sched.c 218.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
L
Linus Torvalds 已提交
73

74
#include <asm/tlb.h>
75
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
76

77 78
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
98
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
99
 */
100
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
101

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
108
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
109 110 111
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
112

113 114 115 116 117
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

139 140
static inline int rt_policy(int policy)
{
141
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
142 143 144 145 146 147 148 149 150
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
151
/*
I
Ingo Molnar 已提交
152
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
153
 */
I
Ingo Molnar 已提交
154 155
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156
	struct list_head queue[MAX_RT_PRIO];
I
Ingo Molnar 已提交
157 158
};

159
struct rt_bandwidth {
I
Ingo Molnar 已提交
160 161 162 163 164
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
198 199
	spin_lock_init(&rt_b->rt_runtime_lock);

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

237 238 239 240 241 242
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

243
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
244

245 246
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
247 248
struct cfs_rq;

P
Peter Zijlstra 已提交
249 250
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
251
/* task group related information */
252
struct task_group {
253
#ifdef CONFIG_CGROUP_SCHED
254 255
	struct cgroup_subsys_state css;
#endif
256 257

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
258 259 260 261 262
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
263 264 265 266 267 268
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

269
	struct rt_bandwidth rt_bandwidth;
270
#endif
271

272
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
273
	struct list_head list;
P
Peter Zijlstra 已提交
274 275 276 277

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
278 279
};

D
Dhaval Giani 已提交
280
#ifdef CONFIG_USER_SCHED
281 282 283 284 285 286 287 288

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

289
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
290 291 292 293
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
294
#endif /* CONFIG_FAIR_GROUP_SCHED */
295 296 297 298

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
299 300
#endif /* CONFIG_RT_GROUP_SCHED */
#else /* !CONFIG_FAIR_GROUP_SCHED */
301
#define root_task_group init_task_group
302
#endif /* CONFIG_FAIR_GROUP_SCHED */
P
Peter Zijlstra 已提交
303

304
/* task_group_lock serializes add/remove of task groups and also changes to
305 306
 * a task group's cpu shares.
 */
307
static DEFINE_SPINLOCK(task_group_lock);
308

309 310 311
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
312
#else /* !CONFIG_USER_SCHED */
313
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
314
#endif /* CONFIG_USER_SCHED */
315

316
/*
317 318 319 320
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
321 322 323
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
324
#define MIN_SHARES	2
325
#define MAX_SHARES	(1UL << 18)
326

327 328 329
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
330
/* Default task group.
I
Ingo Molnar 已提交
331
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
332
 */
333
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
334 335

/* return group to which a task belongs */
336
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
337
{
338
	struct task_group *tg;
339

340
#ifdef CONFIG_USER_SCHED
341
	tg = p->user->tg;
342
#elif defined(CONFIG_CGROUP_SCHED)
343 344
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
345
#else
I
Ingo Molnar 已提交
346
	tg = &init_task_group;
347
#endif
348
	return tg;
S
Srivatsa Vaddagiri 已提交
349 350 351
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
352
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
353
{
354
#ifdef CONFIG_FAIR_GROUP_SCHED
355 356
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
357
#endif
P
Peter Zijlstra 已提交
358

359
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
360 361
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
362
#endif
S
Srivatsa Vaddagiri 已提交
363 364 365 366
}

#else

P
Peter Zijlstra 已提交
367
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
368 369 370 371
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
372

373
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
374

I
Ingo Molnar 已提交
375 376 377 378 379 380
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
381
	u64 min_vruntime;
382
	u64 pair_start;
I
Ingo Molnar 已提交
383 384 385

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
386 387 388 389 390 391

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
392 393
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
394
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
395 396 397

	unsigned long nr_spread_over;

398
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
399 400
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
401 402
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
403 404 405 406 407 408
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
409 410
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
411 412 413

#ifdef CONFIG_SMP
	/*
414
	 * the part of load.weight contributed by tasks
415
	 */
416
	unsigned long task_weight;
417

418 419 420 421 422 423 424
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
425

426 427 428 429
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
430 431 432 433 434

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
435
#endif
I
Ingo Molnar 已提交
436 437
#endif
};
L
Linus Torvalds 已提交
438

I
Ingo Molnar 已提交
439 440 441
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
442
	unsigned long rt_nr_running;
443
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
444 445
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
446
#ifdef CONFIG_SMP
447
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
448
	int overloaded;
P
Peter Zijlstra 已提交
449
#endif
P
Peter Zijlstra 已提交
450
	int rt_throttled;
P
Peter Zijlstra 已提交
451
	u64 rt_time;
P
Peter Zijlstra 已提交
452
	u64 rt_runtime;
I
Ingo Molnar 已提交
453
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
454
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
455

456
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
457 458
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
459 460 461 462 463
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
464 465
};

G
Gregory Haskins 已提交
466 467 468 469
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
470 471
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
472 473 474 475 476 477 478 479
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
480

I
Ingo Molnar 已提交
481
	/*
482 483 484 485
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
486
	atomic_t rto_count;
487 488 489
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
490 491
};

492 493 494 495
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
496 497 498 499
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
500 501 502 503 504 505 506
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
507
struct rq {
508 509
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
510 511 512 513 514 515

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
516 517
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
518
	unsigned char idle_at_tick;
519
#ifdef CONFIG_NO_HZ
520
	unsigned long last_tick_seen;
521 522
	unsigned char in_nohz_recently;
#endif
523 524
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
525 526 527 528
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
529 530
	struct rt_rq rt;

I
Ingo Molnar 已提交
531
#ifdef CONFIG_FAIR_GROUP_SCHED
532 533
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
534 535
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
536
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
537 538 539 540 541 542 543 544 545 546
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

547
	struct task_struct *curr, *idle;
548
	unsigned long next_balance;
L
Linus Torvalds 已提交
549
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
550

551
	u64 clock;
I
Ingo Molnar 已提交
552

L
Linus Torvalds 已提交
553 554 555
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
556
	struct root_domain *rd;
L
Linus Torvalds 已提交
557 558 559 560 561
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
562 563
	/* cpu of this runqueue: */
	int cpu;
564
	int online;
L
Linus Torvalds 已提交
565

566 567
	unsigned long avg_load_per_task;

568
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
569 570 571
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
572 573 574 575 576 577
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
578 579 580 581 582
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
583 584 585 586
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
587 588

