perf_event.c 152.2 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/vmalloc.h>
29 30
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
31 32 33
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
34
#include <linux/kernel_stat.h>
35
#include <linux/perf_event.h>
L
Li Zefan 已提交
36
#include <linux/ftrace_event.h>
37
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
38

39 40
#include <asm/irq_regs.h>

41 42 43 44 45 46
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

47
atomic_t perf_task_events __read_mostly;
48 49 50
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
51

P
Peter Zijlstra 已提交
52 53 54 55
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

56
/*
57
 * perf event paranoia level:
58 59
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
60
 *   1 - disallow cpu events for unpriv
61
 *   2 - disallow kernel profiling for unpriv
62
 */
63
int sysctl_perf_event_paranoid __read_mostly = 1;
64

65
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
66 67

/*
68
 * max perf event sample rate
69
 */
70
int sysctl_perf_event_sample_rate __read_mostly = 100000;
71

72
static atomic64_t perf_event_id;
73

74 75 76 77 78 79
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type);

80
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
81

82
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
83
{
84
	return "pmu";
T
Thomas Gleixner 已提交
85 86
}

87 88 89 90 91
static inline u64 perf_clock(void)
{
	return local_clock();
}

P
Peter Zijlstra 已提交
92
void perf_pmu_disable(struct pmu *pmu)
93
{
P
Peter Zijlstra 已提交
94 95 96
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
97 98
}

P
Peter Zijlstra 已提交
99
void perf_pmu_enable(struct pmu *pmu)
100
{
P
Peter Zijlstra 已提交
101 102 103
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
104 105
}

106 107 108 109 110 111 112
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
113
static void perf_pmu_rotate_start(struct pmu *pmu)
114
{
P
Peter Zijlstra 已提交
115
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
116
	struct list_head *head = &__get_cpu_var(rotation_list);
117

118
	WARN_ON(!irqs_disabled());
119

120 121
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
122 123
}

124
static void get_ctx(struct perf_event_context *ctx)
125
{
126
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
127 128
}

129 130
static void free_ctx(struct rcu_head *head)
{
131
	struct perf_event_context *ctx;
132

133
	ctx = container_of(head, struct perf_event_context, rcu_head);
134 135 136
	kfree(ctx);
}

137
static void put_ctx(struct perf_event_context *ctx)
138
{
139 140 141
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
142 143 144
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
145
	}
146 147
}

148
static void unclone_ctx(struct perf_event_context *ctx)
149 150 151 152 153 154 155
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

178
/*
179
 * If we inherit events we want to return the parent event id
180 181
 * to userspace.
 */
182
static u64 primary_event_id(struct perf_event *event)
183
{
184
	u64 id = event->id;
185

186 187
	if (event->parent)
		id = event->parent->id;
188 189 190 191

	return id;
}

192
/*
193
 * Get the perf_event_context for a task and lock it.
194 195 196
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
197
static struct perf_event_context *
P
Peter Zijlstra 已提交
198
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
199
{
200
	struct perf_event_context *ctx;
201 202

	rcu_read_lock();
P
Peter Zijlstra 已提交
203
retry:
P
Peter Zijlstra 已提交
204
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
205 206 207 208
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
209
		 * perf_event_task_sched_out, though the
210 211 212 213 214 215
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
216
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
217
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
218
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
219 220
			goto retry;
		}
221 222

		if (!atomic_inc_not_zero(&ctx->refcount)) {
223
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
224 225
			ctx = NULL;
		}
226 227 228 229 230 231 232 233 234 235
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
236 237
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
238
{
239
	struct perf_event_context *ctx;
240 241
	unsigned long flags;

P
Peter Zijlstra 已提交
242
	ctx = perf_lock_task_context(task, ctxn, &flags);
243 244
	if (ctx) {
		++ctx->pin_count;
245
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
246 247 248 249
	}
	return ctx;
}

250
static void perf_unpin_context(struct perf_event_context *ctx)
251 252 253
{
	unsigned long flags;

254
	raw_spin_lock_irqsave(&ctx->lock, flags);
255
	--ctx->pin_count;
256
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
257 258 259
	put_ctx(ctx);
}

260 261 262 263 264 265 266 267 268 269 270
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

271 272 273 274 275 276
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	return ctx ? ctx->time : 0;
}

277 278 279 280 281 282 283 284 285 286 287 288
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

289
	if (ctx->is_active)
290
		run_end = perf_event_time(event);
291 292 293 294
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
295 296 297 298

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
299
		run_end = perf_event_time(event);
300 301 302 303

	event->total_time_running = run_end - event->tstamp_running;
}

304 305 306 307 308 309 310 311 312 313 314 315
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

316 317 318 319 320 321 322 323 324
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

325
/*
326
 * Add a event from the lists for its context.
327 328
 * Must be called with ctx->mutex and ctx->lock held.
 */
329
static void
330
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
331
{
332 333
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
334 335

	/*
336 337 338
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
339
	 */
340
	if (event->group_leader == event) {
341 342
		struct list_head *list;

343 344 345
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

346 347
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
348
	}
P
Peter Zijlstra 已提交
349

350
	list_add_rcu(&event->event_entry, &ctx->event_list);
351
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
352
		perf_pmu_rotate_start(ctx->pmu);
353 354
	ctx->nr_events++;
	if (event->attr.inherit_stat)
355
		ctx->nr_stat++;
356 357
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

430
	event->id_header_size = size;
431 432
}

433 434
static void perf_group_attach(struct perf_event *event)
{
435
	struct perf_event *group_leader = event->group_leader, *pos;
436

P
Peter Zijlstra 已提交
437 438 439 440 441 442
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

443 444 445 446 447 448 449 450 451 452 453
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
454 455 456 457 458

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
459 460
}

461
/*
462
 * Remove a event from the lists for its context.
463
 * Must be called with ctx->mutex and ctx->lock held.
464
 */
465
static void
466
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
467
{
468 469 470 471
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
472
		return;
473 474 475

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

476 477
	ctx->nr_events--;
	if (event->attr.inherit_stat)
478
		ctx->nr_stat--;
479

480
	list_del_rcu(&event->event_entry);
481

482 483
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
484

485
	update_group_times(event);
486 487 488 489 490 491 492 493 494 495

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
496 497
}

498
static void perf_group_detach(struct perf_event *event)
499 500
{
	struct perf_event *sibling, *tmp;
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
517
		goto out;
518 519 520 521
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
522

523
	/*
524 525
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
526
	 * to whatever list we are on.
527
	 */
528
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
529 530
		if (list)
			list_move_tail(&sibling->group_entry, list);
531
		sibling->group_leader = sibling;
532 533 534

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
535
	}
536 537 538 539 540 541

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
542 543
}

544 545 546 547 548 549
static inline int
event_filter_match(struct perf_event *event)
{
	return event->cpu == -1 || event->cpu == smp_processor_id();
}

550 551
static void
event_sched_out(struct perf_event *event,
552
		  struct perf_cpu_context *cpuctx,
553
		  struct perf_event_context *ctx)
554
{
555
	u64 tstamp = perf_event_time(event);
556 557 558 559 560 561 562 563 564 565 566
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
		delta = ctx->time - event->tstamp_stopped;
		event->tstamp_running += delta;
567
		event->tstamp_stopped = tstamp;
568 569
	}

570
	if (event->state != PERF_EVENT_STATE_ACTIVE)
571
		return;
572

573 574 575 576
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
577
	}
578
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
579
	event->pmu->del(event, 0);
580
	event->oncpu = -1;
581

582
	if (!is_software_event(event))
583 584
		cpuctx->active_oncpu--;
	ctx->nr_active--;
585
	if (event->attr.exclusive || !cpuctx->active_oncpu)
586 587 588
		cpuctx->exclusive = 0;
}

589
static void
590
group_sched_out(struct perf_event *group_event,
591
		struct perf_cpu_context *cpuctx,
592
		struct perf_event_context *ctx)
593
{
594
	struct perf_event *event;
595
	int state = group_event->state;
596

597
	event_sched_out(group_event, cpuctx, ctx);
598 599 600 601

	/*
	 * Schedule out siblings (if any):
	 */
602 603
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
604

605
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
606 607 608
		cpuctx->exclusive = 0;
}

P
Peter Zijlstra 已提交
609 610 611 612 613 614
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

T
Thomas Gleixner 已提交
615
/*
616
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
617
 *
618
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
619 620
 * remove it from the context list.
 */
621
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
622
{
623 624
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
625
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
626 627 628 629 630 631

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
632
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
633 634
		return;

635
	raw_spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
636

637
	event_sched_out(event, cpuctx, ctx);
638

639
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
640

641
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
642 643 644 645
}


/*
646
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
647
 *
648
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
649
 *
650
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
651
 * call when the task is on a CPU.
652
 *
653 654
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
655 656
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
657
 * When called from perf_event_exit_task, it's OK because the
658
 * context has been detached from its task.
T
Thomas Gleixner 已提交
659
 */
660
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
661
{
662
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
663 664 665 666
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
667
		 * Per cpu events are removed via an smp call and
668
		 * the removal is always successful.
T
Thomas Gleixner 已提交
669
		 */
670 671 672
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
673 674 675 676
		return;
	}

retry:
677 678
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
679

680
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
681 682 683
	/*
	 * If the context is active we need to retry the smp call.
	 */
684
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
685
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
686 687 688 689 690
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
691
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
692 693
	 * succeed.
	 */
P
Peter Zijlstra 已提交
694
	if (!list_empty(&event->group_entry))
695
		list_del_event(event, ctx);
696
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
697 698
}

699
/*
700
 * Cross CPU call to disable a performance event
701
 */
702
static void __perf_event_disable(void *info)
703
{
704 705
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
706
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
707 708

	/*
709 710
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
711
	 */
712
	if (ctx->task && cpuctx->task_ctx != ctx)
713 714
		return;

715
	raw_spin_lock(&ctx->lock);
716 717

	/*
718
	 * If the event is on, turn it off.
719 720
	 * If it is in error state, leave it in error state.
	 */
721
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
722
		update_context_time(ctx);
723 724 725
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
726
		else
727 728
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
729 730
	}

731
	raw_spin_unlock(&ctx->lock);
732 733 734
}

/*
735
 * Disable a event.
736
 *
737 738
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
739
 * remains valid.  This condition is satisifed when called through
740 741 742 743
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
744
 * is the current context on this CPU and preemption is disabled,
745
 * hence we can't get into perf_event_task_sched_out for this context.
746
 */
747
void perf_event_disable(struct perf_event *event)
748
{
749
	struct perf_event_context *ctx = event->ctx;
750 751 752 753
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
754
		 * Disable the event on the cpu that it's on
755
		 */
756 757
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
758 759 760
		return;
	}

P
Peter Zijlstra 已提交
761
retry:
762
	task_oncpu_function_call(task, __perf_event_disable, event);
763

764
	raw_spin_lock_irq(&ctx->lock);
765
	/*
766
	 * If the event is still active, we need to retry the cross-call.
767
	 */
768
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
769
		raw_spin_unlock_irq(&ctx->lock);
770 771 772 773 774 775 776
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
777 778 779
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
780
	}
781

782
	raw_spin_unlock_irq(&ctx->lock);
783 784
}

785
static int
786
event_sched_in(struct perf_event *event,
787
		 struct perf_cpu_context *cpuctx,
788
		 struct perf_event_context *ctx)
789
{
790 791
	u64 tstamp = perf_event_time(event);

792
	if (event->state <= PERF_EVENT_STATE_OFF)
793 794
		return 0;

795
	event->state = PERF_EVENT_STATE_ACTIVE;
796
	event->oncpu = smp_processor_id();
797 798 799 800 801
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
802
	if (event->pmu->add(event, PERF_EF_START)) {
803 804
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
805 806 807
		return -EAGAIN;
	}

808
	event->tstamp_running += tstamp - event->tstamp_stopped;
809

810
	event->shadow_ctx_time = tstamp - ctx->timestamp;
811

812
	if (!is_software_event(event))
813
		cpuctx->active_oncpu++;
814 815
	ctx->nr_active++;

816
	if (event->attr.exclusive)
817 818
		cpuctx->exclusive = 1;

819 820 821
	return 0;
}

822
static int
823
group_sched_in(struct perf_event *group_event,
824
	       struct perf_cpu_context *cpuctx,
825
	       struct perf_event_context *ctx)
826
{
827
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
828
	struct pmu *pmu = group_event->pmu;
829 830
	u64 now = ctx->time;
	bool simulate = false;
831

832
	if (group_event->state == PERF_EVENT_STATE_OFF)
833 834
		return 0;

P
Peter Zijlstra 已提交
835
	pmu->start_txn(pmu);
836

837
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
838
		pmu->cancel_txn(pmu);
839
		return -EAGAIN;
840
	}
841 842 843 844

	/*
	 * Schedule in siblings as one group (if any):
	 */
845
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
846
		if (event_sched_in(event, cpuctx, ctx)) {
847
			partial_group = event;
848 849 850 851
			goto group_error;
		}
	}

852
	if (!pmu->commit_txn(pmu))
853
		return 0;
854

855 856 857 858
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
859 860 861 862 863 864 865 866 867 868
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
869
	 */
870 871
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
872 873 874 875 876 877 878 879
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
880
	}
881
	event_sched_out(group_event, cpuctx, ctx);
882

P
Peter Zijlstra 已提交
883
	pmu->cancel_txn(pmu);
884

885 886 887
	return -EAGAIN;
}

888
/*
889
 * Work out whether we can put this event group on the CPU now.
890
 */
891
static int group_can_go_on(struct perf_event *event,
892 893 894 895
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
896
	 * Groups consisting entirely of software events can always go on.
897
	 */
898
	if (event->group_flags & PERF_GROUP_SOFTWARE)
899 900 901
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
902
	 * events can go on.
903 904 905 906 907
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
908
	 * events on the CPU, it can't go on.
909
	 */
910
	if (event->attr.exclusive && cpuctx->active_oncpu)
911 912 913 914 915 916 917 918
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

