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
572
{
573 574 575
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

576
	rcu_read_lock();
577 578
	/*
	 * we come here when we know perf_cgroup_events > 0
579 580
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
581
	 */
582
	cgrp1 = perf_cgroup_from_task(task, NULL);
583 584

	/* prev can never be NULL */
585
	cgrp2 = perf_cgroup_from_task(prev, NULL);
586 587 588 589 590 591 592 593

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
594 595

	rcu_read_unlock();
S
Stephane Eranian 已提交
596 597 598 599 600 601 602 603
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
604 605
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
606

607
	if (!f.file)
S
Stephane Eranian 已提交
608 609
		return -EBADF;

A
Al Viro 已提交
610
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
611
					 &perf_event_cgrp_subsys);
612 613 614 615
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
629
out:
630
	fdput(f);
S
Stephane Eranian 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

704 705
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
706 707 708
{
}

709 710
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
711 712 713 714 715 716 717 718 719 720 721
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
722 723
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

754 755 756 757 758 759 760 761
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
762
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
763 764 765 766 767 768 769 770 771
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
772 773
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
774
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
775 776 777
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
778

P
Peter Zijlstra 已提交
779
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
780 781
}

782
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
783
{
784
	struct hrtimer *timer = &cpuctx->hrtimer;
785
	struct pmu *pmu = cpuctx->ctx.pmu;
786
	u64 interval;
787 788 789 790 791

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

792 793 794 795
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
796 797 798
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
799

800
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
801

P
Peter Zijlstra 已提交
802 803
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
804
	timer->function = perf_mux_hrtimer_handler;
805 806
}

807
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
808
{
809
	struct hrtimer *timer = &cpuctx->hrtimer;
810
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
811
	unsigned long flags;
812 813 814

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
815
		return 0;
816

P
Peter Zijlstra 已提交
817 818 819 820 821 822 823
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
824

825
	return 0;
826 827
}

P
Peter Zijlstra 已提交
828
void perf_pmu_disable(struct pmu *pmu)
829
{
P
Peter Zijlstra 已提交
830 831 832
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
833 834
}

P
Peter Zijlstra 已提交
835
void perf_pmu_enable(struct pmu *pmu)
836
{
P
Peter Zijlstra 已提交
837 838 839
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
840 841
}

842
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
843 844

/*
845 846 847 848
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
849
 */
850
static void perf_event_ctx_activate(struct perf_event_context *ctx)
851
{
852
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
853

854
	WARN_ON(!irqs_disabled());
855

856 857 858 859 860 861 862 863 864 865 866 867
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
868 869
}

870
static void get_ctx(struct perf_event_context *ctx)
871
{
872
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
873 874
}

875 876 877 878 879 880 881 882 883
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

884
static void put_ctx(struct perf_event_context *ctx)
885
{
886 887 888
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
889 890
		if (ctx->task)
			put_task_struct(ctx->task);
891
		call_rcu(&ctx->rcu_head, free_ctx);
892
	}
893 894
}

P
Peter Zijlstra 已提交
895 896 897 898 899 900 901
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
 *      __perf_event_exit_task()
 *        sync_child_event()
 *          put_event()			[ parent, 1 ]
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
956 957
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
958 959 960 961 962 963 964 965 966 967 968 969
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
970
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
971 972 973 974 975 976 977 978 979
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
980 981 982 983 984 985
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
986 987 988 989 990 991 992
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

993 994 995 996 997 998 999
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1000
{
1001 1002 1003 1004 1005
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1006
		ctx->parent_ctx = NULL;
1007
	ctx->generation++;
1008 1009

	return parent_ctx;
1010 1011
}

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1034
/*
1035
 * If we inherit events we want to return the parent event id
1036 1037
 * to userspace.
 */
1038
static u64 primary_event_id(struct perf_event *event)
1039
{
1040
	u64 id = event->id;
1041

1042 1043
	if (event->parent)
		id = event->parent->id;
1044 1045 1046 1047

	return id;
}

1048
/*
1049
 * Get the perf_event_context for a task and lock it.
1050 1051 1052
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1053
static struct perf_event_context *
P
Peter Zijlstra 已提交
1054
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1055
{
1056
	struct perf_event_context *ctx;
1057

P
Peter Zijlstra 已提交
1058
retry:
1059 1060 1061
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1062
	 * part of the read side critical section was irqs-enabled -- see
1063 1064 1065
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1066
	 * side critical section has interrupts disabled.
1067
	 */
1068
	local_irq_save(*flags);
1069
	rcu_read_lock();
P
Peter Zijlstra 已提交
1070
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1071 1072 1073 1074
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1075
		 * perf_event_task_sched_out, though the
1076 1077 1078 1079 1080 1081
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1082
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1083
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1084
			raw_spin_unlock(&ctx->lock);
1085
			rcu_read_unlock();
1086
			local_irq_restore(*flags);
1087 1088
			goto retry;
		}
1089 1090

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1091
			raw_spin_unlock(&ctx->lock);
1092 1093
			ctx = NULL;
		}
1094 1095
	}
	rcu_read_unlock();
1096 1097
	if (!ctx)
		local_irq_restore(*flags);
1098 1099 1100 1101 1102 1103 1104 1105
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1106 1107
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1108
{
1109
	struct perf_event_context *ctx;
1110 1111
	unsigned long flags;

P
Peter Zijlstra 已提交
1112
	ctx = perf_lock_task_context(task, ctxn, &flags);
1113 1114
	if (ctx) {
		++ctx->pin_count;
1115
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1116 1117 1118 1119
	}
	return ctx;
}

1120
static void perf_unpin_context(struct perf_event_context *ctx)
1121 1122 1123
{
	unsigned long flags;

1124
	raw_spin_lock_irqsave(&ctx->lock, flags);
1125
	--ctx->pin_count;
1126
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1127 1128
}

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1140 1141 1142
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1143 1144 1145 1146

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1147 1148 1149
	return ctx ? ctx->time : 0;
}

1150 1151
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1152
 * The caller of this function needs to hold the ctx->lock.
1153 1154 1155 1156 1157 1158 1159 1160 1161
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1173
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1174 1175
	else if (ctx->is_active)
		run_end = ctx->time;
1176 1177 1178 1179
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1180 1181 1182 1183

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1184
		run_end = perf_event_time(event);
1185 1186

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1187

1188 1189
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1202 1203 1204 1205 1206 1207 1208 1209 1210
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1211
/*
1212
 * Add a event from the lists for its context.
1213 1214
 * Must be called with ctx->mutex and ctx->lock held.
 */
1215
static void
1216
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1217
{
1218 1219
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1220 1221

	/*
1222 1223 1224
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1225
	 */
1226
	if (event->group_leader == event) {
1227 1228
		struct list_head *list;

1229 1230 1231
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1232 1233
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1234
	}
P
Peter Zijlstra 已提交
1235

1236
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1237 1238
		ctx->nr_cgroups++;

1239 1240 1241
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1242
		ctx->nr_stat++;
1243 1244

	ctx->generation++;
1245 1246
}

J
Jiri Olsa 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1256
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1272
		nr += nr_siblings;
1273 1274 1275 1276 1277 1278 1279
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1280
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1281 1282 1283 1284 1285 1286 1287
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1288 1289 1290 1291 1292 1293
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1294 1295 1296
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1297 1298 1299
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1300 1301 1302
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1303 1304 1305
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1306 1307 1308
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1320 1321 1322 1323 1324 1325
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1326 1327 1328 1329 1330 1331
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1332 1333 1334
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1335 1336 1337 1338 1339 1340 1341 1342 1343
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1344
	event->id_header_size = size;
1345 1346
}

P
Peter Zijlstra 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1368 1369
static void perf_group_attach(struct perf_event *event)
{
1370
	struct perf_event *group_leader = event->group_leader, *pos;
1371

P
Peter Zijlstra 已提交
1372 1373 1374 1375 1376 1377
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1378 1379 1380 1381 1382
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1383 1384
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1385 1386 1387 1388 1389 1390
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1391 1392 1393 1394 1395

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1396 1397
}

1398
/*
1399
 * Remove a event from the lists for its context.
1400
 * Must be called with ctx->mutex and ctx->lock held.
1401
 */
1402
static void
1403
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1404
{
1405
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1406 1407 1408 1409

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1410 1411 1412 1413
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1414
		return;
1415 1416 1417

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1418
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1419
		ctx->nr_cgroups--;
1420 1421 1422 1423 1424 1425 1426 1427 1428
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1429

1430 1431
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1432
		ctx->nr_stat--;
1433

1434
	list_del_rcu(&event->event_entry);
1435

1436 1437
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1438

1439
	update_group_times(event);
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1450 1451

	ctx->generation++;
1452 1453
}

1454
static void perf_group_detach(struct perf_event *event)
1455 1456
{
	struct perf_event *sibling, *tmp;
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1473
		goto out;
1474 1475 1476 1477
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1478

1479
	/*
1480 1481
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1482
	 * to whatever list we are on.
1483
	 */
1484
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1485 1486
		if (list)
			list_move_tail(&sibling->group_entry, list);
1487
		sibling->group_leader = sibling;
1488 1489 1490

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1491 1492

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1493
	}
1494 1495 1496 1497 1498 1499

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1500 1501
}

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1541 1542 1543 1544 1545 1546
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1547 1548 1549
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1550
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1551
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1552 1553
}

1554 1555
static void
event_sched_out(struct perf_event *event,
1556
		  struct perf_cpu_context *cpuctx,
1557
		  struct perf_event_context *ctx)
1558
{
1559
	u64 tstamp = perf_event_time(event);
1560
	u64 delta;
P
Peter Zijlstra 已提交
1561 1562 1563 1564

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1565 1566 1567 1568 1569 1570 1571 1572
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1573
		delta = tstamp - event->tstamp_stopped;
1574
		event->tstamp_running += delta;
1575
		event->tstamp_stopped = tstamp;
1576 1577
	}

1578
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1579
		return;
1580

1581 1582
	perf_pmu_disable(event->pmu);

1583 1584 1585 1586
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1587
	}
1588
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1589
	event->pmu->del(event, 0);
1590
	event->oncpu = -1;
1591

1592
	if (!is_software_event(event))
1593
		cpuctx->active_oncpu--;
1594 1595
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1596 1597
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1598
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1599
		cpuctx->exclusive = 0;
1600

1601 1602 1603
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1604
	perf_pmu_enable(event->pmu);
1605 1606
}

1607
static void
1608
group_sched_out(struct perf_event *group_event,
1609
		struct perf_cpu_context *cpuctx,
1610
		struct perf_event_context *ctx)
1611
{
1612
	struct perf_event *event;
1613
	int state = group_event->state;
1614

1615
	event_sched_out(group_event, cpuctx, ctx);
1616 1617 1618 1619

	/*
	 * Schedule out siblings (if any):
	 */
1620 1621
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1622

1623
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1624 1625 1626
		cpuctx->exclusive = 0;
}

1627 1628 1629 1630 1631
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1632
/*
1633
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1634
 *
1635
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1636 1637
 * remove it from the context list.
 */
1638
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1639
{
1640 1641
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1642
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1643
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1644

1645
	raw_spin_lock(&ctx->lock);
1646
	event_sched_out(event, cpuctx, ctx);
1647 1648
	if (re->detach_group)
		perf_group_detach(event);
1649
	list_del_event(event, ctx);
1650 1651 1652 1653
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1654
	raw_spin_unlock(&ctx->lock);
1655 1656

	return 0;
T
Thomas Gleixner 已提交
1657 1658 1659 1660
}


/*
1661
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1662
 *
1663
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1664
 * call when the task is on a CPU.
1665
 *
1666 1667
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1668 1669
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1670
 * When called from perf_event_exit_task, it's OK because the
1671
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1672
 */
1673
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1674
{
1675
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1676
	struct task_struct *task = ctx->task;
1677 1678 1679 1680
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1681

1682 1683
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1684 1685
	if (!task) {
		/*
1686 1687 1688 1689
		 * Per cpu events are removed via an smp call. The removal can
		 * fail if the CPU is currently offline, but in that case we
		 * already called __perf_remove_from_context from
		 * perf_event_exit_cpu.
T
Thomas Gleixner 已提交
1690
		 */
1691
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1692 1693 1694 1695
		return;
	}

retry:
1696
	if (!task_function_call(task, __perf_remove_from_context, &re))
1697
		return;
T
Thomas Gleixner 已提交
1698

1699
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1700
	/*
1701 1702
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1703
	 */
1704
	if (ctx->is_active) {
1705
		raw_spin_unlock_irq(&ctx->lock);
1706 1707 1708 1709 1710
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1711 1712 1713 1714
		goto retry;
	}

	/*
1715 1716
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1717
	 */
1718 1719
	if (detach_group)
		perf_group_detach(event);
1720
	list_del_event(event, ctx);
1721
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1722 1723
}

1724
/*
1725
 * Cross CPU call to disable a performance event
1726
 */
1727
int __perf_event_disable(void *info)
1728
{
1729 1730
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1731
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1732 1733

	/*
1734 1735
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1736 1737 1738
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1739
	 */
1740
	if (ctx->task && cpuctx->task_ctx != ctx)
1741
		return -EINVAL;
1742

1743
	raw_spin_lock(&ctx->lock);
1744 1745

	/*
1746
	 * If the event is on, turn it off.
1747 1748
	 * If it is in error state, leave it in error state.
	 */
1749
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1750
		update_context_time(ctx);
S
Stephane Eranian 已提交
1751
		update_cgrp_time_from_event(event);
1752 1753 1754
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1755
		else
1756 1757
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1758 1759
	}

1760
	raw_spin_unlock(&ctx->lock);
1761 1762

	return 0;
1763 1764 1765
}

/*
1766
 * Disable a event.
1767
 *
1768 1769
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1770
 * remains valid.  This condition is satisifed when called through
1771 1772 1773 1774
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1775
 * is the current context on this CPU and preemption is disabled,
1776
 * hence we can't get into perf_event_task_sched_out for this context.
1777
 */
P
Peter Zijlstra 已提交
1778
static void _perf_event_disable(struct perf_event *event)
1779
{
1780
	struct perf_event_context *ctx = event->ctx;
1781 1782 1783 1784
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1785
		 * Disable the event on the cpu that it's on
1786
		 */
1787
		cpu_function_call(event->cpu, __perf_event_disable, event);
1788 1789 1790
		return;
	}

P
Peter Zijlstra 已提交
1791
retry:
1792 1793
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1794

1795
	raw_spin_lock_irq(&ctx->lock);
1796
	/*
1797
	 * If the event is still active, we need to retry the cross-call.
1798
	 */
1799
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1800
		raw_spin_unlock_irq(&ctx->lock);
1801 1802 1803 1804 1805
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1806 1807 1808 1809 1810 1811 1812
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1813 1814 1815
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1816
	}
1817
	raw_spin_unlock_irq(&ctx->lock);
1818
}
P
Peter Zijlstra 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1832
EXPORT_SYMBOL_GPL(perf_event_disable);
1833

S
Stephane Eranian 已提交
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1869 1870 1871
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1872
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1873

1874
static int
1875
event_sched_in(struct perf_event *event,
1876
		 struct perf_cpu_context *cpuctx,
1877
		 struct perf_event_context *ctx)
1878
{
1879
	u64 tstamp = perf_event_time(event);
1880
	int ret = 0;
1881