	/* schedule() stats */
589 590 591
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
592 593

	/* try_to_wake_up() stats */
594 595
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
596 597

	/* BKL stats */
598
	unsigned int bkl_count;
L
Linus Torvalds 已提交
599
#endif
600
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
601 602
};

603
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
604

I
Ingo Molnar 已提交
605 606 607 608 609
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

610 611 612 613 614 615 616 617 618
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
619 620
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
621
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
622 623 624 625
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
626 627
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
628 629 630 631 632 633

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

634 635 636 637 638
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
639 640 641 642 643 644 645 646 647 648 649 650
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
651 652 653 654

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
655
enum {
P
Peter Zijlstra 已提交
656
#include "sched_features.h"
I
Ingo Molnar 已提交
657 658
};

P
Peter Zijlstra 已提交
659 660 661 662 663
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
664
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
665 666 667 668 669 670 671 672 673
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

674
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
675 676 677 678 679 680
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

681
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
709
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
739
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
782

783 784 785 786 787 788
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
789 790 791 792 793 794
/*
 * ratelimit for updating the group shares.
 * default: 0.5ms
 */
const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;

P
Peter Zijlstra 已提交
795
/*
P
Peter Zijlstra 已提交
796
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
797 798
 * default: 1s
 */
P
Peter Zijlstra 已提交
799
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
800

801 802
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
803 804 805 806 807
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
808

809 810 811 812 813 814 815 816 817 818 819 820
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
821

L
Linus Torvalds 已提交
822
#ifndef prepare_arch_switch
823 824 825 826 827 828
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

829 830 831 832 833
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

834
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
835
static inline int task_running(struct rq *rq, struct task_struct *p)
836
{
837
	return task_current(rq, p);
838 839
}

840
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
841 842 843
{
}

844
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
845
{
846 847 848 849
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
850 851 852 853 854 855 856
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

857 858 859 860
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
861
static inline int task_running(struct rq *rq, struct task_struct *p)
862 863 864 865
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
866
	return task_current(rq, p);
867 868 869
#endif
}

870
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

887
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
888 889 890 891 892 893 894 895 896 897 898 899
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
900
#endif
901 902
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
903

904 905 906 907
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
908
static inline struct rq *__task_rq_lock(struct task_struct *p)
909 910
	__acquires(rq->lock)
{
911 912 913 914 915
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
916 917 918 919
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
920 921
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
922
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
923 924
 * explicitly disabling preemption.
 */
925
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
926 927
	__acquires(rq->lock)
{
928
	struct rq *rq;
L
Linus Torvalds 已提交
929

930 931 932 933 934 935
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
936 937 938 939
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
940
static void __task_rq_unlock(struct rq *rq)
941 942 943 944 945
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

946
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
947 948 949 950 951 952
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
953
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
954
 */
A
Alexey Dobriyan 已提交
955
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
956 957
	__acquires(rq->lock)
{
958
	struct rq *rq;
L
Linus Torvalds 已提交
959 960 961 962 963 964 965 966

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
1002
	HRTICK_BLOCK,		/* stop hrtick operations */
P
Peter Zijlstra 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1014 1015
	if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
		return 0;
P
Peter Zijlstra 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1091
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1092 1093 1094 1095 1096 1097
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1098
#ifdef CONFIG_SMP
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
static void hotplug_hrtick_disable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	rq->hrtick_flags = 0;
	__set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);

	hrtick_clear(rq);
}

static void hotplug_hrtick_enable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		hotplug_hrtick_disable(cpu);
		return NOTIFY_OK;

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		hotplug_hrtick_enable(cpu);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1154
#endif /* CONFIG_SMP */
1155 1156

static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
1193 1194 1195 1196

static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1197 1198
#endif

I
Ingo Molnar 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1212
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1213 1214 1215 1216 1217
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1218
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1219 1220
		return;

P
Peter Zijlstra 已提交
1221
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1284
#endif /* CONFIG_NO_HZ */
1285

1286
#else /* !CONFIG_SMP */
P
Peter Zijlstra 已提交
1287
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1288 1289
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1290
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1291
}
1292
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1293

1294 1295 1296 1297 1298 1299 1300 1301
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1302 1303 1304
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1305
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1306

1307 1308 1309
/*
 * delta *= weight / lw
 */
1310
static unsigned long
1311 1312 1313 1314 1315
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1316 1317 1318 1319 1320 1321 1322
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1323 1324 1325 1326 1327

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1328
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1329
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1330 1331
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1332
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1333

1334
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1335 1336
}

1337
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1338 1339
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1340
	lw->inv_weight = 0;
1341 1342
}

1343
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1344 1345
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1346
	lw->inv_weight = 0;
1347 1348
}

1349 1350 1351 1352
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1353
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1354 1355 1356 1357
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1369 1370 1371
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1372 1373
 */
static const int prio_to_weight[40] = {
1374 1375 1376 1377 1378 1379 1380 1381
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1382 1383
};

1384 1385 1386 1387 1388 1389 1390
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1391
static const u32 prio_to_wmult[40] = {
1392 1393 1394 1395 1396 1397 1398 1399
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1400
};
1401

I
Ingo Molnar 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1427

1428 1429 1430 1431 1432 1433
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1444 1445 1446 1447
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1448

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (rq->nr_running)
		rq->avg_load_per_task = rq->load.weight / rq->nr_running;

	return rq->avg_load_per_task;
}

1459 1460
#ifdef CONFIG_FAIR_GROUP_SCHED

1461
typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1462 1463 1464 1465 1466

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
1467 1468
static void
walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1469 1470 1471 1472 1473 1474
{
	struct task_group *parent, *child;

	rcu_read_lock();
	parent = &root_task_group;
down:
1475
	(*down)(parent, cpu, sd);
1476 1477 1478 1479 1480 1481 1482
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
1483
	(*up)(parent, cpu, sd);
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
	rcu_read_unlock();
}

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1498
__update_group_shares_cpu(struct task_group *tg, int cpu,
1499
			  unsigned long sd_shares, unsigned long sd_rq_weight)
1500 1501 1502 1503 1504
{
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1505
	if (!tg->se[cpu])
1506 1507
		return;

1508
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1520 1521 1522
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1523 1524 1525 1526 1527 1528
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1529
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1530 1531 1532 1533