919 920
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
921
{
922 923
	u64 tstamp = perf_event_time(event);

924
	list_add_event(event, ctx);
925
	perf_group_attach(event);
926 927 928
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
929 930
}

T
Thomas Gleixner 已提交
931
/*
932
 * Cross CPU call to install and enable a performance event
933 934
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
935 936 937
 */
static void __perf_install_in_context(void *info)
{
938 939 940
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
941
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
942
	int err;
T
Thomas Gleixner 已提交
943 944 945 946 947

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
948
	 * Or possibly this is the right context but it isn't
949
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
950
	 */
951
	if (ctx->task && cpuctx->task_ctx != ctx) {
952
		if (cpuctx->task_ctx || ctx->task != current)
953 954 955
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
956

957
	raw_spin_lock(&ctx->lock);
958
	ctx->is_active = 1;
959
	update_context_time(ctx);
T
Thomas Gleixner 已提交
960

961
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
962

963
	if (!event_filter_match(event))
964 965
		goto unlock;

966
	/*
967
	 * Don't put the event on if it is disabled or if
968 969
	 * it is in a group and the group isn't on.
	 */
970 971
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
972 973
		goto unlock;

974
	/*
975 976 977
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
978
	 */
979
	if (!group_can_go_on(event, cpuctx, 1))
980 981
		err = -EEXIST;
	else
982
		err = event_sched_in(event, cpuctx, ctx);
983

984 985
	if (err) {
		/*
986
		 * This event couldn't go on.  If it is in a group
987
		 * then we have to pull the whole group off.
988
		 * If the event group is pinned then put it in error state.
989
		 */
990
		if (leader != event)
991
			group_sched_out(leader, cpuctx, ctx);
992
		if (leader->attr.pinned) {
993
			update_group_times(leader);
994
			leader->state = PERF_EVENT_STATE_ERROR;
995
		}
996
	}
T
Thomas Gleixner 已提交
997

P
Peter Zijlstra 已提交
998
unlock:
999
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
1000 1001 1002
}

/*
1003
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1004
 *
1005 1006
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1007
 *
1008
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1009 1010
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
1011 1012
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
1013 1014
 */
static void
1015 1016
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1017 1018 1019 1020
			int cpu)
{
	struct task_struct *task = ctx->task;

1021 1022
	event->ctx = ctx;

T
Thomas Gleixner 已提交
1023 1024
	if (!task) {
		/*
1025
		 * Per cpu events are installed via an smp call and
1026
		 * the install is always successful.
T
Thomas Gleixner 已提交
1027 1028
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
1029
					 event, 1);
T
Thomas Gleixner 已提交
1030 1031 1032 1033 1034
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
1035
				 event);
T
Thomas Gleixner 已提交
1036

1037
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1038 1039 1040
	/*
	 * we need to retry the smp call.
	 */
1041
	if (ctx->is_active && list_empty(&event->group_entry)) {
1042
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1043 1044 1045 1046 1047
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
1048
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
1049 1050
	 * succeed.
	 */
1051 1052
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
1053
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1054 1055
}

1056
/*
1057
 * Put a event into inactive state and update time fields.
1058 1059 1060 1061 1062 1063
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1064 1065
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
1066
{
1067
	struct perf_event *sub;
1068
	u64 tstamp = perf_event_time(event);
1069

1070
	event->state = PERF_EVENT_STATE_INACTIVE;
1071
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1072
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1073 1074
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1075
	}
1076 1077
}

1078
/*
1079
 * Cross CPU call to enable a performance event
1080
 */
1081
static void __perf_event_enable(void *info)
1082
{
1083 1084 1085
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1086
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1087
	int err;
1088

1089
	/*
1090 1091
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1092
	 */
1093
	if (ctx->task && cpuctx->task_ctx != ctx) {
1094
		if (cpuctx->task_ctx || ctx->task != current)
1095 1096 1097
			return;
		cpuctx->task_ctx = ctx;
	}
1098

1099
	raw_spin_lock(&ctx->lock);
1100
	ctx->is_active = 1;
1101
	update_context_time(ctx);
1102

1103
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1104
		goto unlock;
1105
	__perf_event_mark_enabled(event, ctx);
1106

1107
	if (!event_filter_match(event))
1108 1109
		goto unlock;

1110
	/*
1111
	 * If the event is in a group and isn't the group leader,
1112
	 * then don't put it on unless the group is on.
1113
	 */
1114
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1115
		goto unlock;
1116

1117
	if (!group_can_go_on(event, cpuctx, 1)) {
1118
		err = -EEXIST;
1119
	} else {
1120
		if (event == leader)
1121
			err = group_sched_in(event, cpuctx, ctx);
1122
		else
1123
			err = event_sched_in(event, cpuctx, ctx);
1124
	}
1125 1126 1127

	if (err) {
		/*
1128
		 * If this event can't go on and it's part of a
1129 1130
		 * group, then the whole group has to come off.
		 */
1131
		if (leader != event)
1132
			group_sched_out(leader, cpuctx, ctx);
1133
		if (leader->attr.pinned) {
1134
			update_group_times(leader);
1135
			leader->state = PERF_EVENT_STATE_ERROR;
1136
		}
1137 1138
	}

P
Peter Zijlstra 已提交
1139
unlock:
1140
	raw_spin_unlock(&ctx->lock);
1141 1142 1143
}

/*
1144
 * Enable a event.
1145
 *
1146 1147
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1148
 * remains valid.  This condition is satisfied when called through
1149 1150
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1151
 */
1152
void perf_event_enable(struct perf_event *event)
1153
{
1154
	struct perf_event_context *ctx = event->ctx;
1155 1156 1157 1158
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1159
		 * Enable the event on the cpu that it's on
1160
		 */
1161 1162
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
1163 1164 1165
		return;
	}

1166
	raw_spin_lock_irq(&ctx->lock);
1167
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1168 1169 1170
		goto out;

	/*
1171 1172
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1173 1174 1175 1176
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1177 1178
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1179

P
Peter Zijlstra 已提交
1180
retry:
1181
	raw_spin_unlock_irq(&ctx->lock);
1182
	task_oncpu_function_call(task, __perf_event_enable, event);
1183

1184
	raw_spin_lock_irq(&ctx->lock);
1185 1186

	/*
1187
	 * If the context is active and the event is still off,
1188 1189
	 * we need to retry the cross-call.
	 */
1190
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1191 1192 1193 1194 1195 1196
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1197 1198
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1199

P
Peter Zijlstra 已提交
1200
out:
1201
	raw_spin_unlock_irq(&ctx->lock);
1202 1203
}

1204
static int perf_event_refresh(struct perf_event *event, int refresh)
1205
{
1206
	/*
1207
	 * not supported on inherited events
1208
	 */
1209
	if (event->attr.inherit || !is_sampling_event(event))
1210 1211
		return -EINVAL;

1212 1213
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1214 1215

	return 0;
1216 1217
}

1218 1219 1220
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1221
{
1222
	struct perf_event *event;
1223

1224
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1225
	perf_pmu_disable(ctx->pmu);
1226
	ctx->is_active = 0;
1227
	if (likely(!ctx->nr_events))
1228
		goto out;
1229
	update_context_time(ctx);
1230

1231
	if (!ctx->nr_active)
1232
		goto out;
1233

P
Peter Zijlstra 已提交
1234
	if (event_type & EVENT_PINNED) {
1235 1236
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1237
	}
1238

P
Peter Zijlstra 已提交
1239
	if (event_type & EVENT_FLEXIBLE) {
1240
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1241
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1242 1243
	}
out:
P
Peter Zijlstra 已提交
1244
	perf_pmu_enable(ctx->pmu);
1245
	raw_spin_unlock(&ctx->lock);
1246 1247
}

1248 1249 1250
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1251 1252 1253 1254
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1255
 * in them directly with an fd; we can only enable/disable all
1256
 * events via prctl, or enable/disable all events in a family
1257 1258
 * via ioctl, which will have the same effect on both contexts.
 */
1259 1260
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1261 1262
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1263
		&& ctx1->parent_gen == ctx2->parent_gen
1264
		&& !ctx1->pin_count && !ctx2->pin_count;
1265 1266
}

1267 1268
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1269 1270 1271
{
	u64 value;

1272
	if (!event->attr.inherit_stat)
1273 1274 1275
		return;

	/*
1276
	 * Update the event value, we cannot use perf_event_read()
1277 1278
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1279
	 * we know the event must be on the current CPU, therefore we
1280 1281
	 * don't need to use it.
	 */
1282 1283
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1284 1285
		event->pmu->read(event);
		/* fall-through */
1286

1287 1288
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1289 1290 1291 1292 1293 1294 1295
		break;

	default:
		break;
	}

	/*
1296
	 * In order to keep per-task stats reliable we need to flip the event
1297 1298
	 * values when we flip the contexts.
	 */
1299 1300 1301
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1302

1303 1304
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1305

1306
	/*
1307
	 * Since we swizzled the values, update the user visible data too.
1308
	 */
1309 1310
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1311 1312 1313 1314 1315
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1316 1317
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1318
{
1319
	struct perf_event *event, *next_event;
1320 1321 1322 1323

	if (!ctx->nr_stat)
		return;

1324 1325
	update_context_time(ctx);

1326 1327
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1328

1329 1330
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1331

1332 1333
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1334

1335
		__perf_event_sync_stat(event, next_event);
1336

1337 1338
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1339 1340 1341
	}
}

P
Peter Zijlstra 已提交
1342 1343
void perf_event_context_sched_out(struct task_struct *task, int ctxn,
				  struct task_struct *next)
T
Thomas Gleixner 已提交
1344
{
P
Peter Zijlstra 已提交
1345
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1346 1347
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1348
	struct perf_cpu_context *cpuctx;
1349
	int do_switch = 1;
T
Thomas Gleixner 已提交
1350

P
Peter Zijlstra 已提交
1351 1352
	if (likely(!ctx))
		return;
1353

P
Peter Zijlstra 已提交
1354 1355
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1356 1357
		return;

1358 1359
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1360
	next_ctx = next->perf_event_ctxp[ctxn];
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1372 1373
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1374
		if (context_equiv(ctx, next_ctx)) {
1375 1376
			/*
			 * XXX do we need a memory barrier of sorts
1377
			 * wrt to rcu_dereference() of perf_event_ctxp
1378
			 */
P
Peter Zijlstra 已提交
1379 1380
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1381 1382 1383
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1384

1385
			perf_event_sync_stat(ctx, next_ctx);
1386
		}
1387 1388
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1389
	}
1390
	rcu_read_unlock();
1391

1392
	if (do_switch) {
1393
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1394 1395
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1396 1397
}

P
Peter Zijlstra 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
1412 1413
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
1414 1415 1416 1417 1418 1419 1420
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
}

1421 1422
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1423
{
P
Peter Zijlstra 已提交
1424
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1425

1426 1427
	if (!cpuctx->task_ctx)
		return;
1428 1429 1430 1431

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1432
	ctx_sched_out(ctx, cpuctx, event_type);
1433 1434 1435
	cpuctx->task_ctx = NULL;
}

1436 1437 1438 1439 1440 1441 1442
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1443 1444
}

1445
static void
1446
ctx_pinned_sched_in(struct perf_event_context *ctx,
1447
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1448
{
1449
	struct perf_event *event;
T
Thomas Gleixner 已提交
1450

1451 1452
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1453
			continue;
1454
		if (!event_filter_match(event))
1455 1456
			continue;

1457
		if (group_can_go_on(event, cpuctx, 1))
1458
			group_sched_in(event, cpuctx, ctx);
1459 1460 1461 1462 1463

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1464 1465 1466
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1467
		}
1468
	}
1469 1470 1471 1472
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1473
		      struct perf_cpu_context *cpuctx)
1474 1475 1476
{
	struct perf_event *event;
	int can_add_hw = 1;
1477

1478 1479 1480
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1481
			continue;
1482 1483
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1484
		 * of events:
1485
		 */
1486
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
1487 1488
			continue;

P
Peter Zijlstra 已提交
1489
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
1490
			if (group_sched_in(event, cpuctx, ctx))
1491
				can_add_hw = 0;
P
Peter Zijlstra 已提交
1492
		}
T
Thomas Gleixner 已提交
1493
	}
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1513
		ctx_pinned_sched_in(ctx, cpuctx);
1514 1515 1516

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1517
		ctx_flexible_sched_in(ctx, cpuctx);
1518

P
Peter Zijlstra 已提交
1519
out:
1520
	raw_spin_unlock(&ctx->lock);
1521 1522
}

1523 1524 1525 1526 1527 1528 1529 1530
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

P
Peter Zijlstra 已提交
1531
static void task_ctx_sched_in(struct perf_event_context *ctx,
1532 1533
			      enum event_type_t event_type)
{
P
Peter Zijlstra 已提交
1534
	struct perf_cpu_context *cpuctx;
1535

P
Peter Zijlstra 已提交
1536
       	cpuctx = __get_cpu_context(ctx);
1537 1538
	if (cpuctx->task_ctx == ctx)
		return;
P
Peter Zijlstra 已提交
1539

1540 1541 1542
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
T
Thomas Gleixner 已提交
1543

P
Peter Zijlstra 已提交
1544
void perf_event_context_sched_in(struct perf_event_context *ctx)
1545
{
P
Peter Zijlstra 已提交
1546
	struct perf_cpu_context *cpuctx;
1547