1882 1883
	lockdep_assert_held(&ctx->lock);

1884
	if (event->state <= PERF_EVENT_STATE_OFF)
1885 1886
		return 0;

1887
	event->state = PERF_EVENT_STATE_ACTIVE;
1888
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1900 1901 1902 1903 1904
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1905 1906
	perf_pmu_disable(event->pmu);

1907 1908
	perf_set_shadow_time(event, ctx, tstamp);

1909 1910
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1911
	if (event->pmu->add(event, PERF_EF_START)) {
1912 1913
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1914 1915
		ret = -EAGAIN;
		goto out;
1916 1917
	}

1918 1919
	event->tstamp_running += tstamp - event->tstamp_stopped;

1920
	if (!is_software_event(event))
1921
		cpuctx->active_oncpu++;
1922 1923
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1924 1925
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1926

1927
	if (event->attr.exclusive)
1928 1929
		cpuctx->exclusive = 1;

1930 1931 1932
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1933 1934 1935 1936
out:
	perf_pmu_enable(event->pmu);

	return ret;
1937 1938
}

1939
static int
1940
group_sched_in(struct perf_event *group_event,
1941
	       struct perf_cpu_context *cpuctx,
1942
	       struct perf_event_context *ctx)
1943
{
1944
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1945
	struct pmu *pmu = ctx->pmu;
1946 1947
	u64 now = ctx->time;
	bool simulate = false;
1948

1949
	if (group_event->state == PERF_EVENT_STATE_OFF)
1950 1951
		return 0;

1952
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1953

1954
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1955
		pmu->cancel_txn(pmu);
1956
		perf_mux_hrtimer_restart(cpuctx);
1957
		return -EAGAIN;
1958
	}
1959 1960 1961 1962

	/*
	 * Schedule in siblings as one group (if any):
	 */
1963
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1964
		if (event_sched_in(event, cpuctx, ctx)) {
1965
			partial_group = event;
1966 1967 1968 1969
			goto group_error;
		}
	}

1970
	if (!pmu->commit_txn(pmu))
1971
		return 0;
1972

1973 1974 1975 1976
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1987
	 */
1988 1989
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1990 1991 1992 1993 1994 1995 1996 1997
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1998
	}
1999
	event_sched_out(group_event, cpuctx, ctx);
2000

P
Peter Zijlstra 已提交
2001
	pmu->cancel_txn(pmu);
2002

2003
	perf_mux_hrtimer_restart(cpuctx);
2004

2005 2006 2007
	return -EAGAIN;
}

2008
/*
2009
 * Work out whether we can put this event group on the CPU now.
2010
 */
2011
static int group_can_go_on(struct perf_event *event,
2012 2013 2014 2015
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2016
	 * Groups consisting entirely of software events can always go on.
2017
	 */
2018
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2019 2020 2021
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2022
	 * events can go on.
2023 2024 2025 2026 2027
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2028
	 * events on the CPU, it can't go on.
2029
	 */
2030
	if (event->attr.exclusive && cpuctx->active_oncpu)
2031 2032 2033 2034 2035 2036 2037 2038
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2039 2040
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2041
{
2042 2043
	u64 tstamp = perf_event_time(event);

2044
	list_add_event(event, ctx);
2045
	perf_group_attach(event);
2046 2047 2048
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2049 2050
}

2051 2052 2053 2054 2055 2056
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2057

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
2070
/*
2071
 * Cross CPU call to install and enable a performance event
2072 2073
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2074
 */
2075
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2076
{
2077 2078
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2079
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2080 2081 2082
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2083
	perf_ctx_lock(cpuctx, task_ctx);
2084
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2085 2086

	/*
2087
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2088
	 */
2089
	if (task_ctx)
2090
		task_ctx_sched_out(task_ctx);
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2105 2106
		task = task_ctx->task;
	}
2107

2108
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2109

2110
	update_context_time(ctx);
S
Stephane Eranian 已提交
2111 2112 2113 2114 2115 2116
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2117

2118
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2119

2120
	/*
2121
	 * Schedule everything back in
2122
	 */
2123
	perf_event_sched_in(cpuctx, task_ctx, task);
2124 2125 2126

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2127 2128

	return 0;
T
Thomas Gleixner 已提交
2129 2130 2131
}

/*
2132
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2133
 *
2134 2135
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2136
 *
2137
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2138 2139 2140 2141
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2142 2143
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2144 2145 2146 2147
			int cpu)
{
	struct task_struct *task = ctx->task;

2148 2149
	lockdep_assert_held(&ctx->mutex);

2150
	event->ctx = ctx;
2151 2152
	if (event->cpu != -1)
		event->cpu = cpu;
2153

T
Thomas Gleixner 已提交
2154 2155
	if (!task) {
		/*
2156
		 * Per cpu events are installed via an smp call and
2157
		 * the install is always successful.
T
Thomas Gleixner 已提交
2158
		 */
2159
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2160 2161 2162 2163
		return;
	}

retry:
2164 2165
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2166

2167
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2168
	/*
2169 2170
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2171
	 */
2172
	if (ctx->is_active) {
2173
		raw_spin_unlock_irq(&ctx->lock);
2174 2175 2176 2177 2178
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2179 2180 2181 2182
		goto retry;
	}

	/*
2183 2184
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2185
	 */
2186
	add_event_to_ctx(event, ctx);
2187
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2188 2189
}

2190
/*
2191
 * Put a event into inactive state and update time fields.
2192 2193 2194 2195 2196 2197
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2198
static void __perf_event_mark_enabled(struct perf_event *event)
2199
{
2200
	struct perf_event *sub;
2201
	u64 tstamp = perf_event_time(event);
2202

2203
	event->state = PERF_EVENT_STATE_INACTIVE;
2204
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2205
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2206 2207
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2208
	}
2209 2210
}

2211
/*
2212
 * Cross CPU call to enable a performance event
2213
 */
2214
static int __perf_event_enable(void *info)
2215
{
2216 2217 2218
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2219
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2220
	int err;
2221

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2232
		return -EINVAL;
2233

2234
	raw_spin_lock(&ctx->lock);
2235
	update_context_time(ctx);
2236

2237
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2238
		goto unlock;
S
Stephane Eranian 已提交
2239 2240 2241 2242

	/*
	 * set current task's cgroup time reference point
	 */
2243
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2244

2245
	__perf_event_mark_enabled(event);
2246

S
Stephane Eranian 已提交
2247 2248 2249
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2250
		goto unlock;
S
Stephane Eranian 已提交
2251
	}
2252

2253
	/*
2254
	 * If the event is in a group and isn't the group leader,
2255
	 * then don't put it on unless the group is on.
2256
	 */
2257
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2258
		goto unlock;
2259

2260
	if (!group_can_go_on(event, cpuctx, 1)) {
2261
		err = -EEXIST;
2262
	} else {
2263
		if (event == leader)
2264
			err = group_sched_in(event, cpuctx, ctx);
2265
		else
2266
			err = event_sched_in(event, cpuctx, ctx);
2267
	}
2268 2269 2270

	if (err) {
		/*
2271
		 * If this event can't go on and it's part of a
2272 2273
		 * group, then the whole group has to come off.
		 */
2274
		if (leader != event) {
2275
			group_sched_out(leader, cpuctx, ctx);
2276
			perf_mux_hrtimer_restart(cpuctx);
2277
		}
2278
		if (leader->attr.pinned) {
2279
			update_group_times(leader);
2280
			leader->state = PERF_EVENT_STATE_ERROR;
2281
		}
2282 2283
	}

P
Peter Zijlstra 已提交
2284
unlock:
2285
	raw_spin_unlock(&ctx->lock);
2286 2287

	return 0;
2288 2289 2290
}

/*
2291
 * Enable a event.
2292
 *
2293 2294
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2295
 * remains valid.  This condition is satisfied when called through
2296 2297
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2298
 */
P
Peter Zijlstra 已提交
2299
static void _perf_event_enable(struct perf_event *event)
2300
{
2301
	struct perf_event_context *ctx = event->ctx;
2302 2303 2304 2305
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2306
		 * Enable the event on the cpu that it's on
2307
		 */
2308
		cpu_function_call(event->cpu, __perf_event_enable, event);
2309 2310 2311
		return;
	}

2312
	raw_spin_lock_irq(&ctx->lock);
2313
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2314 2315 2316
		goto out;

	/*
2317 2318
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2319 2320 2321 2322
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2323 2324
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2325

P
Peter Zijlstra 已提交
2326
retry:
2327
	if (!ctx->is_active) {
2328
		__perf_event_mark_enabled(event);
2329 2330 2331
		goto out;
	}

2332
	raw_spin_unlock_irq(&ctx->lock);
2333 2334 2335

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2336

2337
	raw_spin_lock_irq(&ctx->lock);
2338 2339

	/*
2340
	 * If the context is active and the event is still off,
2341 2342
	 * we need to retry the cross-call.
	 */
2343 2344 2345 2346 2347 2348
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2349
		goto retry;
2350
	}
2351

P
Peter Zijlstra 已提交
2352
out:
2353
	raw_spin_unlock_irq(&ctx->lock);
2354
}
P
Peter Zijlstra 已提交
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2367
EXPORT_SYMBOL_GPL(perf_event_enable);
2368

P
Peter Zijlstra 已提交
2369
static int _perf_event_refresh(struct perf_event *event, int refresh)
2370
{
2371
	/*
2372
	 * not supported on inherited events
2373
	 */
2374
	if (event->attr.inherit || !is_sampling_event(event))
2375 2376
		return -EINVAL;

2377
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2378
	_perf_event_enable(event);
2379 2380

	return 0;
2381
}
P
Peter Zijlstra 已提交
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2397
EXPORT_SYMBOL_GPL(perf_event_refresh);
2398

2399 2400 2401
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2402
{
2403
	struct perf_event *event;
2404
	int is_active = ctx->is_active;
2405

2406
	ctx->is_active &= ~event_type;
2407
	if (likely(!ctx->nr_events))
2408 2409
		return;

2410
	update_context_time(ctx);
S
Stephane Eranian 已提交
2411
	update_cgrp_time_from_cpuctx(cpuctx);
2412
	if (!ctx->nr_active)
2413
		return;
2414

P
Peter Zijlstra 已提交
2415
	perf_pmu_disable(ctx->pmu);
2416
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2417 2418
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2419
	}
2420

2421
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2422
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2423
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2424
	}
P
Peter Zijlstra 已提交
2425
	perf_pmu_enable(ctx->pmu);
2426 2427
}

2428
/*
2429 2430 2431 2432 2433 2434
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2435
 */
2436 2437
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2438
{
2439 2440 2441
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2464 2465
}

2466 2467
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2468 2469 2470
{
	u64 value;

2471
	if (!event->attr.inherit_stat)
2472 2473 2474
		return;

	/*
2475
	 * Update the event value, we cannot use perf_event_read()
2476 2477
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2478
	 * we know the event must be on the current CPU, therefore we
2479 2480
	 * don't need to use it.
	 */
2481 2482
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2483 2484
		event->pmu->read(event);
		/* fall-through */
2485

2486 2487
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2488 2489 2490 2491 2492 2493 2494
		break;

	default:
		break;
	}

	/*
2495
	 * In order to keep per-task stats reliable we need to flip the event
2496 2497
	 * values when we flip the contexts.
	 */
2498 2499 2500
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2501

2502 2503
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2504

2505
	/*
2506
	 * Since we swizzled the values, update the user visible data too.
2507
	 */
2508 2509
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2510 2511
}

2512 2513
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2514
{
2515
	struct perf_event *event, *next_event;
2516 2517 2518 2519

	if (!ctx->nr_stat)
		return;

2520 2521
	update_context_time(ctx);

2522 2523
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2524

2525 2526
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2527

2528 2529
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2530

2531
		__perf_event_sync_stat(event, next_event);
2532

2533 2534
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2535 2536 2537
	}
}

2538 2539
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2540
{
P
Peter Zijlstra 已提交
2541
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2542
	struct perf_event_context *next_ctx;
2543
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2544
	struct perf_cpu_context *cpuctx;
2545
	int do_switch = 1;
T
Thomas Gleixner 已提交
2546

P
Peter Zijlstra 已提交
2547 2548
	if (likely(!ctx))
		return;
2549

P
Peter Zijlstra 已提交
2550 2551
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2552 2553
		return;

2554
	rcu_read_lock();
P
Peter Zijlstra 已提交
2555
	next_ctx = next->perf_event_ctxp[ctxn];
2556 2557 2558 2559 2560 2561 2562
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2563
	if (!parent && !next_parent)
2564 2565 2566
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2567 2568 2569 2570 2571 2572 2573 2574 2575
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2576 2577
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2578
		if (context_equiv(ctx, next_ctx)) {
2579 2580
			/*
			 * XXX do we need a memory barrier of sorts
2581
			 * wrt to rcu_dereference() of perf_event_ctxp
2582
			 */
P
Peter Zijlstra 已提交
2583 2584
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2585 2586
			ctx->task = next;
			next_ctx->task = task;
2587 2588 2589

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2590
			do_switch = 0;
2591

2592
			perf_event_sync_stat(ctx, next_ctx);
2593
		}
2594 2595
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2596
	}
2597
unlock:
2598
	rcu_read_unlock();
2599

2600
	if (do_switch) {
2601
		raw_spin_lock(&ctx->lock);
2602
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2603
		cpuctx->task_ctx = NULL;
2604
		raw_spin_unlock(&ctx->lock);
2605
	}
T
Thomas Gleixner 已提交
2606 2607
}

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2658 2659 2660
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2675 2676
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2677 2678 2679
{
	int ctxn;

2680 2681 2682
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2683 2684 2685
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2686 2687
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2688 2689 2690 2691 2692 2693

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2694
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2695
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2696 2697
}

2698
static void task_ctx_sched_out(struct perf_event_context *ctx)
2699
{
P
Peter Zijlstra 已提交
2700
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2701

2702 2703
	if (!cpuctx->task_ctx)
		return;
2704 2705 2706 2707

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2708
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2709 2710 2711
	cpuctx->task_ctx = NULL;
}

2712 2713 2714 2715 2716 2717 2718
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2719 2720
}

2721
static void
2722
ctx_pinned_sched_in(struct perf_event_context *ctx,
2723
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2724
{
2725
	struct perf_event *event;
T
Thomas Gleixner 已提交
2726

2727 2728
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2729
			continue;
2730
		if (!event_filter_match(event))
2731 2732
			continue;

S
Stephane Eranian 已提交
2733 2734 2735 2736
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2737
		if (group_can_go_on(event, cpuctx, 1))
2738
			group_sched_in(event, cpuctx, ctx);
2739 2740 2741 2742 2743

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2744 2745 2746
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2747
		}
2748
	}
2749 2750 2751 2752
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2753
		      struct perf_cpu_context *cpuctx)
2754 2755 2756
{
	struct perf_event *event;
	int can_add_hw = 1;
2757

2758 2759 2760
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2761
			continue;
2762 2763
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2764
		 * of events:
2765
		 */
2766
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2767 2768
			continue;