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
1534
	tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1535
	tg->cfs_rq[cpu]->rq_weight = rq_weight;
1536 1537 1538 1539 1540 1541

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;

1542
	__set_se_shares(tg->se[cpu], shares);
1543 1544 1545
}

/*
1546 1547 1548
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1549 1550
 */
static void
1551
tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1552
{
1553 1554 1555
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
	int i;
1556

1557 1558 1559
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1560 1561
	}

1562 1563 1564 1565 1566
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1567

P
Peter Zijlstra 已提交
1568 1569 1570
	if (!rq_weight)
		rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;

1571 1572 1573 1574 1575
	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
1576
		__update_group_shares_cpu(tg, i, shares, rq_weight);
1577 1578 1579 1580 1581
		spin_unlock_irqrestore(&rq->lock, flags);
	}
}

/*
1582 1583 1584
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1585
 */
1586
static void
1587
tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1588
{
1589
	unsigned long load;
1590

1591 1592 1593 1594 1595 1596 1597
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1598

1599
	tg->cfs_rq[cpu]->h_load = load;
1600 1601
}

1602 1603
static void
tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1604 1605 1606
{
}

1607
static void update_shares(struct sched_domain *sd)
1608
{
P
Peter Zijlstra 已提交
1609 1610 1611 1612 1613 1614 1615
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
		walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
	}
1616 1617
}

1618 1619 1620 1621 1622 1623 1624
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

1625
static void update_h_load(int cpu)
1626
{
1627
	walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1628 1629 1630 1631
}

#else

1632
static inline void update_shares(struct sched_domain *sd)
1633 1634 1635
{
}

1636 1637 1638 1639
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1640 1641
#endif

1642 1643
#endif

V
Vegard Nossum 已提交
1644
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1645 1646
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1647
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1648 1649 1650
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1651
#endif
I
Ingo Molnar 已提交
1652

I
Ingo Molnar 已提交
1653 1654
#include "sched_stats.h"
#include "sched_idletask.c"
1655 1656
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1657 1658 1659 1660 1661
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1662 1663
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1664

1665
static void inc_nr_running(struct rq *rq)
1666 1667 1668 1669
{
	rq->nr_running++;
}

1670
static void dec_nr_running(struct rq *rq)
1671 1672 1673 1674
{
	rq->nr_running--;
}

1675 1676 1677
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1678 1679 1680 1681
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1682

I
Ingo Molnar 已提交
1683 1684 1685 1686 1687 1688 1689 1690
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1691

I
Ingo Molnar 已提交
1692 1693
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1694 1695
}

1696 1697 1698 1699 1700 1701
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1702
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1703
{
I
Ingo Molnar 已提交
1704
	sched_info_queued(p);
1705
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1706
	p->se.on_rq = 1;
1707 1708
}

1709
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1710
{
1711 1712 1713 1714 1715 1716
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1717
	sched_info_dequeued(p);
1718
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1719
	p->se.on_rq = 0;
1720 1721
}

1722
/*
I
Ingo Molnar 已提交
1723
 * __normal_prio - return the priority that is based on the static prio
1724 1725 1726
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1727
	return p->static_prio;
1728 1729
}

1730 1731 1732 1733 1734 1735 1736
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1737
static inline int normal_prio(struct task_struct *p)
1738 1739 1740
{
	int prio;

1741
	if (task_has_rt_policy(p))
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1755
static int effective_prio(struct task_struct *p)
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1768
/*
I
Ingo Molnar 已提交
1769
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1770
 */
I
Ingo Molnar 已提交
1771
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1772
{
1773
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1774
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1775

1776
	enqueue_task(rq, p, wakeup);
1777
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1778 1779 1780 1781 1782
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1783
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1784
{
1785
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1786 1787
		rq->nr_uninterruptible++;

1788
	dequeue_task(rq, p, sleep);
1789
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1790 1791 1792 1793 1794 1795
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1796
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1797 1798 1799 1800
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1801 1802
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1803
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1804
#ifdef CONFIG_SMP
1805 1806 1807 1808 1809 1810
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1811 1812
	task_thread_info(p)->cpu = cpu;
#endif
1813 1814
}

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1827
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1828

1829 1830 1831 1832 1833 1834
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1835 1836 1837
/*
 * Is this task likely cache-hot:
 */
1838
static int
1839 1840 1841 1842
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1843 1844 1845
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1846
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1847 1848
		return 1;

1849 1850 1851
	if (p->sched_class != &fair_sched_class)
		return 0;

1852 1853 1854 1855 1856
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1857 1858 1859 1860 1861 1862
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1863
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1864
{
I
Ingo Molnar 已提交
1865 1866
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1867 1868
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1869
	u64 clock_offset;
I
Ingo Molnar 已提交
1870 1871

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1872 1873 1874 1875

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1876 1877 1878 1879
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1880 1881 1882 1883 1884
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1885
#endif
1886 1887
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1888 1889

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1890 1891
}

1892
struct migration_req {
L
Linus Torvalds 已提交
1893 1894
	struct list_head list;

1895
	struct task_struct *task;
L
Linus Torvalds 已提交
1896 1897 1898
	int dest_cpu;

	struct completion done;
1899
};
L
Linus Torvalds 已提交
1900 1901 1902 1903 1904

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1905
static int
1906
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1907
{
1908
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1909 1910 1911 1912 1913

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1914
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1915 1916 1917 1918 1919 1920 1921 1922
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1923

L
Linus Torvalds 已提交
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1936
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1937 1938
{
	unsigned long flags;
I
Ingo Molnar 已提交
1939
	int running, on_rq;
1940
	struct rq *rq;
L
Linus Torvalds 已提交
1941

1942 1943 1944 1945 1946 1947 1948 1949
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1950

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1964

1965 1966 1967 1968 1969 1970 1971 1972 1973
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1974

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1985

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1999

2000 2001 2002 2003 2004 2005 2006
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2022
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2034 2035
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2036 2037 2038 2039
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2040
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2041
{
2042
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2043
	unsigned long total = weighted_cpuload(cpu);
2044

2045
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2046
		return total;
2047

I
Ingo Molnar 已提交
2048
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2049 2050 2051
}

/*
2052 2053
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2054
 */
A
Alexey Dobriyan 已提交
2055
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2056
{
2057
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2058
	unsigned long total = weighted_cpuload(cpu);
2059