P
Peter Zijlstra 已提交
1548
	cpuctx = __get_cpu_context(ctx);
1549 1550 1551
	if (cpuctx->task_ctx == ctx)
		return;

P
Peter Zijlstra 已提交
1552
	perf_pmu_disable(ctx->pmu);
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1565

1566 1567 1568 1569
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
1570
	perf_pmu_rotate_start(ctx->pmu);
P
Peter Zijlstra 已提交
1571
	perf_pmu_enable(ctx->pmu);
1572 1573
}

P
Peter Zijlstra 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
1585
void __perf_event_task_sched_in(struct task_struct *task)
P
Peter Zijlstra 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

		perf_event_context_sched_in(ctx);
	}
1597 1598
}

1599 1600
#define MAX_INTERRUPTS (~0ULL)

1601
static void perf_log_throttle(struct perf_event *event, int enable);
1602

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

1670 1671 1672
	if (!divisor)
		return dividend;

1673 1674 1675 1676
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1677
{
1678
	struct hw_perf_event *hwc = &event->hw;
1679
	s64 period, sample_period;
1680 1681
	s64 delta;

1682
	period = perf_calculate_period(event, nsec, count);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1693

1694
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
1695
		event->pmu->stop(event, PERF_EF_UPDATE);
1696
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
1697
		event->pmu->start(event, PERF_EF_RELOAD);
1698
	}
1699 1700
}

1701
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1702
{
1703 1704
	struct perf_event *event;
	struct hw_perf_event *hwc;
1705 1706
	u64 interrupts, now;
	s64 delta;
1707

1708
	raw_spin_lock(&ctx->lock);
1709
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1710
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1711 1712
			continue;

1713
		if (!event_filter_match(event))
1714 1715
			continue;

1716
		hwc = &event->hw;
1717 1718 1719

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1720

1721
		/*
1722
		 * unthrottle events on the tick
1723
		 */
1724
		if (interrupts == MAX_INTERRUPTS) {
1725
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
1726
			event->pmu->start(event, 0);
1727 1728
		}

1729
		if (!event->attr.freq || !event->attr.sample_freq)
1730 1731
			continue;

1732
		event->pmu->read(event);
1733
		now = local64_read(&event->count);
1734 1735
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1736

1737
		if (delta > 0)
1738
			perf_adjust_period(event, period, delta);
1739
	}
1740
	raw_spin_unlock(&ctx->lock);
1741 1742
}

1743
/*
1744
 * Round-robin a context's events:
1745
 */
1746
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1747
{
1748
	raw_spin_lock(&ctx->lock);
1749

1750 1751 1752 1753 1754 1755
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
1756

1757
	raw_spin_unlock(&ctx->lock);
1758 1759
}

1760
/*
1761 1762 1763
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
1764
 */
1765
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1766
{
1767
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
1768
	struct perf_event_context *ctx = NULL;
1769
	int rotate = 0, remove = 1;
1770

1771
	if (cpuctx->ctx.nr_events) {
1772
		remove = 0;
1773 1774 1775
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
1776

P
Peter Zijlstra 已提交
1777
	ctx = cpuctx->task_ctx;
1778
	if (ctx && ctx->nr_events) {
1779
		remove = 0;
1780 1781 1782
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
1783

P
Peter Zijlstra 已提交
1784
	perf_pmu_disable(cpuctx->ctx.pmu);
1785
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1786
	if (ctx)
1787
		perf_ctx_adjust_freq(ctx, interval);
1788

1789
	if (!rotate)
1790
		goto done;
1791

1792
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1793
	if (ctx)
1794
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1795

1796
	rotate_ctx(&cpuctx->ctx);
1797 1798
	if (ctx)
		rotate_ctx(ctx);
1799

1800
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1801
	if (ctx)
P
Peter Zijlstra 已提交
1802
		task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1803 1804

done:
1805 1806 1807
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
1808
	perf_pmu_enable(cpuctx->ctx.pmu);
1809 1810 1811 1812 1813 1814
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
1815

1816 1817 1818 1819 1820 1821 1822
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
1823 1824
}

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1840
/*
1841
 * Enable all of a task's events that have been marked enable-on-exec.
1842 1843
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
1844
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1845
{
1846
	struct perf_event *event;
1847 1848
	unsigned long flags;
	int enabled = 0;
1849
	int ret;
1850 1851

	local_irq_save(flags);
1852
	if (!ctx || !ctx->nr_events)
1853 1854
		goto out;

P
Peter Zijlstra 已提交
1855
	task_ctx_sched_out(ctx, EVENT_ALL);
1856

1857
	raw_spin_lock(&ctx->lock);
1858

1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1869 1870 1871
	}

	/*
1872
	 * Unclone this context if we enabled any event.
1873
	 */
1874 1875
	if (enabled)
		unclone_ctx(ctx);
1876

1877
	raw_spin_unlock(&ctx->lock);
1878

P
Peter Zijlstra 已提交
1879
	perf_event_context_sched_in(ctx);
P
Peter Zijlstra 已提交
1880
out:
1881 1882 1883
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1884
/*
1885
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1886
 */
1887
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1888
{
1889 1890
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1891
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
1892

1893 1894 1895 1896
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1897 1898
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1899 1900 1901 1902
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1903
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1904
	update_context_time(ctx);
1905
	update_event_times(event);
1906
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1907

P
Peter Zijlstra 已提交
1908
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1909 1910
}

P
Peter Zijlstra 已提交
1911 1912
static inline u64 perf_event_count(struct perf_event *event)
{
1913
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
1914 1915
}

1916
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1917 1918
{
	/*
1919 1920
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1921
	 */
1922 1923 1924 1925
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1926 1927 1928
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1929
		raw_spin_lock_irqsave(&ctx->lock, flags);
1930 1931 1932 1933 1934 1935 1936
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
		if (ctx->is_active)
			update_context_time(ctx);
1937
		update_event_times(event);
1938
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1939 1940
	}

P
Peter Zijlstra 已提交
1941
	return perf_event_count(event);
T
Thomas Gleixner 已提交
1942 1943
}

1944
/*
1945
 * Callchain support
1946
 */
1947 1948 1949 1950 1951 1952

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

1953
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1954 1955 1956 1957 1958 1959 1960
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
1961 1962 1963
{
}

1964 1965
__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
T
Thomas Gleixner 已提交
1966
{
1967
}
T
Thomas Gleixner 已提交
1968

1969 1970 1971 1972
static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;
T
Thomas Gleixner 已提交
1973

1974
	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
T
Thomas Gleixner 已提交
1975

1976 1977
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
T
Thomas Gleixner 已提交
1978

1979 1980
	kfree(entries);
}
T
Thomas Gleixner 已提交
1981

1982 1983 1984
static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
1985

1986 1987 1988 1989
	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}
T
Thomas Gleixner 已提交
1990

1991 1992 1993 1994 1995
static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
1996

1997
	/*
1998 1999 2000
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
2001
	 */
2002 2003
	size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
		num_possible_cpus();
2004

2005 2006 2007
	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
2008

2009
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
T
Thomas Gleixner 已提交
2010

2011 2012 2013 2014 2015
	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
2016 2017
	}

2018
	rcu_assign_pointer(callchain_cpus_entries, entries);
T
Thomas Gleixner 已提交
2019

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

2154
/*
2155
 * Initialize the perf_event context in a task_struct:
2156
 */
2157
static void __perf_event_init_context(struct perf_event_context *ctx)
2158
{
2159
	raw_spin_lock_init(&ctx->lock);
2160
	mutex_init(&ctx->mutex);
2161 2162
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2163 2164
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2180
	}
2181 2182 2183
	ctx->pmu = pmu;

	return ctx;
2184 2185
}

2186 2187 2188 2189 2190
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2191 2192

	rcu_read_lock();
2193
	if (!vpid)
T
Thomas Gleixner 已提交
2194 2195
		task = current;
	else
2196
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2197 2198 2199 2200 2201 2202 2203 2204
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2205 2206 2207 2208
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2209 2210 2211 2212 2213 2214 2215
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

P
Peter Zijlstra 已提交
2216
static struct perf_event_context *
M
Matt Helsley 已提交
2217
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2218
{
2219
	struct perf_event_context *ctx;
2220
	struct perf_cpu_context *cpuctx;
2221
	unsigned long flags;
P
Peter Zijlstra 已提交
2222
	int ctxn, err;
T
Thomas Gleixner 已提交
2223

2224
	if (!task) {
2225
		/* Must be root to operate on a CPU event: */
2226
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2227 2228 2229
			return ERR_PTR(-EACCES);

		/*
2230
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2231 2232 2233
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2234
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2235 2236
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2237
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2238
		ctx = &cpuctx->ctx;
2239
		get_ctx(ctx);
T
Thomas Gleixner 已提交
2240 2241 2242 2243

		return ctx;
	}

P
Peter Zijlstra 已提交
2244 2245 2246 2247 2248
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2249
retry:
P
Peter Zijlstra 已提交
2250
	ctx = perf_lock_task_context(task, ctxn, &flags);
2251
	if (ctx) {
2252
		unclone_ctx(ctx);
2253
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2254 2255
	}

2256
	if (!ctx) {
2257
		ctx = alloc_perf_context(pmu, task);
2258 2259 2260
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2261

2262
		get_ctx(ctx);
2263

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
		else
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2279
			put_task_struct(task);
2280
			kfree(ctx);
2281 2282 2283 2284

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2285 2286 2287
		}
	}

T
Thomas Gleixner 已提交
2288
	return ctx;
2289

P
Peter Zijlstra 已提交
2290
errout:
2291
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2292 2293
}

L
Li Zefan 已提交
2294 2295
static void perf_event_free_filter(struct perf_event *event);

2296
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2297
{
2298
	struct perf_event *event;
P
Peter Zijlstra 已提交
2299

2300 2301 2302
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2303
	perf_event_free_filter(event);
2304
	kfree(event);
P
Peter Zijlstra 已提交
2305 2306
}

2307
static void perf_buffer_put(struct perf_buffer *buffer);
2308

2309
static void free_event(struct perf_event *event)
2310
{
2311
	irq_work_sync(&event->pending);
2312

2313
	if (!event->parent) {
2314 2315
		if (event->attach_state & PERF_ATTACH_TASK)
			jump_label_dec(&perf_task_events);
2316
		if (event->attr.mmap || event->attr.mmap_data)
2317 2318 2319 2320 2321
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2322 2323
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2324
	}
2325

2326 2327 2328
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2329 2330
	}

2331 2332
	if (event->destroy)
		event->destroy(event);
2333

P
Peter Zijlstra 已提交
2334 2335 2336
	if (event->ctx)
		put_ctx(event->ctx);

2337
	call_rcu(&event->rcu_head, free_event_rcu);
2338 2339
}

2340
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2341
{
2342
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2343

2344 2345 2346 2347 2348 2349
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2350
	WARN_ON_ONCE(ctx->parent_ctx);
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2364
	raw_spin_lock_irq(&ctx->lock);
2365
	perf_group_detach(event);
2366 2367
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2368
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2369

2370
	free_event(event);
T
Thomas Gleixner 已提交
2371 2372 2373

	return 0;
}
2374
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2375

2376 2377 2378 2379
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2380
{
2381
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2382
	struct task_struct *owner;
2383

2384
	file->private_data = NULL;
2385

P
Peter Zijlstra 已提交
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

2419
	return perf_event_release_kernel(event);
2420 2421
}

2422
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2423
{
2424
	struct perf_event *child;
2425 2426
	u64 total = 0;

2427 2428 2429
	*enabled = 0;
	*running = 0;

2430
	mutex_lock(&event->child_mutex);
2431
	total += perf_event_read(event);
2432 2433 2434 2435 2436 2437
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2438
		total += perf_event_read(child);
2439 2440 2441
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2442
	mutex_unlock(&event->child_mutex);
2443 2444 2445

	return total;
}
2446
EXPORT_SYMBOL_GPL(perf_event_read_value);
2447

2448
static int perf_event_read_group(struct perf_event *event,
2449 2450
				   u64 read_format, char __user *buf)
{
2451
	struct perf_event *leader = event->group_leader, *sub;
2452 2453
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2454
	u64 values[5];
2455
	u64 count, enabled, running;
2456

2457
	mutex_lock(&ctx->mutex);
2458
	count = perf_event_read_value(leader, &enabled, &running);
2459 2460

	values[n++] = 1 + leader->nr_siblings;
2461 2462 2463 2464
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2465 2466 2467
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2468 2469 2470 2471

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2472
		goto unlock;
2473

2474
	ret = size;
2475

2476
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2477
		n = 0;
2478

2479
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2480 2481 2482 2483 2484
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2485
		if (copy_to_user(buf + ret, values, size)) {
2486 2487 2488
			ret = -EFAULT;
			goto unlock;
		}
2489 2490

		ret += size;
2491
	}
2492 2493
unlock:
	mutex_unlock(&ctx->mutex);
2494

2495
	return ret;
2496 2497
}

2498
static int perf_event_read_one(struct perf_event *event,
2499 2500
				 u64 read_format, char __user *buf)
{
2501
	u64 enabled, running;
2502 2503 2504
	u64 values[4];
	int n = 0;

2505 2506 2507 2508 2509
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2510
	if (read_format & PERF_FORMAT_ID)
2511
		values[n++] = primary_event_id(event);
2512 2513 2514 2515 2516 2517 2518

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2519
/*
2520
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2521 2522
 */
static ssize_t
2523
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2524
{
2525
	u64 read_format = event->attr.read_format;
2526
	int ret;
T
Thomas Gleixner 已提交
2527

2528
	/*
2529
	 * Return end-of-file for a read on a event that is in
2530 2531 2532
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2533
	if (event->state == PERF_EVENT_STATE_ERROR)
2534 2535
		return 0;