S
Stephane Eranian 已提交
2769 2770 2771 2772
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2773
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2774
			if (group_sched_in(event, cpuctx, ctx))
2775
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2776
		}
T
Thomas Gleixner 已提交
2777
	}
2778 2779 2780 2781 2782
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2783 2784
	     enum event_type_t event_type,
	     struct task_struct *task)
2785
{
S
Stephane Eranian 已提交
2786
	u64 now;
2787
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2788

2789
	ctx->is_active |= event_type;
2790
	if (likely(!ctx->nr_events))
2791
		return;
2792

S
Stephane Eranian 已提交
2793 2794
	now = perf_clock();
	ctx->timestamp = now;
2795
	perf_cgroup_set_timestamp(task, ctx);
2796 2797 2798 2799
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2800
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2801
		ctx_pinned_sched_in(ctx, cpuctx);
2802 2803

	/* Then walk through the lower prio flexible groups */
2804
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2805
		ctx_flexible_sched_in(ctx, cpuctx);
2806 2807
}

2808
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2809 2810
			     enum event_type_t event_type,
			     struct task_struct *task)
2811 2812 2813
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2814
	ctx_sched_in(ctx, cpuctx, event_type, task);
2815 2816
}

S
Stephane Eranian 已提交
2817 2818
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2819
{
P
Peter Zijlstra 已提交
2820
	struct perf_cpu_context *cpuctx;
2821

P
Peter Zijlstra 已提交
2822
	cpuctx = __get_cpu_context(ctx);
2823 2824 2825
	if (cpuctx->task_ctx == ctx)
		return;

2826
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2827
	perf_pmu_disable(ctx->pmu);
2828 2829 2830 2831 2832 2833 2834
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2835 2836
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2837

2838 2839
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2840 2841
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2842 2843
}

P
Peter Zijlstra 已提交
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2855 2856
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2857 2858 2859 2860 2861 2862 2863 2864 2865
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2866
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2867
	}
S
Stephane Eranian 已提交
2868 2869 2870 2871 2872
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2873
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2874
		perf_cgroup_sched_in(prev, task);
2875

2876 2877 2878
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2879 2880
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2881 2882
}

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2910
#define REDUCE_FLS(a, b)		\
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2950 2951 2952
	if (!divisor)
		return dividend;

2953 2954 2955
	return div64_u64(dividend, divisor);
}

2956 2957 2958
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2959
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2960
{
2961
	struct hw_perf_event *hwc = &event->hw;
2962
	s64 period, sample_period;
2963 2964
	s64 delta;

2965
	period = perf_calculate_period(event, nsec, count);
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2976

2977
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2978 2979 2980
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2981
		local64_set(&hwc->period_left, 0);
2982 2983 2984

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2985
	}
2986 2987
}

2988 2989 2990 2991 2992 2993 2994
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2995
{
2996 2997
	struct perf_event *event;
	struct hw_perf_event *hwc;
2998
	u64 now, period = TICK_NSEC;
2999
	s64 delta;
3000

3001 3002 3003 3004 3005 3006
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3007 3008
		return;

3009
	raw_spin_lock(&ctx->lock);
3010
	perf_pmu_disable(ctx->pmu);
3011

3012
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3013
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3014 3015
			continue;

3016
		if (!event_filter_match(event))
3017 3018
			continue;

3019 3020
		perf_pmu_disable(event->pmu);

3021
		hwc = &event->hw;
3022

3023
		if (hwc->interrupts == MAX_INTERRUPTS) {
3024
			hwc->interrupts = 0;
3025
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3026
			event->pmu->start(event, 0);
3027 3028
		}

3029
		if (!event->attr.freq || !event->attr.sample_freq)
3030
			goto next;
3031

3032 3033 3034 3035 3036
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3037
		now = local64_read(&event->count);
3038 3039
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3040

3041 3042 3043
		/*
		 * restart the event
		 * reload only if value has changed
3044 3045 3046
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3047
		 */
3048
		if (delta > 0)
3049
			perf_adjust_period(event, period, delta, false);
3050 3051

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3052 3053
	next:
		perf_pmu_enable(event->pmu);
3054
	}
3055

3056
	perf_pmu_enable(ctx->pmu);
3057
	raw_spin_unlock(&ctx->lock);
3058 3059
}

3060
/*
3061
 * Round-robin a context's events:
3062
 */
3063
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3064
{
3065 3066 3067 3068 3069 3070
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3071 3072
}

3073
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3074
{
P
Peter Zijlstra 已提交
3075
	struct perf_event_context *ctx = NULL;
3076
	int rotate = 0;
3077

3078 3079 3080 3081
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3082

P
Peter Zijlstra 已提交
3083
	ctx = cpuctx->task_ctx;
3084 3085 3086 3087
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3088

3089
	if (!rotate)
3090 3091
		goto done;

3092
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3093
	perf_pmu_disable(cpuctx->ctx.pmu);
3094

3095 3096 3097
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3098

3099 3100 3101
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3102

3103
	perf_event_sched_in(cpuctx, ctx, current);
3104

3105 3106
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3107
done:
3108 3109

	return rotate;
3110 3111
}

3112 3113 3114
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3115
	if (atomic_read(&nr_freq_events) ||
3116
	    __this_cpu_read(perf_throttled_count))
3117
		return false;
3118 3119
	else
		return true;
3120 3121 3122
}
#endif

3123 3124
void perf_event_task_tick(void)
{
3125 3126
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3127
	int throttled;
3128

3129 3130
	WARN_ON(!irqs_disabled());

3131 3132 3133
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3134
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3135
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3136 3137
}

3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3148
	__perf_event_mark_enabled(event);
3149 3150 3151 3152

	return 1;
}

3153
/*
3154
 * Enable all of a task's events that have been marked enable-on-exec.
3155 3156
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
3157
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3158
{
3159
	struct perf_event_context *clone_ctx = NULL;
3160
	struct perf_event *event;
3161 3162
	unsigned long flags;
	int enabled = 0;
3163
	int ret;
3164 3165

	local_irq_save(flags);
3166
	if (!ctx || !ctx->nr_events)
3167 3168
		goto out;

3169 3170 3171 3172 3173 3174 3175
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3176
	perf_cgroup_sched_out(current, NULL);
3177

3178
	raw_spin_lock(&ctx->lock);
3179
	task_ctx_sched_out(ctx);
3180

3181
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3182 3183 3184
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3185 3186 3187
	}

	/*
3188
	 * Unclone this context if we enabled any event.
3189
	 */
3190
	if (enabled)
3191
		clone_ctx = unclone_ctx(ctx);
3192

3193
	raw_spin_unlock(&ctx->lock);
3194

3195 3196 3197
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3198
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3199
out:
3200
	local_irq_restore(flags);
3201 3202 3203

	if (clone_ctx)
		put_ctx(clone_ctx);
3204 3205
}

3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

3222 3223 3224
struct perf_read_data {
	struct perf_event *event;
	bool group;
3225
	int ret;
3226 3227
};

T
Thomas Gleixner 已提交
3228
/*
3229
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3230
 */
3231
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3232
{
3233 3234
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3235
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3236
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3237
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3238

3239 3240 3241 3242
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3243 3244
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3245 3246 3247 3248
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3249
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3250
	if (ctx->is_active) {
3251
		update_context_time(ctx);
S
Stephane Eranian 已提交
3252 3253
		update_cgrp_time_from_event(event);
	}
3254

3255
	update_event_times(event);
3256 3257
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3258

3259 3260 3261
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3262
		goto unlock;
3263 3264 3265 3266 3267
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3268 3269 3270

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3271 3272 3273 3274 3275
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3276
			sub->pmu->read(sub);
3277
		}
3278
	}
3279 3280

	data->ret = pmu->commit_txn(pmu);
3281 3282

unlock:
3283
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3284 3285
}

P
Peter Zijlstra 已提交
3286 3287
static inline u64 perf_event_count(struct perf_event *event)
{
3288 3289 3290 3291
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3292 3293
}

3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3347
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3348
{
3349 3350
	int ret = 0;

T
Thomas Gleixner 已提交
3351
	/*
3352 3353
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3354
	 */
3355
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3356 3357 3358
		struct perf_read_data data = {
			.event = event,
			.group = group,
3359
			.ret = 0,
3360
		};
3361
		smp_call_function_single(event->oncpu,
3362
					 __perf_event_read, &data, 1);
3363
		ret = data.ret;
3364
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3365 3366 3367
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3368
		raw_spin_lock_irqsave(&ctx->lock, flags);
3369 3370 3371 3372 3373
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3374
		if (ctx->is_active) {
3375
			update_context_time(ctx);
S
Stephane Eranian 已提交
3376 3377
			update_cgrp_time_from_event(event);
		}
3378 3379 3380 3381
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3382
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3383
	}
3384 3385

	return ret;
T
Thomas Gleixner 已提交
3386 3387
}

3388
/*
3389
 * Initialize the perf_event context in a task_struct:
3390
 */
3391
static void __perf_event_init_context(struct perf_event_context *ctx)
3392
{
3393
	raw_spin_lock_init(&ctx->lock);
3394
	mutex_init(&ctx->mutex);
3395
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3396 3397
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3398 3399
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3400
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3416
	}
3417 3418 3419
	ctx->pmu = pmu;

	return ctx;
3420 3421
}

3422 3423 3424 3425 3426
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3427 3428

	rcu_read_lock();
3429
	if (!vpid)
T
Thomas Gleixner 已提交
3430 3431
		task = current;
	else
3432
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3433 3434 3435 3436 3437 3438 3439 3440
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3441 3442 3443 3444
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3445 3446 3447 3448 3449 3450 3451
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3452 3453 3454
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3455
static struct perf_event_context *
3456 3457
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3458
{
3459
	struct perf_event_context *ctx, *clone_ctx = NULL;
3460
	struct perf_cpu_context *cpuctx;
3461
	void *task_ctx_data = NULL;
3462
	unsigned long flags;
P
Peter Zijlstra 已提交
3463
	int ctxn, err;
3464
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3465

3466
	if (!task) {
3467
		/* Must be root to operate on a CPU event: */
3468
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3469 3470 3471
			return ERR_PTR(-EACCES);

		/*
3472
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3473 3474 3475
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3476
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3477 3478
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3479
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3480
		ctx = &cpuctx->ctx;
3481
		get_ctx(ctx);
3482
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3483 3484 3485 3486

		return ctx;
	}

P
Peter Zijlstra 已提交
3487 3488 3489 3490 3491
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3492 3493 3494 3495 3496 3497 3498 3499
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3500
retry:
P
Peter Zijlstra 已提交
3501
	ctx = perf_lock_task_context(task, ctxn, &flags);
3502
	if (ctx) {
3503
		clone_ctx = unclone_ctx(ctx);
3504
		++ctx->pin_count;
3505 3506 3507 3508 3509

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3510
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3511 3512 3513

		if (clone_ctx)
			put_ctx(clone_ctx);
3514
	} else {
3515
		ctx = alloc_perf_context(pmu, task);
3516 3517 3518
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3519

3520 3521 3522 3523 3524
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3535
		else {
3536
			get_ctx(ctx);
3537
			++ctx->pin_count;
3538
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3539
		}
3540 3541 3542
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3543
			put_ctx(ctx);
3544 3545 3546 3547

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3548 3549 3550
		}
	}

3551
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3552
	return ctx;
3553

P
Peter Zijlstra 已提交
3554
errout:
3555
	kfree(task_ctx_data);
3556
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3557 3558
}

L
Li Zefan 已提交
3559
static void perf_event_free_filter(struct perf_event *event);
3560
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3561

3562
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3563
{
3564
	struct perf_event *event;
P
Peter Zijlstra 已提交
3565

3566 3567 3568
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3569
	perf_event_free_filter(event);
3570
	kfree(event);
P
Peter Zijlstra 已提交
3571 3572
}

3573 3574
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3575

3576
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3577
{
3578 3579 3580 3581 3582 3583
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3584

3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3598 3599
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3600 3601 3602 3603
	if (event->attr.context_switch) {
		static_key_slow_dec_deferred(&perf_sched_events);
		atomic_dec(&nr_switch_events);
	}
3604 3605 3606 3607 3608 3609 3610
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3611

3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
 * __free_event()), the latter -- before the first perf_install_in_context().
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

3697 3698
static void __free_event(struct perf_event *event)
{
3699
	if (!event->parent) {
3700 3701
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3702
	}
3703

3704 3705
	perf_event_free_bpf_prog(event);

3706 3707 3708 3709 3710 3711
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3712 3713
	if (event->pmu) {
		exclusive_event_destroy(event);
3714
		module_put(event->pmu->module);
3715
	}
3716

3717 3718
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3719 3720

static void _free_event(struct perf_event *event)
3721
{
3722
	irq_work_sync(&event->pending);
3723

3724
	unaccount_event(event);
3725

3726
	if (event->rb) {
3727 3728 3729 3730 3731 3732 3733
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3734
		ring_buffer_attach(event, NULL);
3735
		mutex_unlock(&event->mmap_mutex);
3736 3737
	}

S
Stephane Eranian 已提交
3738 3739 3740
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3741
	__free_event(event);
3742 3743
}

P
Peter Zijlstra 已提交
3744 3745 3746 3747 3748
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3749
{
P
Peter Zijlstra 已提交
3750 3751 3752 3753 3754 3755
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3756

P
Peter Zijlstra 已提交
3757
	_free_event(event);
T
Thomas Gleixner 已提交
3758 3759
}

3760
/*
3761
 * Remove user event from the owner task.
3762
 */
3763
static void perf_remove_from_owner(struct perf_event *event)
3764
{
P
Peter Zijlstra 已提交
3765
	struct task_struct *owner;
3766

P
Peter Zijlstra 已提交
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3808 3809 3810 3811
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3812
	struct perf_event_context *ctx;
3813 3814 3815 3816 3817 3818

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3819

P
Peter Zijlstra 已提交
3820 3821 3822 3823 3824 3825 3826
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
3827
	 *     perf_read_group(), which takes faults while
P
Peter Zijlstra 已提交
3828 3829 3830 3831
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3832 3833
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3834
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3835
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3836 3837

	_free_event(event);
3838 3839
}

P
Peter Zijlstra 已提交
3840 3841 3842 3843 3844 3845 3846
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3847 3848 3849
/*
 * Called when the last reference to the file is gone.
 */
3850 3851 3852 3853
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3854 3855
}

3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3892
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3893
{
3894
	struct perf_event *child;
3895 3896
	u64 total = 0;

3897 3898 3899
	*enabled = 0;
	*running = 0;

3900
	mutex_lock(&event->child_mutex);
3901

3902
	(void)perf_event_read(event, false);
3903 3904
	total += perf_event_count(event);

3905 3906 3907 3908 3909 3910
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3911
		(void)perf_event_read(child, false);
3912
		total += perf_event_count(child);
3913 3914 3915
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3916
	mutex_unlock(&event->child_mutex);
3917 3918 3919

	return total;
}
3920
EXPORT_SYMBOL_GPL(perf_event_read_value);
3921

3922
static int __perf_read_group_add(struct perf_event *leader,
3923
					u64 read_format, u64 *values)
3924
{
3925 3926
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3927
	int ret;
P
Peter Zijlstra 已提交
3928