2060
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2061
		return total;
2062

I
Ingo Molnar 已提交
2063
	return max(rq->cpu_load[type-1], total);
2064 2065
}

N
Nick Piggin 已提交
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2083 2084
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2085
			continue;
2086

N
Nick Piggin 已提交
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2103 2104
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2105 2106 2107 2108 2109 2110 2111 2112

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2113
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2114 2115 2116 2117 2118 2119 2120

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2121
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2122
 */
I
Ingo Molnar 已提交
2123
static int
2124 2125
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2126 2127 2128 2129 2130
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2131
	/* Traverse only the allowed CPUs */
2132
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2133

2134
	for_each_cpu_mask(i, *tmp) {
2135
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2161

2162
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2163 2164 2165
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2166 2167
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2168 2169
		if (tmp->flags & flag)
			sd = tmp;
2170
	}
N
Nick Piggin 已提交
2171

2172 2173 2174
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2175
	while (sd) {
2176
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2177
		struct sched_group *group;
2178 2179 2180 2181 2182 2183
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2184 2185 2186

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2187 2188 2189 2190
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2191

2192
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2193 2194 2195 2196 2197
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2198

2199
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2231
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2232
{
2233
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2234 2235
	unsigned long flags;
	long old_state;
2236
	struct rq *rq;
L
Linus Torvalds 已提交
2237

2238 2239 2240
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				update_shares(sd);
				break;
			}
		}
	}
#endif

2257
	smp_wmb();
L
Linus Torvalds 已提交
2258 2259 2260 2261 2262
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2263
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2264 2265 2266
		goto out_running;

	cpu = task_cpu(p);
2267
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2268 2269 2270 2271 2272 2273
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2274 2275 2276
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2277 2278 2279 2280 2281 2282
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2283
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2284 2285 2286 2287 2288 2289
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2303
#endif /* CONFIG_SCHEDSTATS */
2304

L
Linus Torvalds 已提交
2305 2306
out_activate:
#endif /* CONFIG_SMP */
2307 2308 2309 2310 2311 2312 2313 2314 2315
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2316
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2317
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2318 2319 2320
	success = 1;

out_running:
I
Ingo Molnar 已提交
2321 2322
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2323
	p->state = TASK_RUNNING;
2324 2325 2326 2327
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2328
out:
2329 2330
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2331 2332 2333 2334 2335
	task_rq_unlock(rq, &flags);

	return success;
}

2336
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2337
{
2338
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2339 2340 2341
}
EXPORT_SYMBOL(wake_up_process);

2342
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2343 2344 2345 2346 2347 2348 2349
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2350 2351 2352 2353 2354 2355 2356
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2357
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2358 2359
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2360 2361 2362

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2363 2364 2365 2366 2367 2368
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2369
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2370
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2371
#endif
N
Nick Piggin 已提交
2372

P
Peter Zijlstra 已提交
2373
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2374
	p->se.on_rq = 0;
2375
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2376

2377 2378 2379 2380
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2381 2382 2383 2384 2385 2386 2387
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2402
	set_task_cpu(p, cpu);
2403 2404 2405 2406 2407

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2408 2409
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2410

2411
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2412
	if (likely(sched_info_on()))
2413
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2414
#endif
2415
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2416 2417
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2418
#ifdef CONFIG_PREEMPT
2419
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2420
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2421
#endif
N
Nick Piggin 已提交
2422
	put_cpu();
L
Linus Torvalds 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2432
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2433 2434
{
	unsigned long flags;
I
Ingo Molnar 已提交
2435
	struct rq *rq;
L
Linus Torvalds 已提交
2436 2437

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2438
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2439
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2440 2441 2442

	p->prio = effective_prio(p);

2443
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2444
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2445 2446
	} else {
		/*
I
Ingo Molnar 已提交
2447 2448
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2449
		 */
2450
		p->sched_class->task_new(rq, p);
2451
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2452
	}
I
Ingo Molnar 已提交
2453
	check_preempt_curr(rq, p);
2454 2455 2456 2457
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2458
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2459 2460
}

2461 2462 2463
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2464 2465
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2466 2467 2468 2469 2470 2471 2472 2473 2474
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2475
 * @notifier: notifier struct to unregister
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2505
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2517
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2518

2519 2520 2521
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2522
 * @prev: the current task that is being switched out
2523 2524 2525 2526 2527 2528 2529 2530 2531
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2532 2533 2534
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2535
{
2536
	fire_sched_out_preempt_notifiers(prev, next);
2537 2538 2539 2540
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2541 2542
/**
 * finish_task_switch - clean up after a task-switch
2543
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2544 2545
 * @prev: the thread we just switched away from.
 *
2546 2547 2548 2549
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2550 2551
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2552
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2553 2554 2555
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2556
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2557 2558 2559
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2560
	long prev_state;
L
Linus Torvalds 已提交
2561 2562 2563 2564 2565

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2566
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2567 2568
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2569
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2570 2571 2572 2573 2574
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2575
	prev_state = prev->state;
2576 2577
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2578 2579 2580 2581
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2582

2583
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2584 2585
	if (mm)
		mmdrop(mm);
2586
	if (unlikely(prev_state == TASK_DEAD)) {
2587 2588 2589
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2590
		 */
2591
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2592
		put_task_struct(prev);
2593
	}
L
Linus Torvalds 已提交
2594 2595 2596 2597 2598 2599
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2600
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2601 2602
	__releases(rq->lock)
{
2603 2604
	struct rq *rq = this_rq();

2605 2606 2607 2608 2609
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2610
	if (current->set_child_tid)
2611
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2612 2613 2614 2615 2616 2617
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2618
static inline void
2619
context_switch(struct rq *rq, struct task_struct *prev,
2620
	       struct task_struct *next)
L
Linus Torvalds 已提交
2621
{
I
Ingo Molnar 已提交
2622
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2623

2624
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2625 2626
	mm = next->mm;
	oldmm = prev->active_mm;
2627 2628 2629 2630 2631 2632 2633
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2634
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2635 2636 2637 2638 2639 2640
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2641
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2642 2643 2644
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2645 2646 2647 2648 2649 2650 2651
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2652
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2653
#endif
L
Linus Torvalds 已提交
2654 2655 2656 2657

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2658 2659 2660 2661 2662 2663 2664
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2688
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2703 2704
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2705