2536
	if (count < event->read_size)
2537 2538
		return -ENOSPC;

2539
	WARN_ON_ONCE(event->ctx->parent_ctx);
2540
	if (read_format & PERF_FORMAT_GROUP)
2541
		ret = perf_event_read_group(event, read_format, buf);
2542
	else
2543
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2544

2545
	return ret;
T
Thomas Gleixner 已提交
2546 2547 2548 2549 2550
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2551
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2552

2553
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2554 2555 2556 2557
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2558
	struct perf_event *event = file->private_data;
2559
	struct perf_buffer *buffer;
2560
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2561 2562

	rcu_read_lock();
2563 2564 2565
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
2566
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2567

2568
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2569 2570 2571 2572

	return events;
}

2573
static void perf_event_reset(struct perf_event *event)
2574
{
2575
	(void)perf_event_read(event);
2576
	local64_set(&event->count, 0);
2577
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2578 2579
}

2580
/*
2581 2582 2583 2584
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2585
 */
2586 2587
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2588
{
2589
	struct perf_event *child;
P
Peter Zijlstra 已提交
2590

2591 2592 2593 2594
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2595
		func(child);
2596
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2597 2598
}

2599 2600
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2601
{
2602 2603
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2604

2605 2606
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2607
	event = event->group_leader;
2608

2609 2610 2611 2612
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2613
	mutex_unlock(&ctx->mutex);
2614 2615
}

2616
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2617
{
2618
	struct perf_event_context *ctx = event->ctx;
2619 2620 2621
	int ret = 0;
	u64 value;

2622
	if (!is_sampling_event(event))
2623 2624
		return -EINVAL;

2625
	if (copy_from_user(&value, arg, sizeof(value)))
2626 2627 2628 2629 2630
		return -EFAULT;

	if (!value)
		return -EINVAL;

2631
	raw_spin_lock_irq(&ctx->lock);
2632 2633
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2634 2635 2636 2637
			ret = -EINVAL;
			goto unlock;
		}

2638
		event->attr.sample_freq = value;
2639
	} else {
2640 2641
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2642 2643
	}
unlock:
2644
	raw_spin_unlock_irq(&ctx->lock);
2645 2646 2647 2648

	return ret;
}

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
2670
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2671

2672 2673
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2674 2675
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2676
	u32 flags = arg;
2677 2678

	switch (cmd) {
2679 2680
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2681
		break;
2682 2683
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2684
		break;
2685 2686
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2687
		break;
P
Peter Zijlstra 已提交
2688

2689 2690
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2691

2692 2693
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2694

2695
	case PERF_EVENT_IOC_SET_OUTPUT:
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
2713

L
Li Zefan 已提交
2714 2715 2716
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2717
	default:
P
Peter Zijlstra 已提交
2718
		return -ENOTTY;
2719
	}
P
Peter Zijlstra 已提交
2720 2721

	if (flags & PERF_IOC_FLAG_GROUP)
2722
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2723
	else
2724
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2725 2726

	return 0;
2727 2728
}

2729
int perf_event_task_enable(void)
2730
{
2731
	struct perf_event *event;
2732

2733 2734 2735 2736
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2737 2738 2739 2740

	return 0;
}

2741
int perf_event_task_disable(void)
2742
{
2743
	struct perf_event *event;
2744

2745 2746 2747 2748
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2749 2750 2751 2752

	return 0;
}

2753 2754
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2755 2756
#endif

2757
static int perf_event_index(struct perf_event *event)
2758
{
P
Peter Zijlstra 已提交
2759 2760 2761
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

2762
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2763 2764
		return 0;

2765
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2766 2767
}

2768 2769 2770 2771 2772
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2773
void perf_event_update_userpage(struct perf_event *event)
2774
{
2775
	struct perf_event_mmap_page *userpg;
2776
	struct perf_buffer *buffer;
2777 2778

	rcu_read_lock();
2779 2780
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2781 2782
		goto unlock;

2783
	userpg = buffer->user_page;
2784

2785 2786 2787 2788 2789
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2790
	++userpg->lock;
2791
	barrier();
2792
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
2793
	userpg->offset = perf_event_count(event);
2794
	if (event->state == PERF_EVENT_STATE_ACTIVE)
2795
		userpg->offset -= local64_read(&event->hw.prev_count);
2796

2797 2798
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2799

2800 2801
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2802

2803
	barrier();
2804
	++userpg->lock;
2805
	preempt_enable();
2806
unlock:
2807
	rcu_read_unlock();
2808 2809
}

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

2829
#ifndef CONFIG_PERF_USE_VMALLOC
2830

2831 2832 2833
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2834

2835
static struct page *
2836
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2837
{
2838
	if (pgoff > buffer->nr_pages)
2839
		return NULL;
2840

2841
	if (pgoff == 0)
2842
		return virt_to_page(buffer->user_page);
2843

2844
	return virt_to_page(buffer->data_pages[pgoff - 1]);
2845 2846
}

2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

2860
static struct perf_buffer *
2861
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2862
{
2863
	struct perf_buffer *buffer;
2864 2865 2866
	unsigned long size;
	int i;

2867
	size = sizeof(struct perf_buffer);
2868 2869
	size += nr_pages * sizeof(void *);

2870 2871
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2872 2873
		goto fail;

2874
	buffer->user_page = perf_mmap_alloc_page(cpu);
2875
	if (!buffer->user_page)
2876 2877 2878
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
2879
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2880
		if (!buffer->data_pages[i])
2881 2882 2883
			goto fail_data_pages;
	}

2884
	buffer->nr_pages = nr_pages;
2885

2886 2887
	perf_buffer_init(buffer, watermark, flags);

2888
	return buffer;
2889 2890 2891

fail_data_pages:
	for (i--; i >= 0; i--)
2892
		free_page((unsigned long)buffer->data_pages[i]);
2893

2894
	free_page((unsigned long)buffer->user_page);
2895 2896

fail_user_page:
2897
	kfree(buffer);
2898 2899

fail:
2900
	return NULL;
2901 2902
}

2903 2904
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2905
	struct page *page = virt_to_page((void *)addr);
2906 2907 2908 2909 2910

	page->mapping = NULL;
	__free_page(page);
}

2911
static void perf_buffer_free(struct perf_buffer *buffer)
2912 2913 2914
{
	int i;

2915 2916 2917 2918
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
2919 2920
}

2921
static inline int page_order(struct perf_buffer *buffer)
2922 2923 2924 2925
{
	return 0;
}

2926 2927 2928 2929 2930 2931 2932 2933
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

2934
static inline int page_order(struct perf_buffer *buffer)
2935
{
2936
	return buffer->page_order;
2937 2938
}

2939
static struct page *
2940
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2941
{
2942
	if (pgoff > (1UL << page_order(buffer)))
2943 2944
		return NULL;

2945
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2946 2947 2948 2949 2950 2951 2952 2953 2954
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

2955
static void perf_buffer_free_work(struct work_struct *work)
2956
{
2957
	struct perf_buffer *buffer;
2958 2959 2960
	void *base;
	int i, nr;

2961 2962
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
2963

2964
	base = buffer->user_page;
2965 2966 2967 2968
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2969
	kfree(buffer);
2970 2971
}

2972
static void perf_buffer_free(struct perf_buffer *buffer)
2973
{
2974
	schedule_work(&buffer->work);
2975 2976
}

2977
static struct perf_buffer *
2978
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2979
{
2980
	struct perf_buffer *buffer;
2981 2982 2983
	unsigned long size;
	void *all_buf;

2984
	size = sizeof(struct perf_buffer);
2985 2986
	size += sizeof(void *);

2987 2988
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2989 2990
		goto fail;

2991
	INIT_WORK(&buffer->work, perf_buffer_free_work);
2992 2993 2994 2995 2996

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

2997 2998 2999 3000
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
3001

3002 3003
	perf_buffer_init(buffer, watermark, flags);

3004
	return buffer;
3005 3006

fail_all_buf:
3007
	kfree(buffer);
3008 3009 3010 3011 3012 3013 3014

fail:
	return NULL;
}

#endif

3015
static unsigned long perf_data_size(struct perf_buffer *buffer)
3016
{
3017
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
3018 3019
}

3020 3021 3022
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3023
	struct perf_buffer *buffer;
3024 3025 3026 3027 3028 3029 3030 3031 3032
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3033 3034
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3035 3036 3037 3038 3039
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3040
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3055
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3056
{
3057
	struct perf_buffer *buffer;
3058

3059 3060
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
3061 3062
}

3063
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3064
{
3065
	struct perf_buffer *buffer;
3066

3067
	rcu_read_lock();
3068 3069 3070 3071
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
3072 3073 3074
	}
	rcu_read_unlock();

3075
	return buffer;
3076 3077
}

3078
static void perf_buffer_put(struct perf_buffer *buffer)
3079
{
3080
	if (!atomic_dec_and_test(&buffer->refcount))
3081
		return;
3082

3083
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3084 3085 3086 3087
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3088
	struct perf_event *event = vma->vm_file->private_data;
3089

3090
	atomic_inc(&event->mmap_count);
3091 3092 3093 3094
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3095
	struct perf_event *event = vma->vm_file->private_data;
3096

3097
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3098
		unsigned long size = perf_data_size(event->buffer);
3099
		struct user_struct *user = event->mmap_user;
3100
		struct perf_buffer *buffer = event->buffer;
3101

3102
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3103
		vma->vm_mm->locked_vm -= event->mmap_locked;
3104
		rcu_assign_pointer(event->buffer, NULL);
3105
		mutex_unlock(&event->mmap_mutex);
3106

3107
		perf_buffer_put(buffer);
3108
		free_uid(user);
3109
	}
3110 3111
}

3112
static const struct vm_operations_struct perf_mmap_vmops = {
3113 3114 3115 3116
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3117 3118 3119 3120
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3121
	struct perf_event *event = file->private_data;
3122
	unsigned long user_locked, user_lock_limit;
3123
	struct user_struct *user = current_user();
3124
	unsigned long locked, lock_limit;
3125
	struct perf_buffer *buffer;
3126 3127
	unsigned long vma_size;
	unsigned long nr_pages;
3128
	long user_extra, extra;
3129
	int ret = 0, flags = 0;
3130

3131 3132 3133 3134 3135 3136 3137 3138
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3139
	if (!(vma->vm_flags & VM_SHARED))
3140
		return -EINVAL;
3141 3142 3143 3144

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3145
	/*
3146
	 * If we have buffer pages ensure they're a power-of-two number, so we
3147 3148 3149
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3150 3151
		return -EINVAL;

3152
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3153 3154
		return -EINVAL;

3155 3156
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3157

3158 3159
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3160 3161 3162
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
3163
		else
3164 3165 3166 3167
			ret = -EINVAL;
		goto unlock;
	}

3168
	user_extra = nr_pages + 1;
3169
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3170 3171 3172 3173 3174 3175

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3176
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3177

3178 3179 3180
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3181

3182
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3183
	lock_limit >>= PAGE_SHIFT;
3184
	locked = vma->vm_mm->locked_vm + extra;
3185

3186 3187
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3188 3189 3190
		ret = -EPERM;
		goto unlock;
	}
3191

3192
	WARN_ON(event->buffer);
3193

3194 3195 3196 3197 3198
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
3199
	if (!buffer) {
3200
		ret = -ENOMEM;
3201
		goto unlock;
3202
	}
3203
	rcu_assign_pointer(event->buffer, buffer);
3204

3205 3206 3207 3208 3209
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3210
unlock:
3211 3212
	if (!ret)
		atomic_inc(&event->mmap_count);
3213
	mutex_unlock(&event->mmap_mutex);
3214 3215 3216

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3217 3218

	return ret;
3219 3220
}

P
Peter Zijlstra 已提交
3221 3222 3223
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3224
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3225 3226 3227
	int retval;

	mutex_lock(&inode->i_mutex);
3228
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3229 3230 3231 3232 3233 3234 3235 3236
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3237
static const struct file_operations perf_fops = {
3238
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3239 3240 3241
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3242 3243
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3244
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3245
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3246 3247
};

3248
/*
3249
 * Perf event wakeup
3250 3251 3252 3253 3254
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3255
void perf_event_wakeup(struct perf_event *event)
3256
{
3257
	wake_up_all(&event->waitq);
3258

3259 3260 3261
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3262
	}
3263 3264
}

3265
static void perf_pending_event(struct irq_work *entry)
3266
{
3267 3268
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3269

3270 3271 3272
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3273 3274
	}

3275 3276 3277
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3278 3279 3280
	}
}

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3302 3303 3304
/*
 * Output
 */
3305
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3306
			      unsigned long offset, unsigned long head)
3307 3308 3309
{
	unsigned long mask;

3310
	if (!buffer->writable)
3311 3312
		return true;

3313
	mask = perf_data_size(buffer) - 1;
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3324
static void perf_output_wakeup(struct perf_output_handle *handle)
3325
{
3326
	atomic_set(&handle->buffer->poll, POLL_IN);
3327

3328
	if (handle->nmi) {
3329
		handle->event->pending_wakeup = 1;
3330
		irq_work_queue(&handle->event->pending);
3331
	} else
3332
		perf_event_wakeup(handle->event);
3333 3334
}

3335
/*
3336
 * We need to ensure a later event_id doesn't publish a head when a former
3337
 * event isn't done writing. However since we need to deal with NMIs we
3338 3339 3340
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3341
 * event completes.
3342
 */
3343
static void perf_output_get_handle(struct perf_output_handle *handle)
3344
{
3345
	struct perf_buffer *buffer = handle->buffer;
3346

3347
	preempt_disable();
3348 3349
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3350 3351
}