3929 3930 3931
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3932

3933 3934 3935 3936 3937 3938 3939 3940 3941
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
3942

3943 3944 3945 3946 3947 3948 3949 3950 3951
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
3952 3953
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3954

3955 3956 3957 3958 3959
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
3960 3961

	return 0;
3962
}
3963

3964 3965 3966 3967 3968
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
3969
	int ret;
3970
	u64 *values;
3971

3972
	lockdep_assert_held(&ctx->mutex);
3973

3974 3975 3976
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
3977

3978 3979 3980 3981 3982 3983 3984
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
3985

3986 3987 3988 3989 3990 3991 3992 3993 3994
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
3995

3996
	mutex_unlock(&leader->child_mutex);
3997

3998
	ret = event->read_size;
3999 4000
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4001
	goto out;
4002

4003 4004 4005
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4006
	kfree(values);
4007
	return ret;
4008 4009
}

4010
static int perf_read_one(struct perf_event *event,
4011 4012
				 u64 read_format, char __user *buf)
{
4013
	u64 enabled, running;
4014 4015 4016
	u64 values[4];
	int n = 0;

4017 4018 4019 4020 4021
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4022
	if (read_format & PERF_FORMAT_ID)
4023
		values[n++] = primary_event_id(event);
4024 4025 4026 4027 4028 4029 4030

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4044
/*
4045
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4046 4047
 */
static ssize_t
4048
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4049
{
4050
	u64 read_format = event->attr.read_format;
4051
	int ret;
T
Thomas Gleixner 已提交
4052

4053
	/*
4054
	 * Return end-of-file for a read on a event that is in
4055 4056 4057
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4058
	if (event->state == PERF_EVENT_STATE_ERROR)
4059 4060
		return 0;

4061
	if (count < event->read_size)
4062 4063
		return -ENOSPC;

4064
	WARN_ON_ONCE(event->ctx->parent_ctx);
4065
	if (read_format & PERF_FORMAT_GROUP)
4066
		ret = perf_read_group(event, read_format, buf);
4067
	else
4068
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4069

4070
	return ret;
T
Thomas Gleixner 已提交
4071 4072 4073 4074 4075
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4076
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4077 4078
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4079

P
Peter Zijlstra 已提交
4080
	ctx = perf_event_ctx_lock(event);
4081
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4082 4083 4084
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4085 4086 4087 4088
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4089
	struct perf_event *event = file->private_data;
4090
	struct ring_buffer *rb;
4091
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4092

4093
	poll_wait(file, &event->waitq, wait);
4094

4095
	if (is_event_hup(event))
4096
		return events;
P
Peter Zijlstra 已提交
4097

4098
	/*
4099 4100
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4101 4102
	 */
	mutex_lock(&event->mmap_mutex);
4103 4104
	rb = event->rb;
	if (rb)
4105
		events = atomic_xchg(&rb->poll, 0);
4106
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4107 4108 4109
	return events;
}

P
Peter Zijlstra 已提交
4110
static void _perf_event_reset(struct perf_event *event)
4111
{
4112
	(void)perf_event_read(event, false);
4113
	local64_set(&event->count, 0);
4114
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4115 4116
}

4117
/*
4118 4119 4120 4121
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
4122
 */
4123 4124
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4125
{
4126
	struct perf_event *child;
P
Peter Zijlstra 已提交
4127

4128
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4129

4130 4131 4132
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4133
		func(child);
4134
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4135 4136
}

4137 4138
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4139
{
4140 4141
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4142

P
Peter Zijlstra 已提交
4143 4144
	lockdep_assert_held(&ctx->mutex);

4145
	event = event->group_leader;
4146

4147 4148
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4149
		perf_event_for_each_child(sibling, func);
4150 4151
}

4152 4153
struct period_event {
	struct perf_event *event;
4154
	u64 value;
4155
};
4156

4157 4158 4159 4160 4161 4162 4163
static int __perf_event_period(void *info)
{
	struct period_event *pe = info;
	struct perf_event *event = pe->event;
	struct perf_event_context *ctx = event->ctx;
	u64 value = pe->value;
	bool active;
4164

4165
	raw_spin_lock(&ctx->lock);
4166 4167
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4168
	} else {
4169 4170
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4171
	}
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4185
	raw_spin_unlock(&ctx->lock);
4186

4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
	return 0;
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	struct period_event pe = { .event = event, };
	struct perf_event_context *ctx = event->ctx;
	struct task_struct *task;
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

	task = ctx->task;
	pe.value = value;

	if (!task) {
		cpu_function_call(event->cpu, __perf_event_period, &pe);
		return 0;
	}

retry:
	if (!task_function_call(task, __perf_event_period, &pe))
		return 0;

	raw_spin_lock_irq(&ctx->lock);
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		task = ctx->task;
		goto retry;
	}

	__perf_event_period(&pe);
4229
	raw_spin_unlock_irq(&ctx->lock);
4230

4231
	return 0;
4232 4233
}

4234 4235
static const struct file_operations perf_fops;

4236
static inline int perf_fget_light(int fd, struct fd *p)
4237
{
4238 4239 4240
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4241

4242 4243 4244
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4245
	}
4246 4247
	*p = f;
	return 0;
4248 4249 4250 4251
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4252
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4253
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4254

P
Peter Zijlstra 已提交
4255
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4256
{
4257
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4258
	u32 flags = arg;
4259 4260

	switch (cmd) {
4261
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4262
		func = _perf_event_enable;
4263
		break;
4264
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4265
		func = _perf_event_disable;
4266
		break;
4267
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4268
		func = _perf_event_reset;
4269
		break;
P
Peter Zijlstra 已提交
4270

4271
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4272
		return _perf_event_refresh(event, arg);
4273

4274 4275
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4276

4277 4278 4279 4280 4281 4282 4283 4284 4285
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4286
	case PERF_EVENT_IOC_SET_OUTPUT:
4287 4288 4289
	{
		int ret;
		if (arg != -1) {
4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4300 4301 4302
		}
		return ret;
	}
4303

L
Li Zefan 已提交
4304 4305 4306
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4307 4308 4309
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4310
	default:
P
Peter Zijlstra 已提交
4311
		return -ENOTTY;
4312
	}
P
Peter Zijlstra 已提交
4313 4314

	if (flags & PERF_IOC_FLAG_GROUP)
4315
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4316
	else
4317
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4318 4319

	return 0;
4320 4321
}

P
Peter Zijlstra 已提交
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4355
int perf_event_task_enable(void)
4356
{
P
Peter Zijlstra 已提交
4357
	struct perf_event_context *ctx;
4358
	struct perf_event *event;
4359

4360
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4361 4362 4363 4364 4365
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4366
	mutex_unlock(&current->perf_event_mutex);
4367 4368 4369 4370

	return 0;
}

4371
int perf_event_task_disable(void)
4372
{
P
Peter Zijlstra 已提交
4373
	struct perf_event_context *ctx;
4374
	struct perf_event *event;
4375

4376
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4377 4378 4379 4380 4381
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4382
	mutex_unlock(&current->perf_event_mutex);
4383 4384 4385 4386

	return 0;
}

4387
static int perf_event_index(struct perf_event *event)
4388
{
P
Peter Zijlstra 已提交
4389 4390 4391
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4392
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4393 4394
		return 0;

4395
	return event->pmu->event_idx(event);
4396 4397
}

4398
static void calc_timer_values(struct perf_event *event,
4399
				u64 *now,
4400 4401
				u64 *enabled,
				u64 *running)
4402
{
4403
	u64 ctx_time;
4404

4405 4406
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4407 4408 4409 4410
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4426 4427
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4428 4429 4430 4431 4432

unlock:
	rcu_read_unlock();
}

4433 4434
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4435 4436 4437
{
}

4438 4439 4440 4441 4442
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4443
void perf_event_update_userpage(struct perf_event *event)
4444
{
4445
	struct perf_event_mmap_page *userpg;
4446
	struct ring_buffer *rb;
4447
	u64 enabled, running, now;
4448 4449

	rcu_read_lock();
4450 4451 4452 4453
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4454 4455 4456 4457 4458 4459 4460 4461 4462
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4463
	calc_timer_values(event, &now, &enabled, &running);
4464

4465
	userpg = rb->user_page;
4466 4467 4468 4469 4470
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4471
	++userpg->lock;
4472
	barrier();
4473
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4474
	userpg->offset = perf_event_count(event);
4475
	if (userpg->index)
4476
		userpg->offset -= local64_read(&event->hw.prev_count);
4477

4478
	userpg->time_enabled = enabled +
4479
			atomic64_read(&event->child_total_time_enabled);
4480

4481
	userpg->time_running = running +
4482
			atomic64_read(&event->child_total_time_running);
4483

4484
	arch_perf_update_userpage(event, userpg, now);
4485

4486
	barrier();
4487
	++userpg->lock;
4488
	preempt_enable();
4489
unlock:
4490
	rcu_read_unlock();
4491 4492
}

4493 4494 4495
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4496
	struct ring_buffer *rb;
4497 4498 4499 4500 4501 4502 4503 4504 4505
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4506 4507
	rb = rcu_dereference(event->rb);
	if (!rb)
4508 4509 4510 4511 4512
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4513
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4528 4529 4530
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4531
	struct ring_buffer *old_rb = NULL;
4532 4533
	unsigned long flags;

4534 4535 4536 4537 4538 4539
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4540

4541 4542 4543 4544
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4545

4546 4547
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4548
	}
4549

4550
	if (rb) {
4551 4552 4553 4554 4555
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4572 4573 4574 4575 4576 4577 4578 4579
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4580 4581 4582 4583
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4584 4585 4586
	rcu_read_unlock();
}

4587
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4588
{
4589
	struct ring_buffer *rb;
4590

4591
	rcu_read_lock();
4592 4593 4594 4595
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4596 4597 4598
	}
	rcu_read_unlock();

4599
	return rb;
4600 4601
}

4602
void ring_buffer_put(struct ring_buffer *rb)
4603
{
4604
	if (!atomic_dec_and_test(&rb->refcount))
4605
		return;
4606

4607
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4608

4609
	call_rcu(&rb->rcu_head, rb_free_rcu);
4610 4611 4612 4613
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4614
	struct perf_event *event = vma->vm_file->private_data;
4615

4616
	atomic_inc(&event->mmap_count);
4617
	atomic_inc(&event->rb->mmap_count);
4618

4619 4620 4621
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4622 4623
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4624 4625
}

4626 4627 4628 4629 4630 4631 4632 4633
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4634 4635
static void perf_mmap_close(struct vm_area_struct *vma)
{
4636
	struct perf_event *event = vma->vm_file->private_data;
4637

4638
	struct ring_buffer *rb = ring_buffer_get(event);
4639 4640 4641
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4642

4643 4644 4645
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4660 4661 4662
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4663
		goto out_put;
4664

4665
	ring_buffer_attach(event, NULL);
4666 4667 4668
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4669 4670
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4671

4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4688

4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4700 4701 4702
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4703
		mutex_unlock(&event->mmap_mutex);
4704
		put_event(event);
4705

4706 4707 4708 4709 4710
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4711
	}
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4727
out_put:
4728
	ring_buffer_put(rb); /* could be last */
4729 4730
}

4731
static const struct vm_operations_struct perf_mmap_vmops = {
4732
	.open		= perf_mmap_open,
4733
	.close		= perf_mmap_close, /* non mergable */
4734 4735
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4736 4737 4738 4739
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4740
	struct perf_event *event = file->private_data;
4741
	unsigned long user_locked, user_lock_limit;
4742
	struct user_struct *user = current_user();
4743
	unsigned long locked, lock_limit;
4744
	struct ring_buffer *rb = NULL;
4745 4746
	unsigned long vma_size;
	unsigned long nr_pages;
4747
	long user_extra = 0, extra = 0;
4748
	int ret = 0, flags = 0;
4749

4750 4751 4752
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4753
	 * same rb.
4754 4755 4756 4757
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4758
	if (!(vma->vm_flags & VM_SHARED))
4759
		return -EINVAL;
4760 4761

	vma_size = vma->vm_end - vma->vm_start;
4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4822

4823
	/*
4824
	 * If we have rb pages ensure they're a power-of-two number, so we
4825 4826
	 * can do bitmasks instead of modulo.
	 */
4827
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4828 4829
		return -EINVAL;

4830
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4831 4832
		return -EINVAL;

4833
	WARN_ON_ONCE(event->ctx->parent_ctx);
4834
again:
4835
	mutex_lock(&event->mmap_mutex);
4836
	if (event->rb) {
4837
		if (event->rb->nr_pages != nr_pages) {
4838
			ret = -EINVAL;
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4852 4853 4854
		goto unlock;
	}

4855
	user_extra = nr_pages + 1;
4856 4857

accounting:
4858
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4859 4860 4861 4862 4863 4864

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4865
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4866

4867 4868
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4869

4870
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4871
	lock_limit >>= PAGE_SHIFT;
4872
	locked = vma->vm_mm->pinned_vm + extra;
4873

4874 4875
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4876 4877 4878
		ret = -EPERM;
		goto unlock;
	}
4879

4880
	WARN_ON(!rb && event->rb);
4881

4882
	if (vma->vm_flags & VM_WRITE)
4883
		flags |= RING_BUFFER_WRITABLE;
4884

4885
	if (!rb) {
4886 4887 4888
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4889

4890 4891 4892 4893
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4894

4895 4896 4897
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4898

4899
		ring_buffer_attach(event, rb);
4900

4901 4902 4903
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4904 4905
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4906 4907 4908
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4909

4910
unlock:
4911 4912 4913 4914
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4915
		atomic_inc(&event->mmap_count);
4916 4917 4918 4919
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4920
	mutex_unlock(&event->mmap_mutex);
4921

4922 4923 4924 4925
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4926
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4927
	vma->vm_ops = &perf_mmap_vmops;
4928

4929 4930 4931
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4932
	return ret;
4933 4934
}

P
Peter Zijlstra 已提交
4935 4936
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4937
	struct inode *inode = file_inode(filp);
4938
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4939 4940 4941
	int retval;

	mutex_lock(&inode->i_mutex);
4942
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4943 4944 4945 4946 4947 4948 4949 4950
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4951
static const struct file_operations perf_fops = {
4952
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4953 4954 4955
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4956
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4957
	.compat_ioctl		= perf_compat_ioctl,
4958
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4959
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4960 4961
};

4962
/*
4963
 * Perf event wakeup
4964 4965 4966 4967 4968
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4969 4970 4971 4972 4973 4974 4975 4976
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4977
void perf_event_wakeup(struct perf_event *event)
4978
{
4979
	ring_buffer_wakeup(event);
4980

4981
	if (event->pending_kill) {
4982
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4983
		event->pending_kill = 0;
4984
	}
4985 4986
}

4987
static void perf_pending_event(struct irq_work *entry)
4988
{
4989 4990
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4991 4992 4993 4994 4995 4996 4997
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4998

4999 5000 5001
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
5002 5003
	}

5004 5005 5006
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5007
	}
5008 5009 5010

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5011 5012
}

5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5049
static void perf_sample_regs_user(struct perf_regs *regs_user,
5050 5051
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5052
{
5053 5054
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5055
		regs_user->regs = regs;
5056 5057
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5058 5059 5060
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5061 5062 5063
	}
}