2706
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2707 2708 2709 2710 2711 2712 2713 2714 2715
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2716
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2717 2718 2719 2720 2721
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2737
/*
I
Ingo Molnar 已提交
2738 2739
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2740
 */
I
Ingo Molnar 已提交
2741
static void update_cpu_load(struct rq *this_rq)
2742
{
2743
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2756 2757 2758 2759 2760 2761 2762
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2763 2764
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2765 2766
}

I
Ingo Molnar 已提交
2767 2768
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2769 2770 2771 2772 2773 2774
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2775
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2776 2777 2778
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2779
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2780 2781 2782 2783
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2784
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2785 2786 2787 2788 2789 2790 2791
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2792 2793
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2794 2795 2796 2797 2798 2799 2800 2801
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2802
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2816
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2817 2818 2819 2820
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2821 2822
	int ret = 0;

2823 2824 2825 2826 2827
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2828
	if (unlikely(!spin_trylock(&busiest->lock))) {
2829
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2830 2831 2832
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2833
			ret = 1;
L
Linus Torvalds 已提交
2834 2835 2836
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2837
	return ret;
L
Linus Torvalds 已提交
2838 2839 2840 2841 2842
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2843
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2844 2845
 * the cpu_allowed mask is restored.
 */
2846
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2847
{
2848
	struct migration_req req;
L
Linus Torvalds 已提交
2849
	unsigned long flags;
2850
	struct rq *rq;
L
Linus Torvalds 已提交
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2861

L
Linus Torvalds 已提交
2862 2863 2864 2865 2866
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2867

L
Linus Torvalds 已提交
2868 2869 2870 2871 2872 2873 2874
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2875 2876
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2877 2878 2879 2880
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2881
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2882
	put_cpu();
N
Nick Piggin 已提交
2883 2884
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2885 2886 2887 2888 2889 2890
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2891 2892
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2893
{
2894
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2895
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2896
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2897 2898 2899 2900
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2901
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2902 2903 2904 2905 2906
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2907
static
2908
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2909
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2910
		     int *all_pinned)
L
Linus Torvalds 已提交
2911 2912 2913 2914 2915 2916 2917
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2918 2919
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2920
		return 0;
2921
	}
2922 2923
	*all_pinned = 0;

2924 2925
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2926
		return 0;
2927
	}
L
Linus Torvalds 已提交
2928

2929 2930 2931 2932 2933 2934
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2935 2936
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2937
#ifdef CONFIG_SCHEDSTATS
2938
		if (task_hot(p, rq->clock, sd)) {
2939
			schedstat_inc(sd, lb_hot_gained[idle]);
2940 2941
			schedstat_inc(p, se.nr_forced_migrations);
		}
2942 2943 2944 2945
#endif
		return 1;
	}

2946 2947
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2948
		return 0;
2949
	}
L
Linus Torvalds 已提交
2950 2951 2952
	return 1;
}

2953 2954 2955 2956 2957
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2958
{
2959
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2960 2961
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2962

2963
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2964 2965
		goto out;

2966 2967
	pinned = 1;

L
Linus Torvalds 已提交
2968
	/*
I
Ingo Molnar 已提交
2969
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2970
	 */
I
Ingo Molnar 已提交
2971 2972
	p = iterator->start(iterator->arg);
next:
2973
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2974
		goto out;
2975 2976

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2977 2978 2979
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2980 2981
	}

I
Ingo Molnar 已提交
2982
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2983
	pulled++;
I
Ingo Molnar 已提交
2984
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2985

2986
	/*
2987
	 * We only want to steal up to the prescribed amount of weighted load.
2988
	 */
2989
	if (rem_load_move > 0) {
2990 2991
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2992 2993
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2994 2995 2996
	}
out:
	/*
2997
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2998 2999 3000 3001
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3002 3003 3004

	if (all_pinned)
		*all_pinned = pinned;
3005 3006

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3007 3008
}

I
Ingo Molnar 已提交
3009
/*
P
Peter Williams 已提交
3010 3011 3012
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3013 3014 3015 3016
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3017
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3018 3019 3020
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3021
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3022
	unsigned long total_load_moved = 0;
3023
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3024 3025

	do {
P
Peter Williams 已提交
3026 3027
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3028
				max_load_move - total_load_moved,
3029
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3030
		class = class->next;
3031 3032 3033 3034

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3035
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3036

P
Peter Williams 已提交
3037 3038 3039
	return total_load_moved > 0;
}

3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3076
	const struct sched_class *class;
P
Peter Williams 已提交
3077 3078

	for (class = sched_class_highest; class; class = class->next)
3079
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3080 3081 3082
			return 1;

	return 0;
I
Ingo Molnar 已提交
3083 3084
}

L
Linus Torvalds 已提交
3085 3086
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3087 3088
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3089 3090 3091
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3092
		   unsigned long *imbalance, enum cpu_idle_type idle,
3093
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3094 3095 3096
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3097
	unsigned long max_pull;
3098 3099
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3100
	int load_idx, group_imb = 0;
3101 3102 3103 3104 3105 3106
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3107 3108

	max_load = this_load = total_load = total_pwr = 0;
3109 3110
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3111

I
Ingo Molnar 已提交
3112
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3113
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3114
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3115 3116 3117
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3118 3119

	do {
3120
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3121 3122
		int local_group;
		int i;
3123
		int __group_imb = 0;
3124
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3125
		unsigned long sum_nr_running, sum_weighted_load;
3126 3127
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3128 3129 3130

		local_group = cpu_isset(this_cpu, group->cpumask);

3131 3132 3133
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3134
		/* Tally up the load of all CPUs in the group */
3135
		sum_weighted_load = sum_nr_running = avg_load = 0;
3136 3137
		sum_avg_load_per_task = avg_load_per_task = 0;

3138 3139
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3140 3141

		for_each_cpu_mask(i, group->cpumask) {
3142 3143 3144 3145 3146 3147
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3148

3149
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3150 3151
				*sd_idle = 0;

L
Linus Torvalds 已提交
3152
			/* Bias balancing toward cpus of our domain */
3153 3154 3155 3156 3157 3158
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3159
				load = target_load(i, load_idx);
3160
			} else {
N
Nick Piggin 已提交
3161
				load = source_load(i, load_idx);
3162 3163 3164 3165 3166
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3167 3168

			avg_load += load;
3169
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3170
			sum_weighted_load += weighted_cpuload(i);
3171 3172