3352
static void perf_output_put_handle(struct perf_output_handle *handle)
3353
{
3354
	struct perf_buffer *buffer = handle->buffer;
3355
	unsigned long head;
3356 3357

again:
3358
	head = local_read(&buffer->head);
3359 3360

	/*
3361
	 * IRQ/NMI can happen here, which means we can miss a head update.
3362 3363
	 */

3364
	if (!local_dec_and_test(&buffer->nest))
3365
		goto out;
3366 3367

	/*
3368
	 * Publish the known good head. Rely on the full barrier implied
3369
	 * by atomic_dec_and_test() order the buffer->head read and this
3370
	 * write.
3371
	 */
3372
	buffer->user_page->data_head = head;
3373

3374 3375
	/*
	 * Now check if we missed an update, rely on the (compiler)
3376
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3377
	 */
3378 3379
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3380 3381 3382
		goto again;
	}

3383
	if (handle->wakeup != local_read(&buffer->wakeup))
3384
		perf_output_wakeup(handle);
3385

P
Peter Zijlstra 已提交
3386
out:
3387
	preempt_enable();
3388 3389
}

3390
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3391
		      const void *buf, unsigned int len)
3392
{
3393
	do {
3394
		unsigned long size = min_t(unsigned long, handle->size, len);
3395 3396 3397 3398 3399

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3400
		buf += size;
3401 3402
		handle->size -= size;
		if (!handle->size) {
3403
			struct perf_buffer *buffer = handle->buffer;
3404

3405
			handle->page++;
3406 3407 3408
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3409 3410
		}
	} while (len);
3411 3412
}

3413 3414 3415
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
static void perf_event_header__init_id(struct perf_event_header *header,
				       struct perf_sample_data *data,
				       struct perf_event *event)
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

static void perf_event__output_id_sample(struct perf_event *event,
					 struct perf_output_handle *handle,
					 struct perf_sample_data *sample)
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

3480
int perf_output_begin(struct perf_output_handle *handle,
3481
		      struct perf_event *event, unsigned int size,
3482
		      int nmi, int sample)
3483
{
3484
	struct perf_buffer *buffer;
3485
	unsigned long tail, offset, head;
3486
	int have_lost;
3487
	struct perf_sample_data sample_data;
3488 3489 3490 3491 3492
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3493

3494
	rcu_read_lock();
3495
	/*
3496
	 * For inherited events we send all the output towards the parent.
3497
	 */
3498 3499
	if (event->parent)
		event = event->parent;
3500

3501 3502
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3503 3504
		goto out;

3505
	handle->buffer	= buffer;
3506
	handle->event	= event;
3507 3508
	handle->nmi	= nmi;
	handle->sample	= sample;
3509

3510
	if (!buffer->nr_pages)
3511
		goto out;
3512

3513
	have_lost = local_read(&buffer->lost);
3514 3515 3516 3517 3518 3519
	if (have_lost) {
		lost_event.header.size = sizeof(lost_event);
		perf_event_header__init_id(&lost_event.header, &sample_data,
					   event);
		size += lost_event.header.size;
	}
3520

3521
	perf_output_get_handle(handle);
3522

3523
	do {
3524 3525 3526 3527 3528
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
3529
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
3530
		smp_rmb();
3531
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
3532
		head += size;
3533
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3534
			goto fail;
3535
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
3536

3537 3538
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
3539

3540 3541 3542 3543
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
3544
	handle->addr += handle->size;
3545
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3546

3547
	if (have_lost) {
3548
		lost_event.header.type = PERF_RECORD_LOST;
3549
		lost_event.header.misc = 0;
3550
		lost_event.id          = event->id;
3551
		lost_event.lost        = local_xchg(&buffer->lost, 0);
3552 3553

		perf_output_put(handle, lost_event);
3554
		perf_event__output_id_sample(event, handle, &sample_data);
3555 3556
	}

3557
	return 0;
3558

3559
fail:
3560
	local_inc(&buffer->lost);
3561
	perf_output_put_handle(handle);
3562 3563
out:
	rcu_read_unlock();
3564

3565 3566
	return -ENOSPC;
}
3567

3568
void perf_output_end(struct perf_output_handle *handle)
3569
{
3570
	struct perf_event *event = handle->event;
3571
	struct perf_buffer *buffer = handle->buffer;
3572

3573
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3574

3575
	if (handle->sample && wakeup_events) {
3576
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
3577
		if (events >= wakeup_events) {
3578 3579
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
3580
		}
3581 3582
	}

3583
	perf_output_put_handle(handle);
3584
	rcu_read_unlock();
3585 3586
}

3587
static void perf_output_read_one(struct perf_output_handle *handle,
3588 3589
				 struct perf_event *event,
				 u64 enabled, u64 running)
3590
{
3591
	u64 read_format = event->attr.read_format;
3592 3593 3594
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3595
	values[n++] = perf_event_count(event);
3596
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3597
		values[n++] = enabled +
3598
			atomic64_read(&event->child_total_time_enabled);
3599 3600
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3601
		values[n++] = running +
3602
			atomic64_read(&event->child_total_time_running);
3603 3604
	}
	if (read_format & PERF_FORMAT_ID)
3605
		values[n++] = primary_event_id(event);
3606 3607 3608 3609 3610

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3611
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3612 3613
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3614 3615
			    struct perf_event *event,
			    u64 enabled, u64 running)
3616
{
3617 3618
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3619 3620 3621 3622 3623 3624
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3625
		values[n++] = enabled;
3626 3627

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3628
		values[n++] = running;
3629

3630
	if (leader != event)
3631 3632
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3633
	values[n++] = perf_event_count(leader);
3634
	if (read_format & PERF_FORMAT_ID)
3635
		values[n++] = primary_event_id(leader);
3636 3637 3638

	perf_output_copy(handle, values, n * sizeof(u64));

3639
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3640 3641
		n = 0;

3642
		if (sub != event)
3643 3644
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3645
		values[n++] = perf_event_count(sub);
3646
		if (read_format & PERF_FORMAT_ID)
3647
			values[n++] = primary_event_id(sub);
3648 3649 3650 3651 3652

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

3653 3654 3655
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

3656
static void perf_output_read(struct perf_output_handle *handle,
3657
			     struct perf_event *event)
3658
{
3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
	u64 enabled = 0, running = 0, now, ctx_time;
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIMES) {
		now = perf_clock();
		ctx_time = event->shadow_ctx_time + now;
		enabled = ctx_time - event->tstamp_enabled;
		running = ctx_time - event->tstamp_running;
	}

3678
	if (event->attr.read_format & PERF_FORMAT_GROUP)
3679
		perf_output_read_group(handle, event, enabled, running);
3680
	else
3681
		perf_output_read_one(handle, event, enabled, running);
3682 3683
}

3684 3685 3686
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3687
			struct perf_event *event)
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3718
		perf_output_read(handle, event);
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3756
			 struct perf_event *event,
3757
			 struct pt_regs *regs)
3758
{
3759
	u64 sample_type = event->attr.sample_type;
3760

3761
	header->type = PERF_RECORD_SAMPLE;
3762
	header->size = sizeof(*header) + event->header_size;
3763 3764 3765

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3766

3767
	__perf_event_header__init_id(header, data, event);
3768

3769
	if (sample_type & PERF_SAMPLE_IP)
3770 3771
		data->ip = perf_instruction_pointer(regs);

3772
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3773
		int size = 1;
3774

3775 3776 3777 3778 3779 3780
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3781 3782
	}

3783
	if (sample_type & PERF_SAMPLE_RAW) {
3784 3785 3786 3787 3788 3789 3790 3791
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3792
		header->size += size;
3793
	}
3794
}
3795

3796
static void perf_event_output(struct perf_event *event, int nmi,
3797 3798 3799 3800 3801
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3802

3803 3804 3805
	/* protect the callchain buffers */
	rcu_read_lock();

3806
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3807

3808
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3809
		goto exit;
3810

3811
	perf_output_sample(&handle, &header, data, event);
3812

3813
	perf_output_end(&handle);
3814 3815 3816

exit:
	rcu_read_unlock();
3817 3818
}

3819
/*
3820
 * read event_id
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3831
perf_event_read_event(struct perf_event *event,
3832 3833 3834
			struct task_struct *task)
{
	struct perf_output_handle handle;
3835
	struct perf_sample_data sample;
3836
	struct perf_read_event read_event = {
3837
		.header = {
3838
			.type = PERF_RECORD_READ,
3839
			.misc = 0,
3840
			.size = sizeof(read_event) + event->read_size,
3841
		},
3842 3843
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3844
	};
3845
	int ret;
3846

3847
	perf_event_header__init_id(&read_event.header, &sample, event);
3848
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3849 3850 3851
	if (ret)
		return;

3852
	perf_output_put(&handle, read_event);
3853
	perf_output_read(&handle, event);
3854
	perf_event__output_id_sample(event, &handle, &sample);
3855

3856 3857 3858
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3859
/*
P
Peter Zijlstra 已提交
3860 3861
 * task tracking -- fork/exit
 *
3862
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
3863 3864
 */

P
Peter Zijlstra 已提交
3865
struct perf_task_event {
3866
	struct task_struct		*task;
3867
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3868 3869 3870 3871 3872 3873

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3874 3875
		u32				tid;
		u32				ptid;
3876
		u64				time;
3877
	} event_id;
P
Peter Zijlstra 已提交
3878 3879
};

3880
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3881
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3882 3883
{
	struct perf_output_handle handle;
3884
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
3885
	struct task_struct *task = task_event->task;
3886
	int ret, size = task_event->event_id.header.size;
3887

3888
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
3889

3890 3891
	ret = perf_output_begin(&handle, event,
				task_event->event_id.header.size, 0, 0);
3892
	if (ret)
3893
		goto out;
P
Peter Zijlstra 已提交
3894

3895 3896
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3897

3898 3899
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3900

3901
	perf_output_put(&handle, task_event->event_id);
3902

3903 3904
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
3905
	perf_output_end(&handle);
3906 3907
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
3908 3909
}

3910
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3911
{
P
Peter Zijlstra 已提交
3912
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3913 3914
		return 0;

3915
	if (!event_filter_match(event))
3916 3917
		return 0;

3918 3919
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
3920 3921 3922 3923 3924
		return 1;

	return 0;
}

3925
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3926
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3927
{
3928
	struct perf_event *event;
P
Peter Zijlstra 已提交
3929

3930 3931 3932
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3933 3934 3935
	}
}

3936
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3937 3938
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
3939
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
3940
	struct pmu *pmu;
P
Peter Zijlstra 已提交
3941
	int ctxn;
P
Peter Zijlstra 已提交
3942

3943
	rcu_read_lock();
P
Peter Zijlstra 已提交
3944
	list_for_each_entry_rcu(pmu, &pmus, entry) {
3945
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3946 3947
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
3948
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
3949 3950 3951 3952 3953

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
3954
				goto next;
P
Peter Zijlstra 已提交
3955 3956 3957 3958
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
3959 3960
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
3961
	}
P
Peter Zijlstra 已提交
3962 3963 3964
	rcu_read_unlock();
}

3965 3966
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3967
			      int new)
P
Peter Zijlstra 已提交
3968
{
P
Peter Zijlstra 已提交
3969
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3970

3971 3972 3973
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3974 3975
		return;

P
Peter Zijlstra 已提交
3976
	task_event = (struct perf_task_event){
3977 3978
		.task	  = task,
		.task_ctx = task_ctx,
3979
		.event_id    = {
P
Peter Zijlstra 已提交
3980
			.header = {
3981
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3982
				.misc = 0,
3983
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3984
			},
3985 3986
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3987 3988
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3989
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3990 3991 3992
		},
	};

3993
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3994 3995
}

3996
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3997
{
3998
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3999 4000
}

4001 4002 4003 4004 4005
/*
 * comm tracking
 */

struct perf_comm_event {
4006 4007
	struct task_struct	*task;
	char			*comm;
4008 4009 4010 4011 4012 4013 4014
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4015
	} event_id;
4016 4017
};

4018
static void perf_event_comm_output(struct perf_event *event,
4019 4020 4021
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4022
	struct perf_sample_data sample;
4023
	int size = comm_event->event_id.header.size;
4024 4025 4026 4027 4028
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				comm_event->event_id.header.size, 0, 0);
4029 4030

	if (ret)
4031
		goto out;
4032

4033 4034
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4035

4036
	perf_output_put(&handle, comm_event->event_id);
4037 4038
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
4039 4040 4041

	perf_event__output_id_sample(event, &handle, &sample);

4042
	perf_output_end(&handle);
4043 4044
out:
	comm_event->event_id.header.size = size;
4045 4046
}

4047
static int perf_event_comm_match(struct perf_event *event)
4048
{
P
Peter Zijlstra 已提交
4049
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4050 4051
		return 0;

4052
	if (!event_filter_match(event))
4053 4054
		return 0;

4055
	if (event->attr.comm)
4056 4057 4058 4059 4060
		return 1;

	return 0;
}

4061
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4062 4063
				  struct perf_comm_event *comm_event)
{
4064
	struct perf_event *event;
4065

4066 4067 4068
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4069 4070 4071
	}
}

4072
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4073 4074
{
	struct perf_cpu_context *cpuctx;
4075
	struct perf_event_context *ctx;
4076
	char comm[TASK_COMM_LEN];
4077
	unsigned int size;
P
Peter Zijlstra 已提交
4078
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4079
	int ctxn;
4080

4081
	memset(comm, 0, sizeof(comm));
4082
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4083
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4084 4085 4086 4087

	comm_event->comm = comm;
	comm_event->comm_size = size;

4088
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4089
	rcu_read_lock();
P
Peter Zijlstra 已提交
4090
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4091
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4092 4093
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4094
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4095 4096 4097