5064 5065 5066 5067 5068 5069 5070 5071
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5167 5168 5169
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5183
		data->time = perf_event_clock(event);
5184

5185
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5197 5198 5199
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5224 5225 5226

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5227 5228
}

5229 5230 5231
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5232 5233 5234 5235 5236
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5237
static void perf_output_read_one(struct perf_output_handle *handle,
5238 5239
				 struct perf_event *event,
				 u64 enabled, u64 running)
5240
{
5241
	u64 read_format = event->attr.read_format;
5242 5243 5244
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5245
	values[n++] = perf_event_count(event);
5246
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5247
		values[n++] = enabled +
5248
			atomic64_read(&event->child_total_time_enabled);
5249 5250
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5251
		values[n++] = running +
5252
			atomic64_read(&event->child_total_time_running);
5253 5254
	}
	if (read_format & PERF_FORMAT_ID)
5255
		values[n++] = primary_event_id(event);
5256

5257
	__output_copy(handle, values, n * sizeof(u64));
5258 5259 5260
}

/*
5261
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5262 5263
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5264 5265
			    struct perf_event *event,
			    u64 enabled, u64 running)
5266
{
5267 5268
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5269 5270 5271 5272 5273 5274
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5275
		values[n++] = enabled;
5276 5277

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5278
		values[n++] = running;
5279

5280
	if (leader != event)
5281 5282
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5283
	values[n++] = perf_event_count(leader);
5284
	if (read_format & PERF_FORMAT_ID)
5285
		values[n++] = primary_event_id(leader);
5286

5287
	__output_copy(handle, values, n * sizeof(u64));
5288

5289
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5290 5291
		n = 0;

5292 5293
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5294 5295
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5296
		values[n++] = perf_event_count(sub);
5297
		if (read_format & PERF_FORMAT_ID)
5298
			values[n++] = primary_event_id(sub);
5299

5300
		__output_copy(handle, values, n * sizeof(u64));
5301 5302 5303
	}
}

5304 5305 5306
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5307
static void perf_output_read(struct perf_output_handle *handle,
5308
			     struct perf_event *event)
5309
{
5310
	u64 enabled = 0, running = 0, now;
5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5322
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5323
		calc_timer_values(event, &now, &enabled, &running);
5324

5325
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5326
		perf_output_read_group(handle, event, enabled, running);
5327
	else
5328
		perf_output_read_one(handle, event, enabled, running);
5329 5330
}

5331 5332 5333
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5334
			struct perf_event *event)
5335 5336 5337 5338 5339
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5340 5341 5342
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5368
		perf_output_read(handle, event);
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5379
			__output_copy(handle, data->callchain, size);
5380 5381 5382 5383 5384 5385 5386 5387
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5388 5389 5390 5391 5392 5393 5394 5395 5396
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5408

5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5443

5444
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5445 5446 5447
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5448
	}
A
Andi Kleen 已提交
5449 5450 5451

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5452 5453 5454

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5455

A
Andi Kleen 已提交
5456 5457 5458
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5489 5490 5491 5492
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5493
			 struct perf_event *event,
5494
			 struct pt_regs *regs)
5495
{
5496
	u64 sample_type = event->attr.sample_type;
5497

5498
	header->type = PERF_RECORD_SAMPLE;
5499
	header->size = sizeof(*header) + event->header_size;
5500 5501 5502

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5503

5504
	__perf_event_header__init_id(header, data, event);
5505

5506
	if (sample_type & PERF_SAMPLE_IP)
5507 5508
		data->ip = perf_instruction_pointer(regs);

5509
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5510
		int size = 1;
5511

5512
		data->callchain = perf_callchain(event, regs);
5513 5514 5515 5516 5517

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5518 5519
	}

5520
	if (sample_type & PERF_SAMPLE_RAW) {
5521 5522 5523 5524 5525 5526 5527
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5528
		header->size += round_up(size, sizeof(u64));
5529
	}
5530 5531 5532 5533 5534 5535 5536 5537 5538

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5539

5540
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5541 5542
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5543

5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5567
						     data->regs_user.regs);
5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5595
}
5596

5597 5598 5599
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5600 5601 5602
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5603

5604 5605 5606
	/* protect the callchain buffers */
	rcu_read_lock();

5607
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5608

5609
	if (perf_output_begin(&handle, event, header.size))
5610
		goto exit;
5611

5612
	perf_output_sample(&handle, &header, data, event);
5613

5614
	perf_output_end(&handle);
5615 5616 5617

exit:
	rcu_read_unlock();
5618 5619
}

5620
/*
5621
 * read event_id
5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5632
perf_event_read_event(struct perf_event *event,
5633 5634 5635
			struct task_struct *task)
{
	struct perf_output_handle handle;
5636
	struct perf_sample_data sample;
5637
	struct perf_read_event read_event = {
5638
		.header = {
5639
			.type = PERF_RECORD_READ,
5640
			.misc = 0,
5641
			.size = sizeof(read_event) + event->read_size,
5642
		},
5643 5644
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5645
	};
5646
	int ret;
5647

5648
	perf_event_header__init_id(&read_event.header, &sample, event);
5649
	ret = perf_output_begin(&handle, event, read_event.header.size);
5650 5651 5652
	if (ret)
		return;

5653
	perf_output_put(&handle, read_event);
5654
	perf_output_read(&handle, event);
5655
	perf_event__output_id_sample(event, &handle, &sample);
5656

5657 5658 5659
	perf_output_end(&handle);
}

5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5674
		output(event, data);
5675 5676 5677 5678
	}
}

static void
5679
perf_event_aux(perf_event_aux_output_cb output, void *data,
5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5692
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5693 5694 5695 5696 5697 5698 5699
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5700
			perf_event_aux_ctx(ctx, output, data);
5701 5702 5703 5704 5705 5706
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5707
		perf_event_aux_ctx(task_ctx, output, data);
5708 5709 5710 5711 5712
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5713
/*
P
Peter Zijlstra 已提交
5714 5715
 * task tracking -- fork/exit
 *
5716
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5717 5718
 */

P
Peter Zijlstra 已提交
5719
struct perf_task_event {
5720
	struct task_struct		*task;
5721
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5722 5723 5724 5725 5726 5727

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5728 5729
		u32				tid;
		u32				ptid;
5730
		u64				time;
5731
	} event_id;
P
Peter Zijlstra 已提交
5732 5733
};

5734 5735
static int perf_event_task_match(struct perf_event *event)
{
5736 5737 5738
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5739 5740
}

5741
static void perf_event_task_output(struct perf_event *event,
5742
				   void *data)
P
Peter Zijlstra 已提交
5743
{
5744
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5745
	struct perf_output_handle handle;
5746
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5747
	struct task_struct *task = task_event->task;
5748
	int ret, size = task_event->event_id.header.size;
5749

5750 5751 5752
	if (!perf_event_task_match(event))
		return;

5753
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5754

5755
	ret = perf_output_begin(&handle, event,
5756
				task_event->event_id.header.size);
5757
	if (ret)
5758
		goto out;
P
Peter Zijlstra 已提交
5759

5760 5761
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5762

5763 5764
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5765

5766 5767
	task_event->event_id.time = perf_event_clock(event);

5768
	perf_output_put(&handle, task_event->event_id);
5769

5770 5771
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5772
	perf_output_end(&handle);
5773 5774
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5775 5776
}

5777 5778
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5779
			      int new)
P
Peter Zijlstra 已提交
5780
{
P
Peter Zijlstra 已提交
5781
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5782

5783 5784 5785
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5786 5787
		return;

P
Peter Zijlstra 已提交
5788
	task_event = (struct perf_task_event){
5789 5790
		.task	  = task,
		.task_ctx = task_ctx,
5791
		.event_id    = {
P
Peter Zijlstra 已提交
5792
			.header = {
5793
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5794
				.misc = 0,
5795
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5796
			},
5797 5798
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5799 5800
			/* .tid  */
			/* .ptid */
5801
			/* .time */
P
Peter Zijlstra 已提交
5802 5803 5804
		},
	};

5805
	perf_event_aux(perf_event_task_output,
5806 5807
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5808 5809
}

5810
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5811
{
5812
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5813 5814
}

5815 5816 5817 5818 5819
/*
 * comm tracking
 */

struct perf_comm_event {
5820 5821
	struct task_struct	*task;
	char			*comm;
5822 5823 5824 5825 5826 5827 5828
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5829
	} event_id;
5830 5831
};

5832 5833 5834 5835 5836
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5837
static void perf_event_comm_output(struct perf_event *event,
5838
				   void *data)
5839
{
5840
	struct perf_comm_event *comm_event = data;
5841
	struct perf_output_handle handle;
5842
	struct perf_sample_data sample;
5843
	int size = comm_event->event_id.header.size;
5844 5845
	int ret;

5846 5847 5848
	if (!perf_event_comm_match(event))
		return;

5849 5850
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5851
				comm_event->event_id.header.size);
5852 5853

	if (ret)
5854
		goto out;
5855

5856 5857
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5858

5859
	perf_output_put(&handle, comm_event->event_id);
5860
	__output_copy(&handle, comm_event->comm,
5861
				   comm_event->comm_size);
5862 5863 5864

	perf_event__output_id_sample(event, &handle, &sample);

5865
	perf_output_end(&handle);
5866 5867
out:
	comm_event->event_id.header.size = size;
5868 5869
}

5870
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5871
{
5872
	char comm[TASK_COMM_LEN];
5873 5874
	unsigned int size;

5875
	memset(comm, 0, sizeof(comm));
5876
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5877
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5878 5879 5880 5881

	comm_event->comm = comm;
	comm_event->comm_size = size;

5882
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5883

5884
	perf_event_aux(perf_event_comm_output,
5885 5886
		       comm_event,
		       NULL);
5887 5888
}

5889
void perf_event_comm(struct task_struct *task, bool exec)
5890
{
5891 5892
	struct perf_comm_event comm_event;

5893
	if (!atomic_read(&nr_comm_events))
5894
		return;
5895

5896
	comm_event = (struct perf_comm_event){
5897
		.task	= task,
5898 5899
		/* .comm      */
		/* .comm_size */
5900
		.event_id  = {
5901
			.header = {
5902
				.type = PERF_RECORD_COMM,
5903
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5904 5905 5906 5907
				/* .size */
			},
			/* .pid */
			/* .tid */
5908 5909 5910
		},
	};

5911
	perf_event_comm_event(&comm_event);
5912 5913
}

5914 5915 5916 5917 5918
/*
 * mmap tracking
 */

struct perf_mmap_event {
5919 5920 5921 5922
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5923 5924 5925
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5926
	u32			prot, flags;
5927 5928 5929 5930 5931 5932 5933 5934 5935

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5936
	} event_id;
5937 5938
};

5939 5940 5941 5942 5943 5944 5945 5946
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5947
	       (executable && (event->attr.mmap || event->attr.mmap2));
5948 5949
}

5950
static void perf_event_mmap_output(struct perf_event *event,
5951
				   void *data)
5952
{
5953
	struct perf_mmap_event *mmap_event = data;
5954
	struct perf_output_handle handle;
5955
	struct perf_sample_data sample;
5956
	int size = mmap_event->event_id.header.size;
5957
	int ret;
5958

5959 5960 5961
	if (!perf_event_mmap_match(event, data))
		return;

5962 5963 5964 5965 5966
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5967
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5968 5969
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5970 5971
	}

5972 5973
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5974
				mmap_event->event_id.header.size);
5975
	if (ret)
5976
		goto out;
5977

5978 5979
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5980

5981
	perf_output_put(&handle, mmap_event->event_id);
5982 5983 5984 5985 5986 5987

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5988 5989
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5990 5991
	}

5992
	__output_copy(&handle, mmap_event->file_name,
5993
				   mmap_event->file_size);
5994 5995 5996

	perf_event__output_id_sample(event, &handle, &sample);

5997
	perf_output_end(&handle);
5998 5999
out:
	mmap_event->event_id.header.size = size;
6000 6001
}

6002
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6003
{
6004 6005
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
6006 6007
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
6008
	u32 prot = 0, flags = 0;
6009 6010 6011
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
6012
	char *name;
6013

6014
	if (file) {
6015 6016
		struct inode *inode;
		dev_t dev;
6017

6018
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6019
		if (!buf) {
6020 6021
			name = "//enomem";
			goto cpy_name;
6022
		}
6023
		/*
6024
		 * d_path() works from the end of the rb backwards, so we
6025 6026 6027
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6028
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6029
		if (IS_ERR(name)) {
6030 6031
			name = "//toolong";
			goto cpy_name;
6032
		}
6033 6034 6035 6036 6037 6038
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6061
		goto got_name;
6062
	} else {
6063 6064 6065 6066 6067 6068
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6069
		name = (char *)arch_vma_name(vma);
6070 6071
		if (name)
			goto cpy_name;
6072

6073
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6074
				vma->vm_end >= vma->vm_mm->brk) {
6075 6076
			name = "[heap]";
			goto cpy_name;
6077 6078
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6079
				vma->vm_end >= vma->vm_mm->start_stack) {
6080 6081
			name = "[stack]";
			goto cpy_name;
6082 6083
		}

6084 6085
		name = "//anon";
		goto cpy_name;
6086 6087
	}

6088 6089 6090
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6091
got_name:
6092 6093 6094 6095 6096 6097 6098 6099
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6100 6101 6102

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6103 6104 6105 6106
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6107 6108
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6109

6110 6111 6112
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6113
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6114

6115
	perf_event_aux(perf_event_mmap_output,
6116 6117
		       mmap_event,
		       NULL);
6118

6119 6120 6121
	kfree(buf);
}

6122
void perf_event_mmap(struct vm_area_struct *vma)
6123
{
6124 6125
	struct perf_mmap_event mmap_event;

6126
	if (!atomic_read(&nr_mmap_events))
6127 6128 6129
		return;

	mmap_event = (struct perf_mmap_event){
6130
		.vma	= vma,
6131 6132
		/* .file_name */
		/* .file_size */
6133
		.event_id  = {
6134
			.header = {
6135
				.type = PERF_RECORD_MMAP,
6136
				.misc = PERF_RECORD_MISC_USER,
6137 6138 6139 6140
				/* .size */
			},
			/* .pid */
			/* .tid */
6141 6142
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6143
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6144
		},
6145 6146 6147 6148
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6149 6150
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6151 6152
	};

6153
	perf_event_mmap_event(&mmap_event);
6154 6155
}

A
Alexander Shishkin 已提交
6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6308 6309 6310 6311
/*
 * IRQ throttle logging
 */

6312
static void perf_log_throttle(struct perf_event *event, int enable)
6313 6314
{
	struct perf_output_handle handle;
6315
	struct perf_sample_data sample;
6316 6317 6318 6319 6320
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6321
		u64				id;
6322
		u64				stream_id;
6323 6324
	} throttle_event = {
		.header = {
6325
			.type = PERF_RECORD_THROTTLE,
6326 6327 6328
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6329
		.time		= perf_event_clock(event),
6330 6331
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6332 6333
	};

6334
	if (enable)
6335
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6336

6337 6338 6339
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6340
				throttle_event.header.size);
6341 6342 6343 6344
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6345
	perf_event__output_id_sample(event, &handle, &sample);
6346 6347 6348
	perf_output_end(&handle);
}