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3173 3174
		}

3175 3176 3177
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3178 3179
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3180
		 */
3181 3182
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3183 3184 3185 3186
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3187
		total_load += avg_load;
3188
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3189 3190

		/* Adjust by relative CPU power of the group */
3191 3192
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3193

3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3208 3209
			__group_imb = 1;

3210
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3211

L
Linus Torvalds 已提交
3212 3213 3214
		if (local_group) {
			this_load = avg_load;
			this = group;
3215 3216 3217
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3218
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3219 3220
			max_load = avg_load;
			busiest = group;
3221 3222
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3223
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3224
		}
3225 3226 3227 3228 3229 3230

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3231 3232 3233
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3234 3235 3236 3237 3238 3239 3240 3241 3242

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3243
		/*
3244 3245
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3246 3247
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3248
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3249
			goto group_next;
3250

I
Ingo Molnar 已提交
3251
		/*
3252
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3253 3254 3255 3256 3257
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3258 3259
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3260 3261
			group_min = group;
			min_nr_running = sum_nr_running;
3262 3263
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3264
		}
3265

I
Ingo Molnar 已提交
3266
		/*
3267
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3279
		}
3280 3281
group_next:
#endif
L
Linus Torvalds 已提交
3282 3283 3284
		group = group->next;
	} while (group != sd->groups);

3285
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3286 3287 3288 3289 3290 3291 3292 3293
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3294
	busiest_load_per_task /= busiest_nr_running;
3295 3296 3297
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3298 3299 3300 3301 3302 3303 3304 3305
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3306
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3307 3308
	 * appear as very large values with unsigned longs.
	 */
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3321 3322

	/* Don't want to pull so many tasks that a group would go idle */
3323
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3324

L
Linus Torvalds 已提交
3325
	/* How much load to actually move to equalise the imbalance */
3326 3327
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3328 3329
			/ SCHED_LOAD_SCALE;

3330 3331 3332 3333 3334 3335
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3336
	if (*imbalance < busiest_load_per_task) {
3337
		unsigned long tmp, pwr_now, pwr_move;
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3348
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3349

3350
		if (max_load - this_load + 2*busiest_load_per_task >=
I
Ingo Molnar 已提交
3351
					busiest_load_per_task * imbn) {
3352
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3353 3354 3355 3356 3357 3358 3359 3360 3361
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3362 3363 3364 3365
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3366 3367 3368
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3369 3370
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3371
		if (max_load > tmp)
3372
			pwr_move += busiest->__cpu_power *
3373
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3374 3375

		/* Amount of load we'd add */
3376
		if (max_load * busiest->__cpu_power <
3377
				busiest_load_per_task * SCHED_LOAD_SCALE)
3378 3379
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3380
		else
3381 3382 3383 3384
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3385 3386 3387
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3388 3389
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3390 3391 3392 3393 3394
	}

	return busiest;

out_balanced:
3395
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3396
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3397
		goto ret;
L
Linus Torvalds 已提交
3398

3399 3400 3401 3402 3403
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3404
ret:
L
Linus Torvalds 已提交
3405 3406 3407 3408 3409 3410 3411
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3412
static struct rq *
I
Ingo Molnar 已提交
3413
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3414
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3415
{
3416
	struct rq *busiest = NULL, *rq;
3417
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3418 3419 3420
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3421
		unsigned long wl;
3422 3423 3424 3425

		if (!cpu_isset(i, *cpus))
			continue;

3426
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3427
		wl = weighted_cpuload(i);
3428

I
Ingo Molnar 已提交
3429
		if (rq->nr_running == 1 && wl > imbalance)
3430
			continue;
L
Linus Torvalds 已提交
3431

I
Ingo Molnar 已提交
3432 3433
		if (wl > max_load) {
			max_load = wl;
3434
			busiest = rq;
L
Linus Torvalds 已提交
3435 3436 3437 3438 3439 3440
		}
	}

	return busiest;
}

3441 3442 3443 3444 3445 3446
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3447 3448 3449 3450
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3451
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3452
			struct sched_domain *sd, enum cpu_idle_type idle,
3453
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3454
{
P
Peter Williams 已提交
3455
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3456 3457
	struct sched_group *group;
	unsigned long imbalance;
3458
	struct rq *busiest;
3459
	unsigned long flags;
N
Nick Piggin 已提交
3460

3461 3462
	cpus_setall(*cpus);

3463 3464 3465
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3466
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3467
	 * portraying it as CPU_NOT_IDLE.
3468
	 */
I
Ingo Molnar 已提交
3469
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3470
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3471
		sd_idle = 1;
L
Linus Torvalds 已提交
3472

3473
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3474

3475
redo:
3476
	update_shares(sd);
3477
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3478
				   cpus, balance);
3479

3480
	if (*balance == 0)
3481 3482
		goto out_balanced;

L
Linus Torvalds 已提交
3483 3484 3485 3486 3487
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3488
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3489 3490 3491 3492 3493
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3494
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3495 3496 3497

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3498
	ld_moved = 0;
L
Linus Torvalds 已提交
3499 3500 3501 3502
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3503
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3504 3505
		 * correctly treated as an imbalance.
		 */
3506
		local_irq_save(flags);
N
Nick Piggin 已提交
3507
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3508
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3509
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3510
		double_rq_unlock(this_rq, busiest);
3511
		local_irq_restore(flags);
3512

3513 3514 3515
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3516
		if (ld_moved && this_cpu != smp_processor_id())
3517 3518
			resched_cpu(this_cpu);

3519
		/* All tasks on this runqueue were pinned by CPU affinity */
3520
		if (unlikely(all_pinned)) {
3521 3522
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3523
				goto redo;
3524
			goto out_balanced;
3525
		}
L
Linus Torvalds 已提交
3526
	}
3527

P
Peter Williams 已提交
3528
	if (!ld_moved) {
L
Linus Torvalds 已提交
3529 3530 3531 3532 3533
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3534
			spin_lock_irqsave(&busiest->lock, flags);
3535 3536 3537 3538 3539