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4098
			goto next;
P
Peter Zijlstra 已提交
4099 4100 4101 4102

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4103 4104
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4105
	}
4106
	rcu_read_unlock();
4107 4108
}

4109
void perf_event_comm(struct task_struct *task)
4110
{
4111
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4112 4113
	struct perf_event_context *ctx;
	int ctxn;
4114

P
Peter Zijlstra 已提交
4115 4116 4117 4118
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4119

P
Peter Zijlstra 已提交
4120 4121
		perf_event_enable_on_exec(ctx);
	}
4122

4123
	if (!atomic_read(&nr_comm_events))
4124
		return;
4125

4126
	comm_event = (struct perf_comm_event){
4127
		.task	= task,
4128 4129
		/* .comm      */
		/* .comm_size */
4130
		.event_id  = {
4131
			.header = {
4132
				.type = PERF_RECORD_COMM,
4133 4134 4135 4136 4137
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4138 4139 4140
		},
	};

4141
	perf_event_comm_event(&comm_event);
4142 4143
}

4144 4145 4146 4147 4148
/*
 * mmap tracking
 */

struct perf_mmap_event {
4149 4150 4151 4152
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4153 4154 4155 4156 4157 4158 4159 4160 4161

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4162
	} event_id;
4163 4164
};

4165
static void perf_event_mmap_output(struct perf_event *event,
4166 4167 4168
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4169
	struct perf_sample_data sample;
4170
	int size = mmap_event->event_id.header.size;
4171
	int ret;
4172

4173 4174 4175
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				mmap_event->event_id.header.size, 0, 0);
4176
	if (ret)
4177
		goto out;
4178

4179 4180
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4181

4182
	perf_output_put(&handle, mmap_event->event_id);
4183 4184
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
4185 4186 4187

	perf_event__output_id_sample(event, &handle, &sample);

4188
	perf_output_end(&handle);
4189 4190
out:
	mmap_event->event_id.header.size = size;
4191 4192
}

4193
static int perf_event_mmap_match(struct perf_event *event,
4194 4195
				   struct perf_mmap_event *mmap_event,
				   int executable)
4196
{
P
Peter Zijlstra 已提交
4197
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4198 4199
		return 0;

4200
	if (!event_filter_match(event))
4201 4202
		return 0;

4203 4204
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4205 4206 4207 4208 4209
		return 1;

	return 0;
}

4210
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4211 4212
				  struct perf_mmap_event *mmap_event,
				  int executable)
4213
{
4214
	struct perf_event *event;
4215

4216
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4217
		if (perf_event_mmap_match(event, mmap_event, executable))
4218
			perf_event_mmap_output(event, mmap_event);
4219 4220 4221
	}
}

4222
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4223 4224
{
	struct perf_cpu_context *cpuctx;
4225
	struct perf_event_context *ctx;
4226 4227
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4228 4229 4230
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4231
	const char *name;
P
Peter Zijlstra 已提交
4232
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4233
	int ctxn;
4234

4235 4236
	memset(tmp, 0, sizeof(tmp));

4237
	if (file) {
4238 4239 4240 4241 4242 4243
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4244 4245 4246 4247
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4248
		name = d_path(&file->f_path, buf, PATH_MAX);
4249 4250 4251 4252 4253
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4254 4255 4256
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4257
			goto got_name;
4258
		}
4259 4260 4261 4262

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4263 4264 4265 4266 4267 4268 4269 4270
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4271 4272
		}

4273 4274 4275 4276 4277
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4278
	size = ALIGN(strlen(name)+1, sizeof(u64));
4279 4280 4281 4282

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4283
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4284

4285
	rcu_read_lock();
P
Peter Zijlstra 已提交
4286
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4287
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4288 4289
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4290 4291
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4292 4293 4294

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4295
			goto next;
P
Peter Zijlstra 已提交
4296 4297 4298 4299 4300 4301

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4302 4303
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4304
	}
4305 4306
	rcu_read_unlock();

4307 4308 4309
	kfree(buf);
}

4310
void perf_event_mmap(struct vm_area_struct *vma)
4311
{
4312 4313
	struct perf_mmap_event mmap_event;

4314
	if (!atomic_read(&nr_mmap_events))
4315 4316 4317
		return;

	mmap_event = (struct perf_mmap_event){
4318
		.vma	= vma,
4319 4320
		/* .file_name */
		/* .file_size */
4321
		.event_id  = {
4322
			.header = {
4323
				.type = PERF_RECORD_MMAP,
4324
				.misc = PERF_RECORD_MISC_USER,
4325 4326 4327 4328
				/* .size */
			},
			/* .pid */
			/* .tid */
4329 4330
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4331
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4332 4333 4334
		},
	};

4335
	perf_event_mmap_event(&mmap_event);
4336 4337
}

4338 4339 4340 4341
/*
 * IRQ throttle logging
 */

4342
static void perf_log_throttle(struct perf_event *event, int enable)
4343 4344
{
	struct perf_output_handle handle;
4345
	struct perf_sample_data sample;
4346 4347 4348 4349 4350
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4351
		u64				id;
4352
		u64				stream_id;
4353 4354
	} throttle_event = {
		.header = {
4355
			.type = PERF_RECORD_THROTTLE,
4356 4357 4358
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4359
		.time		= perf_clock(),
4360 4361
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4362 4363
	};

4364
	if (enable)
4365
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4366

4367 4368 4369 4370
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				throttle_event.header.size, 1, 0);
4371 4372 4373 4374
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4375
	perf_event__output_id_sample(event, &handle, &sample);
4376 4377 4378
	perf_output_end(&handle);
}

4379
/*
4380
 * Generic event overflow handling, sampling.
4381 4382
 */

4383
static int __perf_event_overflow(struct perf_event *event, int nmi,
4384 4385
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4386
{
4387 4388
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4389 4390
	int ret = 0;

4391 4392 4393 4394 4395 4396 4397
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

4398
	if (!throttle) {
4399
		hwc->interrupts++;
4400
	} else {
4401 4402
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
4403
			if (HZ * hwc->interrupts >
4404
					(u64)sysctl_perf_event_sample_rate) {
4405
				hwc->interrupts = MAX_INTERRUPTS;
4406
				perf_log_throttle(event, 0);
4407 4408 4409 4410
				ret = 1;
			}
		} else {
			/*
4411
			 * Keep re-disabling events even though on the previous
4412
			 * pass we disabled it - just in case we raced with a
4413
			 * sched-in and the event got enabled again:
4414
			 */
4415 4416 4417
			ret = 1;
		}
	}
4418

4419
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4420
		u64 now = perf_clock();
4421
		s64 delta = now - hwc->freq_time_stamp;
4422

4423
		hwc->freq_time_stamp = now;
4424

4425 4426
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4427 4428
	}

4429 4430
	/*
	 * XXX event_limit might not quite work as expected on inherited
4431
	 * events
4432 4433
	 */

4434 4435
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4436
		ret = 1;
4437
		event->pending_kill = POLL_HUP;
4438
		if (nmi) {
4439
			event->pending_disable = 1;
4440
			irq_work_queue(&event->pending);
4441
		} else
4442
			perf_event_disable(event);
4443 4444
	}

4445 4446 4447 4448 4449
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

4450
	return ret;
4451 4452
}

4453
int perf_event_overflow(struct perf_event *event, int nmi,
4454 4455
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4456
{
4457
	return __perf_event_overflow(event, nmi, 1, data, regs);
4458 4459
}

4460
/*
4461
 * Generic software event infrastructure
4462 4463
 */

4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4475
/*
4476 4477
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4478 4479 4480 4481
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4482
static u64 perf_swevent_set_period(struct perf_event *event)
4483
{
4484
	struct hw_perf_event *hwc = &event->hw;
4485 4486 4487 4488 4489
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4490 4491

again:
4492
	old = val = local64_read(&hwc->period_left);
4493 4494
	if (val < 0)
		return 0;
4495

4496 4497 4498
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4499
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4500
		goto again;
4501

4502
	return nr;
4503 4504
}

4505
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4506 4507
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
4508
{
4509
	struct hw_perf_event *hwc = &event->hw;
4510
	int throttle = 0;
4511

4512
	data->period = event->hw.last_period;
4513 4514
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4515

4516 4517
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4518

4519
	for (; overflow; overflow--) {
4520
		if (__perf_event_overflow(event, nmi, throttle,
4521
					    data, regs)) {
4522 4523 4524 4525 4526 4527
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4528
		throttle = 1;
4529
	}
4530 4531
}

P
Peter Zijlstra 已提交
4532
static void perf_swevent_event(struct perf_event *event, u64 nr,
4533 4534
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
4535
{
4536
	struct hw_perf_event *hwc = &event->hw;
4537

4538
	local64_add(nr, &event->count);
4539

4540 4541 4542
	if (!regs)
		return;

4543
	if (!is_sampling_event(event))
4544
		return;
4545

4546 4547 4548
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

4549
	if (local64_add_negative(nr, &hwc->period_left))
4550
		return;
4551

4552
	perf_swevent_overflow(event, 0, nmi, data, regs);
4553 4554
}

4555 4556 4557
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4558 4559 4560
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4572
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4573
				enum perf_type_id type,
L
Li Zefan 已提交
4574 4575 4576
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4577
{
4578
	if (event->attr.type != type)
4579
		return 0;
4580

4581
	if (event->attr.config != event_id)
4582 4583
		return 0;

4584 4585
	if (perf_exclude_event(event, regs))
		return 0;
4586 4587 4588 4589

	return 1;
}

4590 4591 4592 4593 4594 4595 4596
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4597 4598
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4599
{
4600 4601 4602 4603
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4604

4605 4606
/* For the read side: events when they trigger */
static inline struct hlist_head *
4607
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4608 4609
{
	struct swevent_hlist *hlist;
4610

4611
	hlist = rcu_dereference(swhash->swevent_hlist);
4612 4613 4614
	if (!hlist)
		return NULL;

4615 4616 4617 4618 4619
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4620
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4631
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4632 4633 4634 4635 4636
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4637 4638 4639 4640 4641 4642
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4643
{
4644
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4645
	struct perf_event *event;
4646 4647
	struct hlist_node *node;
	struct hlist_head *head;
4648

4649
	rcu_read_lock();
4650
	head = find_swevent_head_rcu(swhash, type, event_id);
4651 4652 4653 4654
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4655
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
4656
			perf_swevent_event(event, nr, nmi, data, regs);
4657
	}
4658 4659
end:
	rcu_read_unlock();
4660 4661
}

4662
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4663
{
4664
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
4665

4666
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4667
}
I
Ingo Molnar 已提交
4668
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4669

4670
inline void perf_swevent_put_recursion_context(int rctx)
4671
{
4672
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4673

4674
	put_recursion_context(swhash->recursion, rctx);
4675
}
4676

4677
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4678
			    struct pt_regs *regs, u64 addr)
4679
{
4680
	struct perf_sample_data data;
4681 4682
	int rctx;

4683
	preempt_disable_notrace();
4684 4685 4686
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4687

4688
	perf_sample_data_init(&data, addr);
4689

4690
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4691 4692

	perf_swevent_put_recursion_context(rctx);
4693
	preempt_enable_notrace();
4694 4695
}

4696
static void perf_swevent_read(struct perf_event *event)
4697 4698 4699
{
}

P
Peter Zijlstra 已提交
4700
static int perf_swevent_add(struct perf_event *event, int flags)
4701
{
4702
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4703
	struct hw_perf_event *hwc = &event->hw;
4704 4705
	struct hlist_head *head;

4706
	if (is_sampling_event(event)) {
4707
		hwc->last_period = hwc->sample_period;
4708
		perf_swevent_set_period(event);
4709
	}
4710

P
Peter Zijlstra 已提交
4711 4712
	hwc->state = !(flags & PERF_EF_START);

4713
	head = find_swevent_head(swhash, event);
4714 4715 4716 4717 4718
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4719 4720 4721
	return 0;
}

P
Peter Zijlstra 已提交
4722
static void perf_swevent_del(struct perf_event *event, int flags)
4723
{
4724
	hlist_del_rcu(&event->hlist_entry);
4725 4726
}

P
Peter Zijlstra 已提交
4727
static void perf_swevent_start(struct perf_event *event, int flags)
4728
{
P
Peter Zijlstra 已提交
4729
	event->hw.state = 0;
4730
}
I
Ingo Molnar 已提交
4731

P
Peter Zijlstra 已提交
4732
static void perf_swevent_stop(struct perf_event *event, int flags)
4733
{
P
Peter Zijlstra 已提交
4734
	event->hw.state = PERF_HES_STOPPED;
4735 4736
}

4737 4738
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
4739
swevent_hlist_deref(struct swevent_htable *swhash)
4740
{
4741 4742
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
4743 4744
}

4745 4746 4747 4748 4749 4750 4751 4752
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

4753
static void swevent_hlist_release(struct swevent_htable *swhash)
4754
{
4755
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4756

4757
	if (!hlist)
4758 4759
		return;

4760
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4761 4762 4763 4764 4765
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
4766
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4767

4768
	mutex_lock(&swhash->hlist_mutex);
4769

4770 4771
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
4772

4773
	mutex_unlock(&swhash->hlist_mutex);
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
4791
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4792 4793
	int err = 0;

4794
	mutex_lock(&swhash->hlist_mutex);
4795

4796
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4797 4798 4799 4800 4801 4802 4803
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
4804
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4805
	}
4806
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
4807
exit:
4808
	mutex_unlock(&swhash->hlist_mutex);
4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
4832
fail:
4833 4834 4835 4836 4837 4838 4839 4840 4841 4842
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4843
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4844

4845 4846 4847
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
4848

4849 4850
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
4851
	jump_label_dec(&perf_swevent_enabled[event_id]);
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