6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6385
/*
6386
 * Generic event overflow handling, sampling.
6387 6388
 */

6389
static int __perf_event_overflow(struct perf_event *event,
6390 6391
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6392
{
6393 6394
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6395
	u64 seq;
6396 6397
	int ret = 0;

6398 6399 6400 6401 6402 6403 6404
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6405 6406 6407 6408 6409 6410 6411 6412 6413
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6414 6415
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6416
			tick_nohz_full_kick();
6417 6418
			ret = 1;
		}
6419
	}
6420

6421
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6422
		u64 now = perf_clock();
6423
		s64 delta = now - hwc->freq_time_stamp;
6424

6425
		hwc->freq_time_stamp = now;
6426

6427
		if (delta > 0 && delta < 2*TICK_NSEC)
6428
			perf_adjust_period(event, delta, hwc->last_period, true);
6429 6430
	}

6431 6432
	/*
	 * XXX event_limit might not quite work as expected on inherited
6433
	 * events
6434 6435
	 */

6436 6437
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6438
		ret = 1;
6439
		event->pending_kill = POLL_HUP;
6440 6441
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6442 6443
	}

6444
	if (event->overflow_handler)
6445
		event->overflow_handler(event, data, regs);
6446
	else
6447
		perf_event_output(event, data, regs);
6448

6449
	if (*perf_event_fasync(event) && event->pending_kill) {
6450 6451
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6452 6453
	}

6454
	return ret;
6455 6456
}

6457
int perf_event_overflow(struct perf_event *event,
6458 6459
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6460
{
6461
	return __perf_event_overflow(event, 1, data, regs);
6462 6463
}

6464
/*
6465
 * Generic software event infrastructure
6466 6467
 */

6468 6469 6470 6471 6472 6473 6474
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
6475 6476 6477

	/* Keeps track of cpu being initialized/exited */
	bool				online;
6478 6479 6480 6481
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6482
/*
6483 6484
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6485 6486 6487 6488
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6489
u64 perf_swevent_set_period(struct perf_event *event)
6490
{
6491
	struct hw_perf_event *hwc = &event->hw;
6492 6493 6494 6495 6496
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6497 6498

again:
6499
	old = val = local64_read(&hwc->period_left);
6500 6501
	if (val < 0)
		return 0;
6502

6503 6504 6505
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6506
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6507
		goto again;
6508

6509
	return nr;
6510 6511
}

6512
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6513
				    struct perf_sample_data *data,
6514
				    struct pt_regs *regs)
6515
{
6516
	struct hw_perf_event *hwc = &event->hw;
6517
	int throttle = 0;
6518

6519 6520
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6521

6522 6523
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6524

6525
	for (; overflow; overflow--) {
6526
		if (__perf_event_overflow(event, throttle,
6527
					    data, regs)) {
6528 6529 6530 6531 6532 6533
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6534
		throttle = 1;
6535
	}
6536 6537
}

P
Peter Zijlstra 已提交
6538
static void perf_swevent_event(struct perf_event *event, u64 nr,
6539
			       struct perf_sample_data *data,
6540
			       struct pt_regs *regs)
6541
{
6542
	struct hw_perf_event *hwc = &event->hw;
6543

6544
	local64_add(nr, &event->count);
6545

6546 6547 6548
	if (!regs)
		return;

6549
	if (!is_sampling_event(event))
6550
		return;
6551

6552 6553 6554 6555 6556 6557
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6558
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6559
		return perf_swevent_overflow(event, 1, data, regs);
6560

6561
	if (local64_add_negative(nr, &hwc->period_left))
6562
		return;
6563

6564
	perf_swevent_overflow(event, 0, data, regs);
6565 6566
}

6567 6568 6569
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6570
	if (event->hw.state & PERF_HES_STOPPED)
6571
		return 1;
P
Peter Zijlstra 已提交
6572

6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6584
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6585
				enum perf_type_id type,
L
Li Zefan 已提交
6586 6587 6588
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6589
{
6590
	if (event->attr.type != type)
6591
		return 0;
6592

6593
	if (event->attr.config != event_id)
6594 6595
		return 0;

6596 6597
	if (perf_exclude_event(event, regs))
		return 0;
6598 6599 6600 6601

	return 1;
}

6602 6603 6604 6605 6606 6607 6608
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6609 6610
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6611
{
6612 6613 6614 6615
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6616

6617 6618
/* For the read side: events when they trigger */
static inline struct hlist_head *
6619
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6620 6621
{
	struct swevent_hlist *hlist;
6622

6623
	hlist = rcu_dereference(swhash->swevent_hlist);
6624 6625 6626
	if (!hlist)
		return NULL;

6627 6628 6629 6630 6631
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6632
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6633 6634 6635 6636 6637 6638 6639 6640 6641 6642
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6643
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6644 6645 6646 6647 6648
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6649 6650 6651
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6652
				    u64 nr,
6653 6654
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6655
{
6656
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6657
	struct perf_event *event;
6658
	struct hlist_head *head;
6659

6660
	rcu_read_lock();
6661
	head = find_swevent_head_rcu(swhash, type, event_id);
6662 6663 6664
	if (!head)
		goto end;

6665
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6666
		if (perf_swevent_match(event, type, event_id, data, regs))
6667
			perf_swevent_event(event, nr, data, regs);
6668
	}
6669 6670
end:
	rcu_read_unlock();
6671 6672
}

6673 6674
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6675
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6676
{
6677
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6678

6679
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6680
}
I
Ingo Molnar 已提交
6681
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6682

6683
inline void perf_swevent_put_recursion_context(int rctx)
6684
{
6685
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6686

6687
	put_recursion_context(swhash->recursion, rctx);
6688
}
6689

6690
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6691
{
6692
	struct perf_sample_data data;
6693

6694
	if (WARN_ON_ONCE(!regs))
6695
		return;
6696

6697
	perf_sample_data_init(&data, addr, 0);
6698
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6711 6712

	perf_swevent_put_recursion_context(rctx);
6713
fail:
6714
	preempt_enable_notrace();
6715 6716
}

6717
static void perf_swevent_read(struct perf_event *event)
6718 6719 6720
{
}

P
Peter Zijlstra 已提交
6721
static int perf_swevent_add(struct perf_event *event, int flags)
6722
{
6723
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6724
	struct hw_perf_event *hwc = &event->hw;
6725 6726
	struct hlist_head *head;

6727
	if (is_sampling_event(event)) {
6728
		hwc->last_period = hwc->sample_period;
6729
		perf_swevent_set_period(event);
6730
	}
6731

P
Peter Zijlstra 已提交
6732 6733
	hwc->state = !(flags & PERF_EF_START);

6734
	head = find_swevent_head(swhash, event);
6735 6736 6737 6738 6739 6740
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
6741
		return -EINVAL;
6742
	}
6743 6744

	hlist_add_head_rcu(&event->hlist_entry, head);
6745
	perf_event_update_userpage(event);
6746

6747 6748 6749
	return 0;
}

P
Peter Zijlstra 已提交
6750
static void perf_swevent_del(struct perf_event *event, int flags)
6751
{
6752
	hlist_del_rcu(&event->hlist_entry);
6753 6754
}

P
Peter Zijlstra 已提交
6755
static void perf_swevent_start(struct perf_event *event, int flags)
6756
{
P
Peter Zijlstra 已提交
6757
	event->hw.state = 0;
6758
}
I
Ingo Molnar 已提交
6759

P
Peter Zijlstra 已提交
6760
static void perf_swevent_stop(struct perf_event *event, int flags)
6761
{
P
Peter Zijlstra 已提交
6762
	event->hw.state = PERF_HES_STOPPED;
6763 6764
}

6765 6766
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6767
swevent_hlist_deref(struct swevent_htable *swhash)
6768
{
6769 6770
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6771 6772
}

6773
static void swevent_hlist_release(struct swevent_htable *swhash)
6774
{
6775
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6776

6777
	if (!hlist)
6778 6779
		return;

6780
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6781
	kfree_rcu(hlist, rcu_head);
6782 6783 6784 6785
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6786
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6787

6788
	mutex_lock(&swhash->hlist_mutex);
6789

6790 6791
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6792

6793
	mutex_unlock(&swhash->hlist_mutex);
6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6806
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6807 6808
	int err = 0;

6809
	mutex_lock(&swhash->hlist_mutex);
6810

6811
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6812 6813 6814 6815 6816 6817 6818
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6819
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6820
	}
6821
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6822
exit:
6823
	mutex_unlock(&swhash->hlist_mutex);
6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6844
fail:
6845 6846 6847 6848 6849 6850 6851 6852 6853 6854
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6855
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6856

6857 6858 6859
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6860

6861 6862
	WARN_ON(event->parent);

6863
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6864 6865 6866 6867 6868
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6869
	u64 event_id = event->attr.config;
6870 6871 6872 6873

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6874 6875 6876 6877 6878 6879
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6880 6881 6882 6883 6884 6885 6886 6887 6888
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6889
	if (event_id >= PERF_COUNT_SW_MAX)
6890 6891 6892 6893 6894 6895 6896 6897 6898
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6899
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6900 6901 6902 6903 6904 6905 6906
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6907
	.task_ctx_nr	= perf_sw_context,
6908

6909 6910
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6911
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6912 6913 6914 6915
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6916 6917 6918
	.read		= perf_swevent_read,
};

6919 6920
#ifdef CONFIG_EVENT_TRACING

6921 6922 6923 6924 6925
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

6926 6927 6928 6929
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

6930 6931 6932 6933 6934 6935 6936 6937 6938
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6939 6940
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6941 6942 6943 6944
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6945 6946 6947 6948 6949 6950 6951 6952 6953
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6954 6955
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6956 6957
{
	struct perf_sample_data data;
6958 6959
	struct perf_event *event;

6960 6961 6962 6963 6964
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6965
	perf_sample_data_init(&data, addr, 0);
6966 6967
	data.raw = &raw;

6968
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6969
		if (perf_tp_event_match(event, &data, regs))
6970
			perf_swevent_event(event, count, &data, regs);
6971
	}
6972

6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6998
	perf_swevent_put_recursion_context(rctx);
6999 7000 7001
}
EXPORT_SYMBOL_GPL(perf_tp_event);

7002
static void tp_perf_event_destroy(struct perf_event *event)
7003
{
7004
	perf_trace_destroy(event);
7005 7006
}

7007
static int perf_tp_event_init(struct perf_event *event)
7008
{
7009 7010
	int err;

7011 7012 7013
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

7014 7015 7016 7017 7018 7019
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7020 7021
	err = perf_trace_init(event);
	if (err)
7022
		return err;
7023

7024
	event->destroy = tp_perf_event_destroy;
7025

7026 7027 7028 7029
	return 0;
}

static struct pmu perf_tracepoint = {
7030 7031
	.task_ctx_nr	= perf_sw_context,

7032
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
7033 7034 7035 7036
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7037 7038 7039 7040 7041
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
7042
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7043
}
L
Li Zefan 已提交
7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7068 7069 7070 7071 7072 7073 7074 7075 7076 7077
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7078 7079
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7080 7081 7082 7083 7084 7085
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7086
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7111
#else
L
Li Zefan 已提交
7112

7113
static inline void perf_tp_register(void)
7114 7115
{
}
L
Li Zefan 已提交
7116 7117 7118 7119 7120 7121 7122 7123 7124 7125

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7126 7127 7128 7129 7130 7131 7132 7133
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7134
#endif /* CONFIG_EVENT_TRACING */
7135

7136
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7137
void perf_bp_event(struct perf_event *bp, void *data)
7138
{
7139 7140 7141
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7142
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7143

P
Peter Zijlstra 已提交
7144
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7145
		perf_swevent_event(bp, 1, &sample, regs);
7146 7147 7148
}
#endif

7149 7150 7151
/*
 * hrtimer based swevent callback
 */
7152

7153
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7154
{
7155 7156 7157 7158 7159
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7160

7161
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7162 7163 7164 7165

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7166
	event->pmu->read(event);
7167

7168
	perf_sample_data_init(&data, 0, event->hw.last_period);
7169 7170 7171
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7172
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7173
			if (__perf_event_overflow(event, 1, &data, regs))
7174 7175
				ret = HRTIMER_NORESTART;
	}
7176

7177 7178
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7179

7180
	return ret;
7181 7182
}

7183
static void perf_swevent_start_hrtimer(struct perf_event *event)
7184
{
7185
	struct hw_perf_event *hwc = &event->hw;
7186 7187 7188 7189
	s64 period;

	if (!is_sampling_event(event))
		return;
7190

7191 7192 7193 7194
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7195

7196 7197 7198 7199
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7200 7201
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7202
}
7203 7204

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7205
{
7206 7207
	struct hw_perf_event *hwc = &event->hw;

7208
	if (is_sampling_event(event)) {
7209
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7210
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7211 7212 7213

		hrtimer_cancel(&hwc->hrtimer);
	}
7214 7215
}

P
Peter Zijlstra 已提交
7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7236
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7237 7238 7239 7240
		event->attr.freq = 0;
	}
}

7241 7242 7243 7244 7245
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7246
{
7247 7248 7249
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7250
	now = local_clock();
7251 7252
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7253 7254
}

P
Peter Zijlstra 已提交
7255
static void cpu_clock_event_start(struct perf_event *event, int flags)
7256
{
P
Peter Zijlstra 已提交
7257
	local64_set(&event->hw.prev_count, local_clock());
7258 7259 7260
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7261
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7262
{
7263 7264 7265
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7266

P
Peter Zijlstra 已提交
7267 7268 7269 7270
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7271
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7272 7273 7274 7275 7276 7277 7278 7279 7280

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7281 7282 7283 7284
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7285

7286 7287 7288 7289 7290 7291 7292 7293
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7294 7295 7296 7297 7298 7299
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7300 7301
	perf_swevent_init_hrtimer(event);

7302
	return 0;
7303 7304
}

7305
static struct pmu perf_cpu_clock = {
7306 7307
	.task_ctx_nr	= perf_sw_context,

7308 7309
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7310
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7311 7312 7313 7314
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7315 7316 7317 7318 7319 7320 7321 7322
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7323
{
7324 7325
	u64 prev;
	s64 delta;
7326

7327 7328 7329 7330
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7331

P
Peter Zijlstra 已提交
7332
static void task_clock_event_start(struct perf_event *event, int flags)
7333
{
P
Peter Zijlstra 已提交
7334
	local64_set(&event->hw.prev_count, event->ctx->time);
7335 7336 7337
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7338
static void task_clock_event_stop(struct perf_event *event, int flags)
7339 7340 7341
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7342 7343 7344 7345 7346 7347
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7348
	perf_event_update_userpage(event);
7349

P
Peter Zijlstra 已提交
7350 7351 7352 7353 7354 7355
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7356 7357 7358 7359
}

static void task_clock_event_read(struct perf_event *event)
{
7360 7361 7362
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7363 7364 7365 7366 7367

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7368
{
7369 7370 7371 7372 7373 7374
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7375 7376 7377 7378 7379 7380
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7381 7382
	perf_swevent_init_hrtimer(event);