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3540
				spin_unlock_irqrestore(&busiest->lock, flags);
3541 3542 3543 3544
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3545 3546 3547
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3548
				active_balance = 1;
L
Linus Torvalds 已提交
3549
			}
3550
			spin_unlock_irqrestore(&busiest->lock, flags);
3551
			if (active_balance)
L
Linus Torvalds 已提交
3552 3553 3554 3555 3556 3557
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3558
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3559
		}
3560
	} else
L
Linus Torvalds 已提交
3561 3562
		sd->nr_balance_failed = 0;

3563
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3564 3565
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3566 3567 3568 3569 3570 3571 3572 3573 3574
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3575 3576
	}

P
Peter Williams 已提交
3577
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3578
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3579 3580 3581
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3582 3583 3584 3585

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3586
	sd->nr_balance_failed = 0;
3587 3588

out_one_pinned:
L
Linus Torvalds 已提交
3589
	/* tune up the balancing interval */
3590 3591
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3592 3593
		sd->balance_interval *= 2;

3594
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3595
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3596 3597 3598 3599
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3600 3601
	if (ld_moved)
		update_shares(sd);
3602
	return ld_moved;
L
Linus Torvalds 已提交
3603 3604 3605 3606 3607 3608
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3609
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3610 3611
 * this_rq is locked.
 */
3612
static int
3613 3614
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3615 3616
{
	struct sched_group *group;
3617
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3618
	unsigned long imbalance;
P
Peter Williams 已提交
3619
	int ld_moved = 0;
N
Nick Piggin 已提交
3620
	int sd_idle = 0;
3621
	int all_pinned = 0;
3622 3623

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3624

3625 3626 3627 3628
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3629
	 * portraying it as CPU_NOT_IDLE.
3630 3631 3632
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3633
		sd_idle = 1;
L
Linus Torvalds 已提交
3634

3635
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3636
redo:
3637
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3638
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3639
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3640
	if (!group) {
I
Ingo Molnar 已提交
3641
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3642
		goto out_balanced;
L
Linus Torvalds 已提交
3643 3644
	}

3645
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3646
	if (!busiest) {
I
Ingo Molnar 已提交
3647
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3648
		goto out_balanced;
L
Linus Torvalds 已提交
3649 3650
	}

N
Nick Piggin 已提交
3651 3652
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3653
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3654

P
Peter Williams 已提交
3655
	ld_moved = 0;
3656 3657 3658
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3659 3660
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3661
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3662 3663
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3664
		spin_unlock(&busiest->lock);
3665

3666
		if (unlikely(all_pinned)) {
3667 3668
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3669 3670
				goto redo;
		}
3671 3672
	}

P
Peter Williams 已提交
3673
	if (!ld_moved) {
I
Ingo Molnar 已提交
3674
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3675 3676
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3677 3678
			return -1;
	} else
3679
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3680

3681
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3682
	return ld_moved;
3683 3684

out_balanced:
I
Ingo Molnar 已提交
3685
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3686
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3687
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3688
		return -1;
3689
	sd->nr_balance_failed = 0;
3690

3691
	return 0;
L
Linus Torvalds 已提交
3692 3693 3694 3695 3696 3697
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3698
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3699 3700
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3701 3702
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3703
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3704 3705

	for_each_domain(this_cpu, sd) {
3706 3707 3708 3709 3710 3711
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3712
			/* If we've pulled tasks over stop searching: */
3713 3714
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3715 3716 3717 3718 3719 3720

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3721
	}
I
Ingo Molnar 已提交
3722
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3723 3724 3725 3726 3727
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3728
	}
L
Linus Torvalds 已提交
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3739
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3740
{
3741
	int target_cpu = busiest_rq->push_cpu;
3742 3743
	struct sched_domain *sd;
	struct rq *target_rq;
3744

3745
	/* Is there any task to move? */
3746 3747 3748 3749
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3750 3751

	/*
3752
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3753
	 * we need to fix it. Originally reported by
3754
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3755
	 */
3756
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3757

3758 3759
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3760 3761
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3762 3763

	/* Search for an sd spanning us and the target CPU. */
3764
	for_each_domain(target_cpu, sd) {
3765
		if ((sd->flags & SD_LOAD_BALANCE) &&
3766
		    cpu_isset(busiest_cpu, sd->span))
3767
				break;
3768
	}
3769

3770
	if (likely(sd)) {
3771
		schedstat_inc(sd, alb_count);
3772

P
Peter Williams 已提交
3773 3774
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3775 3776 3777 3778
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3779
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3780 3781
}

3782 3783 3784
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3785
	cpumask_t cpu_mask;
3786 3787 3788 3789 3790
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3791
/*
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3802
 *
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3859 3860 3861 3862 3863
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3864
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3865
{
3866 3867
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3868 3869
	unsigned long interval;
	struct sched_domain *sd;
3870
	/* Earliest time when we have to do rebalance again */
3871
	unsigned long next_balance = jiffies + 60*HZ;
3872
	int update_next_balance = 0;
3873
	int need_serialize;
3874
	cpumask_t tmp;
L
Linus Torvalds 已提交
3875

3876
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3877 3878 3879 3880
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3881
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3882 3883 3884 3885 3886 3887
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3888 3889 3890
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3891
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3892

3893
		if (need_serialize) {
3894 3895 3896 3897
			if (!spin_trylock(&balancing))
				goto out;
		}

3898
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3899
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3900 3901
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3902 3903 3904
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3905
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3906
			}
3907
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3908
		}
3909
		if (need_serialize)
3910 3911
			spin_unlock(&balancing);
out:
3912
		if (time_after(next_balance, sd->last_balance + interval)) {
3913
			next_balance = sd->last_balance + interval;
3914 3915
			update_next_balance = 1;
		}
3916 3917 3918 3919 3920 3921 3922 3923

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3924
	}
3925 3926 3927 3928 3929 3930 3931 3932

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3933 3934 3935 3936 3937 3938 3939 3940 3941
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3942 3943 3944 3945
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3946

I
Ingo Molnar 已提交
3947
	rebalance_domains(this_cpu, idle);
3948 3949 3950 3951 3952 3953 3954

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3955 3956
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3957 3958 3959 3960
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3961
		cpu_clear(this_cpu, cpus);
3962 3963 3964 3965 3966 3967 3968 3969 3970
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3971
			rebalance_domains(balance_cpu, CPU_IDLE);
3972 3973

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3974 3975
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3988
static inline void trigger_load_balance(struct rq *rq, int cpu)
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

4015
			if (ilb < nr_cpu_ids)
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4040
}
I
Ingo Molnar 已提交
4041 4042 4043