4871
	if (event_id >= PERF_COUNT_SW_MAX)
4872 4873 4874 4875 4876 4877 4878 4879 4880
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
4881
		jump_label_inc(&perf_swevent_enabled[event_id]);
4882 4883 4884 4885 4886 4887 4888
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
4889
	.task_ctx_nr	= perf_sw_context,
4890

4891
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
4892 4893 4894 4895
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4896 4897 4898
	.read		= perf_swevent_read,
};

4899 4900
#ifdef CONFIG_EVENT_TRACING

4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
4915 4916 4917 4918
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
4919 4920 4921 4922 4923 4924 4925 4926 4927
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4928
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
4929 4930
{
	struct perf_sample_data data;
4931 4932 4933
	struct perf_event *event;
	struct hlist_node *node;

4934 4935 4936 4937 4938 4939 4940 4941
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

4942 4943
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
4944
			perf_swevent_event(event, count, 1, &data, regs);
4945
	}
4946 4947

	perf_swevent_put_recursion_context(rctx);
4948 4949 4950
}
EXPORT_SYMBOL_GPL(perf_tp_event);

4951
static void tp_perf_event_destroy(struct perf_event *event)
4952
{
4953
	perf_trace_destroy(event);
4954 4955
}

4956
static int perf_tp_event_init(struct perf_event *event)
4957
{
4958 4959
	int err;

4960 4961 4962
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

4963 4964
	err = perf_trace_init(event);
	if (err)
4965
		return err;
4966

4967
	event->destroy = tp_perf_event_destroy;
4968

4969 4970 4971 4972
	return 0;
}

static struct pmu perf_tracepoint = {
4973 4974
	.task_ctx_nr	= perf_sw_context,

4975
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
4976 4977 4978 4979
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4980 4981 4982 4983 4984
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
4985
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
4986
}
L
Li Zefan 已提交
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5011
#else
L
Li Zefan 已提交
5012

5013
static inline void perf_tp_register(void)
5014 5015
{
}
L
Li Zefan 已提交
5016 5017 5018 5019 5020 5021 5022 5023 5024 5025

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5026
#endif /* CONFIG_EVENT_TRACING */
5027

5028
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5029
void perf_bp_event(struct perf_event *bp, void *data)
5030
{
5031 5032 5033
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5034
	perf_sample_data_init(&sample, bp->attr.bp_addr);
5035

P
Peter Zijlstra 已提交
5036 5037
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
5038 5039 5040
}
#endif

5041 5042 5043
/*
 * hrtimer based swevent callback
 */
5044

5045
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5046
{
5047 5048 5049 5050 5051
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5052

5053 5054
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);
5055

5056 5057 5058 5059 5060 5061 5062 5063 5064
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
5065

5066 5067
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5068

5069
	return ret;
5070 5071
}

5072
static void perf_swevent_start_hrtimer(struct perf_event *event)
5073
{
5074
	struct hw_perf_event *hwc = &event->hw;
5075 5076 5077 5078
	s64 period;

	if (!is_sampling_event(event))
		return;
5079

5080 5081
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
5082

5083 5084 5085 5086
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5087

5088 5089 5090 5091 5092
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5093
				ns_to_ktime(period), 0,
5094
				HRTIMER_MODE_REL_PINNED, 0);
5095
}
5096 5097

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5098
{
5099 5100
	struct hw_perf_event *hwc = &event->hw;

5101
	if (is_sampling_event(event)) {
5102
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5103
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5104 5105 5106

		hrtimer_cancel(&hwc->hrtimer);
	}
5107 5108
}

5109 5110 5111 5112 5113
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5114
{
5115 5116 5117
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5118
	now = local_clock();
5119 5120
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5121 5122
}

P
Peter Zijlstra 已提交
5123
static void cpu_clock_event_start(struct perf_event *event, int flags)
5124
{
P
Peter Zijlstra 已提交
5125
	local64_set(&event->hw.prev_count, local_clock());
5126 5127 5128
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5129
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5130
{
5131 5132 5133
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5134

P
Peter Zijlstra 已提交
5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5148 5149 5150 5151
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5152

5153 5154 5155 5156 5157 5158 5159 5160 5161
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

	return 0;
5162 5163
}

5164
static struct pmu perf_cpu_clock = {
5165 5166
	.task_ctx_nr	= perf_sw_context,

5167
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5168 5169 5170 5171
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5172 5173 5174 5175 5176 5177 5178 5179
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5180
{
5181 5182
	u64 prev;
	s64 delta;
5183

5184 5185 5186 5187
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5188

P
Peter Zijlstra 已提交
5189
static void task_clock_event_start(struct perf_event *event, int flags)
5190
{
P
Peter Zijlstra 已提交
5191
	local64_set(&event->hw.prev_count, event->ctx->time);
5192 5193 5194
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5195
static void task_clock_event_stop(struct perf_event *event, int flags)
5196 5197 5198
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5199 5200 5201 5202 5203 5204
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5205

P
Peter Zijlstra 已提交
5206 5207 5208 5209 5210 5211
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
}

static void task_clock_event_read(struct perf_event *event)
{
	u64 time;

	if (!in_nmi()) {
		update_context_time(event->ctx);
		time = event->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
	}

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5231
{
5232 5233 5234 5235 5236 5237 5238
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

	return 0;
L
Li Zefan 已提交
5239 5240
}

5241
static struct pmu perf_task_clock = {
5242 5243
	.task_ctx_nr	= perf_sw_context,

5244
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5245 5246 5247 5248
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5249 5250
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5251

P
Peter Zijlstra 已提交
5252
static void perf_pmu_nop_void(struct pmu *pmu)
5253 5254
{
}
L
Li Zefan 已提交
5255

P
Peter Zijlstra 已提交
5256
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5257
{
P
Peter Zijlstra 已提交
5258
	return 0;
L
Li Zefan 已提交
5259 5260
}

P
Peter Zijlstra 已提交
5261
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5262
{
P
Peter Zijlstra 已提交
5263
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5264 5265
}

P
Peter Zijlstra 已提交
5266 5267 5268 5269 5270
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5271

P
Peter Zijlstra 已提交
5272
static void perf_pmu_cancel_txn(struct pmu *pmu)
5273
{
P
Peter Zijlstra 已提交
5274
	perf_pmu_enable(pmu);
5275 5276
}

P
Peter Zijlstra 已提交
5277 5278 5279 5280 5281
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5282
{
P
Peter Zijlstra 已提交
5283
	struct pmu *pmu;
5284

P
Peter Zijlstra 已提交
5285 5286
	if (ctxn < 0)
		return NULL;
5287

P
Peter Zijlstra 已提交
5288 5289 5290 5291
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5292

P
Peter Zijlstra 已提交
5293
	return NULL;
5294 5295
}

5296
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5297
{
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5313

P
Peter Zijlstra 已提交
5314
	mutex_lock(&pmus_lock);
5315
	/*
P
Peter Zijlstra 已提交
5316
	 * Like a real lame refcount.
5317
	 */
5318 5319 5320
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5321
			goto out;
5322
		}
P
Peter Zijlstra 已提交
5323
	}
5324

5325
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5326 5327
out:
	mutex_unlock(&pmus_lock);
5328
}
P
Peter Zijlstra 已提交
5329
static struct idr pmu_idr;
5330

P
Peter Zijlstra 已提交
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5383 5384
static struct lock_class_key cpuctx_mutex;

P
Peter Zijlstra 已提交
5385
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5386
{
P
Peter Zijlstra 已提交
5387
	int cpu, ret;
5388

5389
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5390 5391 5392 5393
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5394

P
Peter Zijlstra 已提交
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5413 5414 5415 5416 5417 5418
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
5419
skip_type:
P
Peter Zijlstra 已提交
5420 5421 5422
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5423

P
Peter Zijlstra 已提交
5424 5425
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
5426
		goto free_dev;
5427

P
Peter Zijlstra 已提交
5428 5429 5430 5431
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5432
		__perf_event_init_context(&cpuctx->ctx);
5433
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5434
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5435
		cpuctx->ctx.pmu = pmu;
5436 5437
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
5438
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
5439
	}
5440

P
Peter Zijlstra 已提交
5441
got_cpu_context:
P
Peter Zijlstra 已提交
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
5456
		}
5457
	}
5458

P
Peter Zijlstra 已提交
5459 5460 5461 5462 5463
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5464
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5465 5466
	ret = 0;
unlock:
5467 5468
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5469
	return ret;
P
Peter Zijlstra 已提交
5470

P
Peter Zijlstra 已提交
5471 5472 5473 5474
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
5475 5476 5477 5478
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
5479 5480 5481
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5482 5483
}

5484
void perf_pmu_unregister(struct pmu *pmu)
5485
{
5486 5487 5488
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
5489

5490
	/*
P
Peter Zijlstra 已提交
5491 5492
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
5493
	 */
5494
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5495
	synchronize_rcu();
5496

P
Peter Zijlstra 已提交
5497
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5498 5499
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
5500 5501
	device_del(pmu->dev);
	put_device(pmu->dev);
5502
	free_pmu_context(pmu);
5503
}
5504

5505 5506 5507 5508 5509 5510
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
5511 5512 5513 5514 5515 5516 5517

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
	if (pmu)
		goto unlock;

5518 5519 5520
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		int ret = pmu->event_init(event);
		if (!ret)
P
Peter Zijlstra 已提交
5521
			goto unlock;
5522

5523 5524
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5525
			goto unlock;
5526
		}
5527
	}
P
Peter Zijlstra 已提交
5528 5529
	pmu = ERR_PTR(-ENOENT);
unlock:
5530
	srcu_read_unlock(&pmus_srcu, idx);
5531

5532
	return pmu;
5533 5534
}

T
Thomas Gleixner 已提交
5535
/*
5536
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5537
 */
5538
static struct perf_event *
5539
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5540 5541 5542 5543
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
		 perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
5544
{
P
Peter Zijlstra 已提交
5545
	struct pmu *pmu;
5546 5547
	struct perf_event *event;
	struct hw_perf_event *hwc;
5548
	long err;
T
Thomas Gleixner 已提交
5549

5550 5551 5552 5553 5554
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

5555
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5556
	if (!event)
5557
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5558

5559
	/*
5560
	 * Single events are their own group leaders, with an
5561 5562 5563
	 * empty sibling list:
	 */
	if (!group_leader)
5564
		group_leader = event;
5565

5566 5567
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5568

5569 5570 5571 5572
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
5573
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
5574

5575
	mutex_init(&event->mmap_mutex);
5576

5577 5578 5579 5580 5581
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5582

5583
	event->parent		= parent_event;
5584

5585 5586
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5587

5588
	event->state		= PERF_EVENT_STATE_INACTIVE;
5589

5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

5601 5602
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
5603

5604
	event->overflow_handler	= overflow_handler;
5605

5606
	if (attr->disabled)
5607
		event->state = PERF_EVENT_STATE_OFF;
5608

5609
	pmu = NULL;
5610

5611
	hwc = &event->hw;
5612
	hwc->sample_period = attr->sample_period;
5613
	if (attr->freq && attr->sample_freq)
5614
		hwc->sample_period = 1;
5615
	hwc->last_period = hwc->sample_period;
5616

5617
	local64_set(&hwc->period_left, hwc->sample_period);
5618

5619
	/*
5620
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5621
	 */
5622
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5623 5624
		goto done;

5625
	pmu = perf_init_event(event);
5626

5627 5628
done:
	err = 0;
5629
	if (!pmu)
5630
		err = -EINVAL;
5631 5632
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5633

5634
	if (err) {
5635 5636 5637
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5638
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5639
	}
5640

5641
	event->pmu = pmu;
T
Thomas Gleixner 已提交
5642

5643
	if (!event->parent) {
5644 5645
		if (event->attach_state & PERF_ATTACH_TASK)
			jump_label_inc(&perf_task_events);
5646
		if (event->attr.mmap || event->attr.mmap_data)
5647 5648 5649 5650 5651
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5652 5653 5654 5655 5656 5657 5658
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5659
	}
5660

5661
	return event;
T
Thomas Gleixner 已提交
5662 5663
}

5664 5665
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5666 5667
{
	u32 size;
5668
	int ret;
5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5693 5694 5695
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5696 5697
	 */
	if (size > sizeof(*attr)) {
5698 5699 5700
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5701

5702 5703
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5704

5705
		for (; addr < end; addr++) {
5706 5707 5708 5709 5710 5711
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5712
		size = sizeof(*attr);
5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

5726
	if (attr->__reserved_1)
5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5744 5745
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5746
{
5747
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5748 5749
	int ret = -EINVAL;

5750
	if (!output_event)
5751 5752
		goto set;

5753 5754
	/* don't allow circular references */
	if (event == output_event)
5755 5756
		goto out;

5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5769
set:
5770
	mutex_lock(&event->mmap_mutex);
5771 5772 5773
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5774

5775 5776
	if (output_event) {
		/* get the buffer we want to redirect to */
5777 5778
		buffer = perf_buffer_get(output_event);
		if (!buffer)
5779
			goto unlock;
5780 5781
	}

5782 5783
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
5784
	ret = 0;
5785 5786 5787
unlock:
	mutex_unlock(&event->mmap_mutex);

5788 5789
	if (old_buffer)
		perf_buffer_put(old_buffer);
5790 5791 5792 5793
out:
	return ret;
}

T
Thomas Gleixner 已提交
5794
/**
5795
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5796
 *
5797
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5798
 * @pid:		target pid
I
Ingo Molnar 已提交
5799
 * @cpu:		target cpu
5800
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5801
 */
5802 5803
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5804
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5805
{
5806 5807
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
5808 5809 5810
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5811
	struct file *group_file = NULL;
M
Matt Helsley 已提交
5812
	struct task_struct *task = NULL;
5813
	struct pmu *pmu;
5814
	int event_fd;
5815
	int move_group = 0;
5816
	int fput_needed = 0;
5817
	int err;
T
Thomas Gleixner 已提交
5818