7383
	return 0;
L
Li Zefan 已提交
7384 7385
}

7386
static struct pmu perf_task_clock = {
7387 7388
	.task_ctx_nr	= perf_sw_context,

7389 7390
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7391
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7392 7393 7394 7395
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7396 7397
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7398

P
Peter Zijlstra 已提交
7399
static void perf_pmu_nop_void(struct pmu *pmu)
7400 7401
{
}
L
Li Zefan 已提交
7402

7403 7404 7405 7406
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7407
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7408
{
P
Peter Zijlstra 已提交
7409
	return 0;
L
Li Zefan 已提交
7410 7411
}

7412
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7413 7414

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7415
{
7416 7417 7418 7419 7420
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7421
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7422 7423
}

P
Peter Zijlstra 已提交
7424 7425
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7426 7427 7428 7429 7430 7431 7432
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7433 7434 7435
	perf_pmu_enable(pmu);
	return 0;
}
7436

P
Peter Zijlstra 已提交
7437
static void perf_pmu_cancel_txn(struct pmu *pmu)
7438
{
7439 7440 7441 7442 7443 7444 7445
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7446
	perf_pmu_enable(pmu);
7447 7448
}

7449 7450
static int perf_event_idx_default(struct perf_event *event)
{
7451
	return 0;
7452 7453
}

P
Peter Zijlstra 已提交
7454 7455 7456 7457
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7458
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7459
{
P
Peter Zijlstra 已提交
7460
	struct pmu *pmu;
7461

P
Peter Zijlstra 已提交
7462 7463
	if (ctxn < 0)
		return NULL;
7464

P
Peter Zijlstra 已提交
7465 7466 7467 7468
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7469

P
Peter Zijlstra 已提交
7470
	return NULL;
7471 7472
}

7473
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7474
{
7475 7476 7477 7478 7479 7480 7481
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7482 7483
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7484 7485 7486 7487 7488 7489
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7490

P
Peter Zijlstra 已提交
7491
	mutex_lock(&pmus_lock);
7492
	/*
P
Peter Zijlstra 已提交
7493
	 * Like a real lame refcount.
7494
	 */
7495 7496 7497
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7498
			goto out;
7499
		}
P
Peter Zijlstra 已提交
7500
	}
7501

7502
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7503 7504
out:
	mutex_unlock(&pmus_lock);
7505
}
P
Peter Zijlstra 已提交
7506
static struct idr pmu_idr;
7507

P
Peter Zijlstra 已提交
7508 7509 7510 7511 7512 7513 7514
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7515
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7516

7517 7518 7519 7520 7521 7522 7523 7524 7525 7526
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7527 7528
static DEFINE_MUTEX(mux_interval_mutex);

7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7548
	mutex_lock(&mux_interval_mutex);
7549 7550 7551
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7552 7553
	get_online_cpus();
	for_each_online_cpu(cpu) {
7554 7555 7556 7557
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7558 7559
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7560
	}
7561 7562
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7563 7564 7565

	return count;
}
7566
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7567

7568 7569 7570 7571
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7572
};
7573
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7574 7575 7576 7577

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7578
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7594
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7615
static struct lock_class_key cpuctx_mutex;
7616
static struct lock_class_key cpuctx_lock;
7617

7618
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7619
{
P
Peter Zijlstra 已提交
7620
	int cpu, ret;
7621

7622
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7623 7624 7625 7626
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7627

P
Peter Zijlstra 已提交
7628 7629 7630 7631 7632 7633
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7634 7635 7636
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7637 7638 7639 7640 7641
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7642 7643 7644 7645 7646 7647
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7648
skip_type:
P
Peter Zijlstra 已提交
7649 7650 7651
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7652

W
Wei Yongjun 已提交
7653
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7654 7655
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7656
		goto free_dev;
7657

P
Peter Zijlstra 已提交
7658 7659 7660 7661
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7662
		__perf_event_init_context(&cpuctx->ctx);
7663
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7664
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7665
		cpuctx->ctx.pmu = pmu;
7666

7667
		__perf_mux_hrtimer_init(cpuctx, cpu);
7668

7669
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7670
	}
7671

P
Peter Zijlstra 已提交
7672
got_cpu_context:
P
Peter Zijlstra 已提交
7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7684
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7685 7686
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7687
		}
7688
	}
7689

P
Peter Zijlstra 已提交
7690 7691 7692 7693 7694
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7695 7696 7697
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7698
	list_add_rcu(&pmu->entry, &pmus);
7699
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7700 7701
	ret = 0;
unlock:
7702 7703
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7704
	return ret;
P
Peter Zijlstra 已提交
7705

P
Peter Zijlstra 已提交
7706 7707 7708 7709
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7710 7711 7712 7713
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7714 7715 7716
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7717
}
7718
EXPORT_SYMBOL_GPL(perf_pmu_register);
7719

7720
void perf_pmu_unregister(struct pmu *pmu)
7721
{
7722 7723 7724
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7725

7726
	/*
P
Peter Zijlstra 已提交
7727 7728
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7729
	 */
7730
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7731
	synchronize_rcu();
7732

P
Peter Zijlstra 已提交
7733
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7734 7735
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7736 7737
	device_del(pmu->dev);
	put_device(pmu->dev);
7738
	free_pmu_context(pmu);
7739
}
7740
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7741

7742 7743
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7744
	struct perf_event_context *ctx = NULL;
7745 7746 7747 7748
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7749 7750

	if (event->group_leader != event) {
7751 7752 7753 7754 7755 7756
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7757 7758 7759
		BUG_ON(!ctx);
	}

7760 7761
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7762 7763 7764 7765

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7766 7767 7768 7769 7770 7771
	if (ret)
		module_put(pmu->module);

	return ret;
}

7772
static struct pmu *perf_init_event(struct perf_event *event)
7773 7774 7775
{
	struct pmu *pmu = NULL;
	int idx;
7776
	int ret;
7777 7778

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7779 7780 7781 7782

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7783
	if (pmu) {
7784
		ret = perf_try_init_event(pmu, event);
7785 7786
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7787
		goto unlock;
7788
	}
P
Peter Zijlstra 已提交
7789

7790
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7791
		ret = perf_try_init_event(pmu, event);
7792
		if (!ret)
P
Peter Zijlstra 已提交
7793
			goto unlock;
7794

7795 7796
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7797
			goto unlock;
7798
		}
7799
	}
P
Peter Zijlstra 已提交
7800 7801
	pmu = ERR_PTR(-ENOENT);
unlock:
7802
	srcu_read_unlock(&pmus_srcu, idx);
7803

7804
	return pmu;
7805 7806
}

7807 7808 7809 7810 7811 7812 7813 7814 7815
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7816 7817
static void account_event(struct perf_event *event)
{
7818 7819 7820
	if (event->parent)
		return;

7821 7822 7823 7824 7825 7826 7827 7828
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7829 7830 7831 7832
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7833 7834 7835 7836
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
		static_key_slow_inc(&perf_sched_events.key);
	}
7837
	if (has_branch_stack(event))
7838
		static_key_slow_inc(&perf_sched_events.key);
7839
	if (is_cgroup_event(event))
7840
		static_key_slow_inc(&perf_sched_events.key);
7841 7842

	account_event_cpu(event, event->cpu);
7843 7844
}

T
Thomas Gleixner 已提交
7845
/*
7846
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7847
 */
7848
static struct perf_event *
7849
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7850 7851 7852
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7853
		 perf_overflow_handler_t overflow_handler,
7854
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7855
{
P
Peter Zijlstra 已提交
7856
	struct pmu *pmu;
7857 7858
	struct perf_event *event;
	struct hw_perf_event *hwc;
7859
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7860

7861 7862 7863 7864 7865
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7866
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7867
	if (!event)
7868
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7869

7870
	/*
7871
	 * Single events are their own group leaders, with an
7872 7873 7874
	 * empty sibling list:
	 */
	if (!group_leader)
7875
		group_leader = event;
7876

7877 7878
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7879

7880 7881 7882
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7883
	INIT_LIST_HEAD(&event->rb_entry);
7884
	INIT_LIST_HEAD(&event->active_entry);
7885 7886
	INIT_HLIST_NODE(&event->hlist_entry);

7887

7888
	init_waitqueue_head(&event->waitq);
7889
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7890

7891
	mutex_init(&event->mmap_mutex);
7892

7893
	atomic_long_set(&event->refcount, 1);
7894 7895 7896 7897 7898
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7899

7900
	event->parent		= parent_event;
7901

7902
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7903
	event->id		= atomic64_inc_return(&perf_event_id);
7904

7905
	event->state		= PERF_EVENT_STATE_INACTIVE;
7906

7907 7908 7909
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7910 7911 7912
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7913
		 */
7914
		event->hw.target = task;
7915 7916
	}

7917 7918 7919 7920
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7921
	if (!overflow_handler && parent_event) {
7922
		overflow_handler = parent_event->overflow_handler;
7923 7924
		context = parent_event->overflow_handler_context;
	}
7925

7926
	event->overflow_handler	= overflow_handler;
7927
	event->overflow_handler_context = context;
7928

J
Jiri Olsa 已提交
7929
	perf_event__state_init(event);
7930

7931
	pmu = NULL;
7932

7933
	hwc = &event->hw;
7934
	hwc->sample_period = attr->sample_period;
7935
	if (attr->freq && attr->sample_freq)
7936
		hwc->sample_period = 1;
7937
	hwc->last_period = hwc->sample_period;
7938

7939
	local64_set(&hwc->period_left, hwc->sample_period);
7940

7941
	/*
7942
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7943
	 */
7944
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7945
		goto err_ns;
7946 7947 7948

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7949

7950 7951 7952 7953 7954 7955
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7956
	pmu = perf_init_event(event);
7957
	if (!pmu)
7958 7959
		goto err_ns;
	else if (IS_ERR(pmu)) {
7960
		err = PTR_ERR(pmu);
7961
		goto err_ns;
I
Ingo Molnar 已提交
7962
	}
7963

7964 7965 7966 7967
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7968
	if (!event->parent) {
7969 7970
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7971
			if (err)
7972
				goto err_per_task;
7973
		}
7974
	}
7975

7976
	return event;
7977

7978 7979 7980
err_per_task:
	exclusive_event_destroy(event);

7981 7982 7983
err_pmu:
	if (event->destroy)
		event->destroy(event);
7984
	module_put(pmu->module);
7985
err_ns:
7986 7987
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7988 7989 7990 7991 7992
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7993 7994
}

7995 7996
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7997 7998
{
	u32 size;
7999
	int ret;
8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
8024 8025 8026
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
8027 8028
	 */
	if (size > sizeof(*attr)) {
8029 8030 8031
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
8032

8033 8034
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
8035

8036
		for (; addr < end; addr++) {
8037 8038 8039 8040 8041 8042
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
8043
		size = sizeof(*attr);
8044 8045 8046 8047 8048 8049
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

8050
	if (attr->__reserved_1)
8051 8052 8053 8054 8055 8056 8057 8058
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8087 8088
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8089 8090
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8091
	}
8092

8093
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8094
		ret = perf_reg_validate(attr->sample_regs_user);
8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8113

8114 8115
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8116 8117 8118 8119 8120 8121 8122 8123 8124
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8125 8126
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8127
{
8128
	struct ring_buffer *rb = NULL;
8129 8130
	int ret = -EINVAL;

8131
	if (!output_event)
8132 8133
		goto set;

8134 8135
	/* don't allow circular references */
	if (event == output_event)
8136 8137
		goto out;

8138 8139 8140 8141 8142 8143 8144
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8145
	 * If its not a per-cpu rb, it must be the same task.
8146 8147 8148 8149
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8150 8151 8152 8153 8154 8155
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8156 8157 8158 8159 8160 8161 8162
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8163
set:
8164
	mutex_lock(&event->mmap_mutex);
8165 8166 8167
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8168

8169
	if (output_event) {
8170 8171 8172
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8173
			goto unlock;
8174 8175
	}

8176
	ring_buffer_attach(event, rb);
8177

8178
	ret = 0;
8179 8180 8181
unlock:
	mutex_unlock(&event->mmap_mutex);

8182 8183 8184 8185
out:
	return ret;
}

P
Peter Zijlstra 已提交
8186 8187 8188 8189 8190 8191 8192 8193 8194
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8232
/**
8233
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8234
 *
8235
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8236
 * @pid:		target pid
I
Ingo Molnar 已提交
8237
 * @cpu:		target cpu
8238
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8239
 */
8240 8241
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8242
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8243
{
8244 8245
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8246
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8247
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8248
	struct file *event_file = NULL;
8249
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8250
	struct task_struct *task = NULL;
8251
	struct pmu *pmu;
8252
	int event_fd;
8253
	int move_group = 0;
8254
	int err;
8255
	int f_flags = O_RDWR;
8256
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8257

8258
	/* for future expandability... */
S
Stephane Eranian 已提交
8259
	if (flags & ~PERF_FLAG_ALL)
8260 8261
		return -EINVAL;

8262 8263 8264
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8265

8266 8267 8268 8269 8270
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8271
	if (attr.freq) {
8272
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8273
			return -EINVAL;
8274 8275 8276
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8277 8278
	}

S
Stephane Eranian 已提交
8279 8280 8281 8282 8283 8284 8285 8286 8287
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8288 8289 8290 8291
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8292 8293 8294
	if (event_fd < 0)
		return event_fd;

8295
	if (group_fd != -1) {
8296 8297
		err = perf_fget_light(group_fd, &group);
		if (err)
8298
			goto err_fd;
8299
		group_leader = group.file->private_data;
8300 8301 8302 8303 8304 8305
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8306
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8307 8308 8309 8310 8311 8312 8313
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8314 8315 8316 8317 8318 8319
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8320 8321
	get_online_cpus();

8322 8323 8324
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8325
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8326
				 NULL, NULL, cgroup_fd);
8327 8328
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8329
		goto err_cpus;
8330 8331
	}

8332 8333 8334 8335 8336 8337 8338
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8339 8340
	account_event(event);

8341 8342 8343 8344 8345
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8346

8347 8348 8349 8350 8351 8352
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8375 8376 8377 8378

	/*
	 * Get the target context (task or percpu):
	 */
8379
	ctx = find_get_context(pmu, task, event);
8380 8381
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8382
		goto err_alloc;
8383 8384
	}

8385 8386 8387 8388 8389
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8390 8391 8392 8393 8394
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8395
	/*
8396
	 * Look up the group leader (we will attach this event to it):
8397
	 */
8398
	if (group_leader) {
8399
		err = -EINVAL;
8400 8401

		/*
I
Ingo Molnar 已提交
8402 8403 8404 8405
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8406
			goto err_context;
8407 8408 8409 8410 8411

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8412 8413 8414
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8415
		 */
8416
		if (move_group) {
8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8430 8431 8432 8433 8434 8435
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8436 8437 8438
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8439
		if (attr.exclusive || attr.pinned)
8440
			goto err_context;
8441 8442 8443 8444 8445
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8446
			goto err_context;
8447
	}
T
Thomas Gleixner 已提交
8448

8449 8450
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8451 8452
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8453
		goto err_context;
8454
	}
8455

8456
	if (move_group) {
P
Peter Zijlstra 已提交
8457
		gctx = group_leader->ctx;
8458 8459 8460 8461 8462
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
	} else {
		mutex_lock(&ctx->mutex);
	}