5819
	/* for future expandability... */
5820
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5821 5822
		return -EINVAL;

5823 5824 5825
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5826

5827 5828 5829 5830 5831
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5832
	if (attr.freq) {
5833
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5834 5835 5836
			return -EINVAL;
	}

5837 5838 5839 5840
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5841 5842 5843 5844
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
5845
			goto err_fd;
5846 5847 5848 5849 5850 5851 5852 5853
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

5854 5855 5856 5857 5858 5859 5860 5861
	if (pid != -1) {
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

5862
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5863 5864
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
5865
		goto err_task;
5866 5867
	}

5868 5869 5870 5871 5872
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
5896 5897 5898 5899

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
5900
	ctx = find_get_context(pmu, task, cpu);
5901 5902
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
5903
		goto err_alloc;
5904 5905
	}

I
Ingo Molnar 已提交
5906
	/*
5907
	 * Look up the group leader (we will attach this event to it):
5908
	 */
5909
	if (group_leader) {
5910
		err = -EINVAL;
5911 5912

		/*
I
Ingo Molnar 已提交
5913 5914 5915 5916
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
5917
			goto err_context;
I
Ingo Molnar 已提交
5918 5919 5920
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5921
		 */
5922 5923 5924 5925 5926 5927 5928 5929
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

5930 5931 5932
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5933
		if (attr.exclusive || attr.pinned)
5934
			goto err_context;
5935 5936 5937 5938 5939
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
5940
			goto err_context;
5941
	}
T
Thomas Gleixner 已提交
5942

5943 5944 5945
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
5946
		goto err_context;
5947
	}
5948

5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
		perf_event_remove_from_context(group_leader);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_event_remove_from_context(sibling);
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
5961
	}
5962

5963
	event->filp = event_file;
5964
	WARN_ON_ONCE(ctx->parent_ctx);
5965
	mutex_lock(&ctx->mutex);
5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

5977
	perf_install_in_context(ctx, event, cpu);
5978
	++ctx->generation;
5979
	mutex_unlock(&ctx->mutex);
5980

5981
	event->owner = current;
P
Peter Zijlstra 已提交
5982

5983 5984 5985
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5986

5987 5988 5989 5990
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
5991
	perf_event__id_header_size(event);
5992

5993 5994 5995 5996 5997 5998
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
5999 6000 6001
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6002

6003
err_context:
6004
	put_ctx(ctx);
6005
err_alloc:
6006
	free_event(event);
P
Peter Zijlstra 已提交
6007 6008 6009
err_task:
	if (task)
		put_task_struct(task);
6010
err_group_fd:
6011
	fput_light(group_file, fput_needed);
6012 6013
err_fd:
	put_unused_fd(event_fd);
6014
	return err;
T
Thomas Gleixner 已提交
6015 6016
}

6017 6018 6019 6020 6021
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6022
 * @task: task to profile (NULL for percpu)
6023 6024 6025
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6026
				 struct task_struct *task,
6027
				 perf_overflow_handler_t overflow_handler)
6028 6029
{
	struct perf_event_context *ctx;
6030
	struct perf_event *event;
6031
	int err;
6032

6033 6034 6035
	/*
	 * Get the target context (task or percpu):
	 */
6036

6037
	event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6038 6039 6040 6041
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6042

M
Matt Helsley 已提交
6043
	ctx = find_get_context(event->pmu, task, cpu);
6044 6045
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6046
		goto err_free;
6047
	}
6048 6049 6050 6051 6052 6053 6054 6055 6056 6057

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	return event;

6058 6059 6060
err_free:
	free_event(event);
err:
6061
	return ERR_PTR(err);
6062
}
6063
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6064

6065
static void sync_child_event(struct perf_event *child_event,
6066
			       struct task_struct *child)
6067
{
6068
	struct perf_event *parent_event = child_event->parent;
6069
	u64 child_val;
6070

6071 6072
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6073

P
Peter Zijlstra 已提交
6074
	child_val = perf_event_count(child_event);
6075 6076 6077 6078

	/*
	 * Add back the child's count to the parent's count:
	 */
6079
	atomic64_add(child_val, &parent_event->child_count);
6080 6081 6082 6083
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6084 6085

	/*
6086
	 * Remove this event from the parent's list
6087
	 */
6088 6089 6090 6091
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6092 6093

	/*
6094
	 * Release the parent event, if this was the last
6095 6096
	 * reference to it.
	 */
6097
	fput(parent_event->filp);
6098 6099
}

6100
static void
6101 6102
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6103
			 struct task_struct *child)
6104
{
6105
	struct perf_event *parent_event;
6106

6107
	perf_event_remove_from_context(child_event);
6108

6109
	parent_event = child_event->parent;
6110
	/*
6111
	 * It can happen that parent exits first, and has events
6112
	 * that are still around due to the child reference. These
6113
	 * events need to be zapped - but otherwise linger.
6114
	 */
6115 6116 6117
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
6118
	}
6119 6120
}

P
Peter Zijlstra 已提交
6121
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6122
{
6123 6124
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6125
	unsigned long flags;
6126

P
Peter Zijlstra 已提交
6127
	if (likely(!child->perf_event_ctxp[ctxn])) {
6128
		perf_event_task(child, NULL, 0);
6129
		return;
P
Peter Zijlstra 已提交
6130
	}
6131

6132
	local_irq_save(flags);
6133 6134 6135 6136 6137 6138
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6139
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6140
	task_ctx_sched_out(child_ctx, EVENT_ALL);
6141 6142 6143

	/*
	 * Take the context lock here so that if find_get_context is
6144
	 * reading child->perf_event_ctxp, we wait until it has
6145 6146
	 * incremented the context's refcount before we do put_ctx below.
	 */
6147
	raw_spin_lock(&child_ctx->lock);
P
Peter Zijlstra 已提交
6148
	child->perf_event_ctxp[ctxn] = NULL;
6149 6150 6151
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6152
	 * the events from it.
6153 6154
	 */
	unclone_ctx(child_ctx);
6155
	update_context_time(child_ctx);
6156
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6157 6158

	/*
6159 6160 6161
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6162
	 */
6163
	perf_event_task(child, child_ctx, 0);
6164

6165 6166 6167
	/*
	 * We can recurse on the same lock type through:
	 *
6168 6169 6170
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6171 6172 6173 6174 6175
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6176
	mutex_lock(&child_ctx->mutex);
6177

6178
again:
6179 6180 6181 6182 6183
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6184
				 group_entry)
6185
		__perf_event_exit_task(child_event, child_ctx, child);
6186 6187

	/*
6188
	 * If the last event was a group event, it will have appended all
6189 6190 6191
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6192 6193
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6194
		goto again;
6195 6196 6197 6198

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6199 6200
}

P
Peter Zijlstra 已提交
6201 6202 6203 6204 6205
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6206
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6207 6208
	int ctxn;

P
Peter Zijlstra 已提交
6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6224 6225 6226 6227
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6242
	perf_group_detach(event);
6243 6244 6245 6246
	list_del_event(event, ctx);
	free_event(event);
}

6247 6248
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6249
 * perf_event_init_task below, used by fork() in case of fail.
6250
 */
6251
void perf_event_free_task(struct task_struct *task)
6252
{
P
Peter Zijlstra 已提交
6253
	struct perf_event_context *ctx;
6254
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6255
	int ctxn;
6256

P
Peter Zijlstra 已提交
6257 6258 6259 6260
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6261

P
Peter Zijlstra 已提交
6262
		mutex_lock(&ctx->mutex);
6263
again:
P
Peter Zijlstra 已提交
6264 6265 6266
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6267

P
Peter Zijlstra 已提交
6268 6269 6270
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6271

P
Peter Zijlstra 已提交
6272 6273 6274
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6275

P
Peter Zijlstra 已提交
6276
		mutex_unlock(&ctx->mutex);
6277

P
Peter Zijlstra 已提交
6278 6279
		put_ctx(ctx);
	}
6280 6281
}

6282 6283 6284 6285 6286 6287 6288 6289
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6302
	unsigned long flags;
P
Peter Zijlstra 已提交
6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6315
					   child,
P
Peter Zijlstra 已提交
6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344
					   group_leader, parent_event,
					   NULL);
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;

6345 6346 6347 6348
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6349
	perf_event__id_header_size(child_event);
6350

P
Peter Zijlstra 已提交
6351 6352 6353
	/*
	 * Link it up in the child's context:
	 */
6354
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6355
	add_event_to_ctx(child_event, child_ctx);
6356
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
6398 6399 6400 6401 6402
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
6403
		   struct task_struct *child, int ctxn,
6404 6405 6406
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
6407
	struct perf_event_context *child_ctx;
6408 6409 6410 6411

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
6412 6413
	}

P
Peter Zijlstra 已提交
6414
       	child_ctx = child->perf_event_ctxp[ctxn];
6415 6416 6417 6418 6419 6420 6421
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
6422

6423
		child_ctx = alloc_perf_context(event->pmu, child);
6424 6425
		if (!child_ctx)
			return -ENOMEM;
6426

P
Peter Zijlstra 已提交
6427
		child->perf_event_ctxp[ctxn] = child_ctx;
6428 6429 6430 6431 6432 6433 6434 6435 6436
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
6437 6438
}

6439
/*
6440
 * Initialize the perf_event context in task_struct
6441
 */
P
Peter Zijlstra 已提交
6442
int perf_event_init_context(struct task_struct *child, int ctxn)
6443
{
6444
	struct perf_event_context *child_ctx, *parent_ctx;
6445 6446
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
6447
	struct task_struct *parent = current;
6448
	int inherited_all = 1;
6449
	unsigned long flags;
6450
	int ret = 0;
6451

P
Peter Zijlstra 已提交
6452
	if (likely(!parent->perf_event_ctxp[ctxn]))
6453 6454
		return 0;

6455
	/*
6456 6457
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
6458
	 */
P
Peter Zijlstra 已提交
6459
	parent_ctx = perf_pin_task_context(parent, ctxn);
6460

6461 6462 6463 6464 6465 6466 6467
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

6468 6469 6470 6471
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
6472
	mutex_lock(&parent_ctx->mutex);
6473 6474 6475 6476 6477

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
6478
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
6479 6480
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6481 6482 6483
		if (ret)
			break;
	}
6484

6485 6486 6487 6488 6489 6490 6491 6492 6493
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

6494
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
6495 6496
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6497
		if (ret)
6498
			break;
6499 6500
	}

6501 6502 6503
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
6504
	child_ctx = child->perf_event_ctxp[ctxn];
6505

6506
	if (child_ctx && inherited_all) {
6507 6508 6509
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
6510 6511 6512
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
6513
		 */
P
Peter Zijlstra 已提交
6514
		cloned_ctx = parent_ctx->parent_ctx;
6515 6516
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
6517
			child_ctx->parent_gen = parent_ctx->parent_gen;
6518 6519 6520 6521 6522
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
6523 6524
	}

P
Peter Zijlstra 已提交
6525
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6526
	mutex_unlock(&parent_ctx->mutex);
6527

6528
	perf_unpin_context(parent_ctx);
6529

6530
	return ret;
6531 6532
}

P
Peter Zijlstra 已提交
6533 6534 6535 6536 6537 6538 6539
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

6540 6541 6542 6543
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
6544 6545 6546 6547 6548 6549 6550 6551 6552
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

6553 6554
static void __init perf_event_init_all_cpus(void)
{
6555
	struct swevent_htable *swhash;
6556 6557 6558
	int cpu;

	for_each_possible_cpu(cpu) {
6559 6560
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
6561
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6562 6563 6564
	}
}

6565
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
6566
{
P
Peter Zijlstra 已提交
6567
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
6568

6569 6570
	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
6571 6572
		struct swevent_hlist *hlist;

6573 6574 6575
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6576
	}
6577
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
6578 6579
}

P
Peter Zijlstra 已提交
6580
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6581
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
6582
{
6583 6584 6585 6586 6587 6588 6589
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
6590
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
6591
{
P
Peter Zijlstra 已提交
6592
	struct perf_event_context *ctx = __info;
6593
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
6594

P
Peter Zijlstra 已提交
6595
	perf_pmu_rotate_stop(ctx->pmu);
6596

6597 6598 6599
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6600
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
6601
}
P
Peter Zijlstra 已提交
6602 6603 6604 6605 6606 6607 6608 6609 6610

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6611
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
6612 6613 6614 6615 6616 6617 6618 6619

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

6620
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
6621
{
6622
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6623

6624 6625 6626
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
6627

P
Peter Zijlstra 已提交
6628
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
6629 6630
}
#else
6631
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
6632 6633
#endif

P
Peter Zijlstra 已提交
6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
6654 6655 6656 6657 6658
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
6659
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
6660 6661

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
6662
	case CPU_DOWN_FAILED:
6663
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
6664 6665
		break;

P
Peter Zijlstra 已提交
6666
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
6667
	case CPU_DOWN_PREPARE:
6668
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
6669 6670 6671 6672 6673 6674 6675 6676 6677
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

6678
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
6679
{
6680 6681
	int ret;

P
Peter Zijlstra 已提交
6682 6683
	idr_init(&pmu_idr);

6684
	perf_event_init_all_cpus();
6685
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
6686 6687 6688
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
6689 6690
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
6691
	register_reboot_notifier(&perf_reboot_notifier);
6692 6693 6694

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
T
Thomas Gleixner 已提交
6695
}
P
Peter Zijlstra 已提交
6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);