P
Peter Zijlstra 已提交
8463 8464 8465 8466 8467
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8468 8469 8470 8471 8472 8473 8474
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8475

8476 8477 8478
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8479

8480 8481 8482
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8483 8484 8485 8486
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8487
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8488

8489 8490
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8491
			perf_remove_from_context(sibling, false);
8492 8493 8494
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8495 8496 8497 8498
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8499
		synchronize_rcu();
P
Peter Zijlstra 已提交
8500

8501 8502 8503 8504 8505 8506 8507 8508 8509 8510
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8511 8512
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8513
			perf_event__state_init(sibling);
8514
			perf_install_in_context(ctx, sibling, sibling->cpu);
8515 8516
			get_ctx(ctx);
		}
8517 8518 8519 8520 8521 8522 8523 8524 8525

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8526

8527 8528 8529 8530 8531 8532
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8533 8534
	}

8535 8536 8537 8538 8539 8540 8541 8542 8543
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

8544
	perf_install_in_context(ctx, event, event->cpu);
8545
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8546

8547
	if (move_group)
P
Peter Zijlstra 已提交
8548
		mutex_unlock(&gctx->mutex);
8549
	mutex_unlock(&ctx->mutex);
8550

8551 8552
	put_online_cpus();

8553
	event->owner = current;
P
Peter Zijlstra 已提交
8554

8555 8556 8557
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8558

8559 8560 8561 8562 8563 8564
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8565
	fdput(group);
8566 8567
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8568

8569 8570 8571 8572 8573 8574
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8575
err_context:
8576
	perf_unpin_context(ctx);
8577
	put_ctx(ctx);
8578
err_alloc:
8579
	free_event(event);
8580
err_cpus:
8581
	put_online_cpus();
8582
err_task:
P
Peter Zijlstra 已提交
8583 8584
	if (task)
		put_task_struct(task);
8585
err_group_fd:
8586
	fdput(group);
8587 8588
err_fd:
	put_unused_fd(event_fd);
8589
	return err;
T
Thomas Gleixner 已提交
8590 8591
}

8592 8593 8594 8595 8596
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8597
 * @task: task to profile (NULL for percpu)
8598 8599 8600
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8601
				 struct task_struct *task,
8602 8603
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8604 8605
{
	struct perf_event_context *ctx;
8606
	struct perf_event *event;
8607
	int err;
8608

8609 8610 8611
	/*
	 * Get the target context (task or percpu):
	 */
8612

8613
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8614
				 overflow_handler, context, -1);
8615 8616 8617 8618
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8619

8620 8621 8622
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

8623 8624
	account_event(event);

8625
	ctx = find_get_context(event->pmu, task, event);
8626 8627
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8628
		goto err_free;
8629
	}
8630 8631 8632

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8633 8634 8635 8636 8637 8638 8639 8640
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8641
	perf_install_in_context(ctx, event, cpu);
8642
	perf_unpin_context(ctx);
8643 8644 8645 8646
	mutex_unlock(&ctx->mutex);

	return event;

8647 8648 8649
err_free:
	free_event(event);
err:
8650
	return ERR_PTR(err);
8651
}
8652
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8653

8654 8655 8656 8657 8658 8659 8660 8661 8662 8663
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8664 8665 8666 8667 8668
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8669 8670
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8671
		perf_remove_from_context(event, false);
8672
		unaccount_event_cpu(event, src_cpu);
8673
		put_ctx(src_ctx);
8674
		list_add(&event->migrate_entry, &events);
8675 8676
	}

8677 8678 8679
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8680 8681
	synchronize_rcu();

8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8706 8707
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8708 8709
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8710
		account_event_cpu(event, dst_cpu);
8711 8712 8713 8714
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8715
	mutex_unlock(&src_ctx->mutex);
8716 8717 8718
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8719
static void sync_child_event(struct perf_event *child_event,
8720
			       struct task_struct *child)
8721
{
8722
	struct perf_event *parent_event = child_event->parent;
8723
	u64 child_val;
8724

8725 8726
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8727

P
Peter Zijlstra 已提交
8728
	child_val = perf_event_count(child_event);
8729 8730 8731 8732

	/*
	 * Add back the child's count to the parent's count:
	 */
8733
	atomic64_add(child_val, &parent_event->child_count);
8734 8735 8736 8737
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8738 8739

	/*
8740
	 * Remove this event from the parent's list
8741
	 */
8742 8743 8744 8745
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8746

8747 8748 8749 8750 8751 8752
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8753
	/*
8754
	 * Release the parent event, if this was the last
8755 8756
	 * reference to it.
	 */
8757
	put_event(parent_event);
8758 8759
}

8760
static void
8761 8762
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8763
			 struct task_struct *child)
8764
{
8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
8778

8779
	/*
8780
	 * It can happen that the parent exits first, and has events
8781
	 * that are still around due to the child reference. These
8782
	 * events need to be zapped.
8783
	 */
8784
	if (child_event->parent) {
8785 8786
		sync_child_event(child_event, child);
		free_event(child_event);
8787 8788 8789
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8790
	}
8791 8792
}

P
Peter Zijlstra 已提交
8793
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8794
{
8795
	struct perf_event *child_event, *next;
8796
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8797
	unsigned long flags;
8798

P
Peter Zijlstra 已提交
8799
	if (likely(!child->perf_event_ctxp[ctxn])) {
8800
		perf_event_task(child, NULL, 0);
8801
		return;
P
Peter Zijlstra 已提交
8802
	}
8803

8804
	local_irq_save(flags);
8805 8806 8807 8808 8809 8810
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
8811
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8812 8813 8814

	/*
	 * Take the context lock here so that if find_get_context is
8815
	 * reading child->perf_event_ctxp, we wait until it has
8816 8817
	 * incremented the context's refcount before we do put_ctx below.
	 */
8818
	raw_spin_lock(&child_ctx->lock);
8819
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
8820
	child->perf_event_ctxp[ctxn] = NULL;
8821

8822 8823 8824
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
8825
	 * the events from it.
8826
	 */
8827
	clone_ctx = unclone_ctx(child_ctx);
8828
	update_context_time(child_ctx);
8829
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8830

8831 8832
	if (clone_ctx)
		put_ctx(clone_ctx);
8833

P
Peter Zijlstra 已提交
8834
	/*
8835 8836 8837
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8838
	 */
8839
	perf_event_task(child, child_ctx, 0);
8840

8841 8842 8843
	/*
	 * We can recurse on the same lock type through:
	 *
8844 8845
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8846 8847
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8848 8849 8850
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8851
	mutex_lock(&child_ctx->mutex);
8852

8853
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8854
		__perf_event_exit_task(child_event, child_ctx, child);
8855

8856 8857 8858
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8859 8860
}

P
Peter Zijlstra 已提交
8861 8862 8863 8864 8865
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8866
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8867 8868
	int ctxn;

P
Peter Zijlstra 已提交
8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8884 8885 8886 8887
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8900
	put_event(parent);
8901

P
Peter Zijlstra 已提交
8902
	raw_spin_lock_irq(&ctx->lock);
8903
	perf_group_detach(event);
8904
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8905
	raw_spin_unlock_irq(&ctx->lock);
8906 8907 8908
	free_event(event);
}

8909
/*
P
Peter Zijlstra 已提交
8910
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8911
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8912 8913 8914
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8915
 */
8916
void perf_event_free_task(struct task_struct *task)
8917
{
P
Peter Zijlstra 已提交
8918
	struct perf_event_context *ctx;
8919
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8920
	int ctxn;
8921

P
Peter Zijlstra 已提交
8922 8923 8924 8925
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8926

P
Peter Zijlstra 已提交
8927
		mutex_lock(&ctx->mutex);
8928
again:
P
Peter Zijlstra 已提交
8929 8930 8931
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8932

P
Peter Zijlstra 已提交
8933 8934 8935
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8936

P
Peter Zijlstra 已提交
8937 8938 8939
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8940

P
Peter Zijlstra 已提交
8941
		mutex_unlock(&ctx->mutex);
8942

P
Peter Zijlstra 已提交
8943 8944
		put_ctx(ctx);
	}
8945 8946
}

8947 8948 8949 8950 8951 8952 8953 8954
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979
struct perf_event *perf_event_get(unsigned int fd)
{
	int err;
	struct fd f;
	struct perf_event *event;

	err = perf_fget_light(fd, &f);
	if (err)
		return ERR_PTR(err);

	event = f.file->private_data;
	atomic_long_inc(&event->refcount);
	fdput(f);

	return event;
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8991
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8992
	struct perf_event *child_event;
8993
	unsigned long flags;
P
Peter Zijlstra 已提交
8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
9006
					   child,
P
Peter Zijlstra 已提交
9007
					   group_leader, parent_event,
9008
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
9009 9010
	if (IS_ERR(child_event))
		return child_event;
9011

9012 9013
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
9014 9015 9016 9017
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
9018 9019 9020 9021 9022 9023 9024
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
9025
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
9042 9043
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
9044

9045 9046 9047 9048
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
9049
	perf_event__id_header_size(child_event);
9050

P
Peter Zijlstra 已提交
9051 9052 9053
	/*
	 * Link it up in the child's context:
	 */
9054
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9055
	add_event_to_ctx(child_event, child_ctx);
9056
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9090 9091 9092 9093 9094
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9095
		   struct task_struct *child, int ctxn,
9096 9097 9098
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9099
	struct perf_event_context *child_ctx;
9100 9101 9102 9103

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9104 9105
	}

9106
	child_ctx = child->perf_event_ctxp[ctxn];
9107 9108 9109 9110 9111 9112 9113
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9114

9115
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9116 9117
		if (!child_ctx)
			return -ENOMEM;
9118

P
Peter Zijlstra 已提交
9119
		child->perf_event_ctxp[ctxn] = child_ctx;
9120 9121 9122 9123 9124 9125 9126 9127 9128
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9129 9130
}

9131
/*
9132
 * Initialize the perf_event context in task_struct
9133
 */
9134
static int perf_event_init_context(struct task_struct *child, int ctxn)
9135
{
9136
	struct perf_event_context *child_ctx, *parent_ctx;
9137 9138
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9139
	struct task_struct *parent = current;
9140
	int inherited_all = 1;
9141
	unsigned long flags;
9142
	int ret = 0;
9143

P
Peter Zijlstra 已提交
9144
	if (likely(!parent->perf_event_ctxp[ctxn]))
9145 9146
		return 0;

9147
	/*
9148 9149
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9150
	 */
P
Peter Zijlstra 已提交
9151
	parent_ctx = perf_pin_task_context(parent, ctxn);
9152 9153
	if (!parent_ctx)
		return 0;
9154

9155 9156 9157 9158 9159 9160 9161
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9162 9163 9164 9165
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9166
	mutex_lock(&parent_ctx->mutex);
9167 9168 9169 9170 9171

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9172
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9173 9174
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9175 9176 9177
		if (ret)
			break;
	}
9178

9179 9180 9181 9182 9183 9184 9185 9186 9187
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9188
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9189 9190
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9191
		if (ret)
9192
			break;
9193 9194
	}

9195 9196 9197
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9198
	child_ctx = child->perf_event_ctxp[ctxn];
9199

9200
	if (child_ctx && inherited_all) {
9201 9202 9203
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9204 9205 9206
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9207
		 */
P
Peter Zijlstra 已提交
9208
		cloned_ctx = parent_ctx->parent_ctx;
9209 9210
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9211
			child_ctx->parent_gen = parent_ctx->parent_gen;
9212 9213 9214 9215 9216
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9217 9218
	}

P
Peter Zijlstra 已提交
9219
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9220
	mutex_unlock(&parent_ctx->mutex);
9221

9222
	perf_unpin_context(parent_ctx);
9223
	put_ctx(parent_ctx);
9224

9225
	return ret;
9226 9227
}

P
Peter Zijlstra 已提交
9228 9229 9230 9231 9232 9233 9234
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9235 9236 9237 9238
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9239 9240
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9241 9242
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9243
			return ret;
P
Peter Zijlstra 已提交
9244
		}
P
Peter Zijlstra 已提交
9245 9246 9247 9248 9249
	}

	return 0;
}

9250 9251
static void __init perf_event_init_all_cpus(void)
{
9252
	struct swevent_htable *swhash;
9253 9254 9255
	int cpu;

	for_each_possible_cpu(cpu) {
9256 9257
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9258
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9259 9260 9261
	}
}

9262
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9263
{
P
Peter Zijlstra 已提交
9264
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9265

9266
	mutex_lock(&swhash->hlist_mutex);
9267
	swhash->online = true;
9268
	if (swhash->hlist_refcount > 0) {
9269 9270
		struct swevent_hlist *hlist;

9271 9272 9273
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9274
	}
9275
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9276 9277
}

9278
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9279
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9280
{
9281
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
9282
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
9283

P
Peter Zijlstra 已提交
9284
	rcu_read_lock();
9285 9286
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
9287
	rcu_read_unlock();
T
Thomas Gleixner 已提交
9288
}
P
Peter Zijlstra 已提交
9289 9290 9291 9292 9293 9294 9295 9296 9297

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9298
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9299 9300 9301 9302 9303 9304 9305 9306

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9307
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9308
{
9309
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9310

P
Peter Zijlstra 已提交
9311 9312
	perf_event_exit_cpu_context(cpu);

9313
	mutex_lock(&swhash->hlist_mutex);
9314
	swhash->online = false;
9315 9316
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9317 9318
}
#else
9319
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9320 9321
#endif

P
Peter Zijlstra 已提交
9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9342
static int
T
Thomas Gleixner 已提交
9343 9344 9345 9346
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9347
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9348 9349

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
9350
	case CPU_DOWN_FAILED:
9351
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9352 9353
		break;

P
Peter Zijlstra 已提交
9354
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
9355
	case CPU_DOWN_PREPARE:
9356
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9357 9358 9359 9360 9361 9362 9363 9364
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9365
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9366
{
9367 9368
	int ret;

P
Peter Zijlstra 已提交
9369 9370
	idr_init(&pmu_idr);

9371
	perf_event_init_all_cpus();
9372
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9373 9374 9375
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9376 9377
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9378
	register_reboot_notifier(&perf_reboot_notifier);
9379 9380 9381

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9382 9383 9384

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9385 9386 9387 9388 9389 9390 9391

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9392
}
P
Peter Zijlstra 已提交
9393

9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9433 9434

#ifdef CONFIG_CGROUP_PERF
9435 9436
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9437 9438 9439
{
	struct perf_cgroup *jc;

9440
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9453
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9454
{
9455 9456
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9457 9458 9459 9460 9461 9462 9463
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
9464
	rcu_read_lock();
S
Stephane Eranian 已提交
9465
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9466
	rcu_read_unlock();
S
Stephane Eranian 已提交
9467 9468 9469
	return 0;
}

9470 9471
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9472
{
9473 9474
	struct task_struct *task;

9475
	cgroup_taskset_for_each(task, tset)
9476
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9477 9478
}

9479
struct cgroup_subsys perf_event_cgrp_subsys = {
9480 9481
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9482
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9483 9484
};
#endif /* CONFIG_CGROUP_PERF */