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4044 4045 4046
/*
 * on UP we do not need to balance between CPUs:
 */
4047
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4048 4049
{
}
I
Ingo Molnar 已提交
4050

L
Linus Torvalds 已提交
4051 4052 4053 4054 4055 4056 4057
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4058 4059
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
4060
 */
4061
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
4062 4063
{
	unsigned long flags;
4064 4065
	u64 ns, delta_exec;
	struct rq *rq;
4066

4067 4068
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
4069
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
4070 4071
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4072 4073 4074 4075
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
4076

L
Linus Torvalds 已提交
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

4100 4101 4102 4103 4104
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4105
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4139
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4140 4141
	cputime64_t tmp;

4142 4143 4144 4145
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4146

L
Linus Torvalds 已提交
4147 4148 4149 4150 4151 4152 4153 4154
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4155
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4156
		cpustat->system = cputime64_add(cpustat->system, tmp);
4157
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4158 4159 4160 4161 4162 4163 4164
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4176 4177 4178 4179 4180 4181 4182 4183 4184
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4185
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4186 4187 4188 4189 4190 4191 4192

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4193
	} else
L
Linus Torvalds 已提交
4194 4195 4196
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4208
	struct task_struct *curr = rq->curr;
4209 4210

	sched_clock_tick();
I
Ingo Molnar 已提交
4211 4212

	spin_lock(&rq->lock);
4213
	update_rq_clock(rq);
4214
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4215
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4216
	spin_unlock(&rq->lock);
4217

4218
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4219 4220
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4221
#endif
L
Linus Torvalds 已提交
4222 4223 4224 4225
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

4226
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4227 4228 4229 4230
{
	/*
	 * Underflow?
	 */
4231 4232
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
4233 4234 4235 4236
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
4237 4238
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
4239 4240 4241
}
EXPORT_SYMBOL(add_preempt_count);

4242
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4243 4244 4245 4246
{
	/*
	 * Underflow?
	 */
4247 4248
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4249 4250 4251
	/*
	 * Is the spinlock portion underflowing?
	 */
4252 4253 4254 4255
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
4256 4257 4258 4259 4260 4261 4262
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4263
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4264
 */
I
Ingo Molnar 已提交
4265
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4266
{
4267 4268 4269 4270 4271
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4272
	debug_show_held_locks(prev);
4273
	print_modules();
I
Ingo Molnar 已提交
4274 4275
	if (irqs_disabled())
		print_irqtrace_events(prev);
4276 4277 4278 4279 4280

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4281
}
L
Linus Torvalds 已提交
4282

I
Ingo Molnar 已提交
4283 4284 4285 4286 4287
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4288
	/*
I
Ingo Molnar 已提交
4289
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4290 4291 4292
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4293
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4294 4295
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4296 4297
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4298
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4299 4300
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4301 4302
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4303 4304
	}
#endif
I
Ingo Molnar 已提交
4305 4306 4307 4308 4309 4310
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4311
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4312
{
4313
	const struct sched_class *class;
I
Ingo Molnar 已提交
4314
	struct task_struct *p;
L
Linus Torvalds 已提交
4315 4316

	/*
I
Ingo Molnar 已提交
4317 4318
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4319
	 */
I
Ingo Molnar 已提交
4320
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4321
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4322 4323
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4324 4325
	}

I
Ingo Molnar 已提交
4326 4327
	class = sched_class_highest;
	for ( ; ; ) {
4328
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4329 4330 4331 4332 4333 4334 4335 4336 4337
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4338

I
Ingo Molnar 已提交
4339 4340 4341 4342 4343 4344
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4345
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4346
	struct rq *rq;
M
Mike Galbraith 已提交
4347
	int cpu, hrtick = sched_feat(HRTICK);
I
Ingo Molnar 已提交
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4361

M
Mike Galbraith 已提交
4362 4363
	if (hrtick)
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4364

4365 4366 4367 4368
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4369
	update_rq_clock(rq);
4370 4371
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4372 4373

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4374
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4375
			prev->state = TASK_RUNNING;
4376
		else
4377
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4378
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4379 4380
	}

4381 4382 4383 4384
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4385

I
Ingo Molnar 已提交
4386
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4387 4388
		idle_balance(cpu, rq);

4389
	prev->sched_class->put_prev_task(rq, prev);
4390
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4391 4392

	if (likely(prev != next)) {
4393 4394
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4395 4396 4397 4398
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4399
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4400 4401 4402 4403 4404 4405
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4406 4407 4408
	} else
		spin_unlock_irq(&rq->lock);

M
Mike Galbraith 已提交
4409 4410
	if (hrtick)
		hrtick_set(rq);
P
Peter Zijlstra 已提交
4411 4412

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4413
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4414

L
Linus Torvalds 已提交
4415 4416 4417 4418 4419 4420 4421 4422
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4423
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4424
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4425 4426 4427 4428 4429
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4430

L
Linus Torvalds 已提交
4431 4432
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4433
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4434
	 */
N
Nick Piggin 已提交
4435
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4436 4437
		return;

4438 4439 4440 4441
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4442

4443 4444 4445 4446 4447 4448
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4449 4450 4451 4452
}
EXPORT_SYMBOL(preempt_schedule);

/*
4453
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4454 4455 4456 4457 4458 4459 4460
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4461

4462
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4463 4464
	BUG_ON(ti->preempt_count || !irqs_disabled());

4465 4466 4467 4468 4469 4470
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4471

4472 4473 4474 4475 4476 4477
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4478 4479 4480 4481
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4482 4483
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4484
{
4485
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4486 4487 4488 4489
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4490 4491
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4492 4493 4494
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4495
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4496 4497 4498 4499 4500
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4501
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4502

4503
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4504 4505
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4506
		if (curr->func(curr, mode, sync, key) &&
4507
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4508 4509 4510 4511 4512 4513 4514 4515 4516
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4517
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4518
 */
4519
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4520
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4533
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4534 4535 4536 4537 4538
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4539
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4551
void
I
Ingo Molnar 已提交
4552
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4569
void complete(struct completion *x)
L
Linus Torvalds 已提交
4570 4571 4572 4573 4574
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4575
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4576 4577 4578 4579
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4580
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4581 4582 4583 4584 4585
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4586
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4587 4588 4589 4590
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4591 4592
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4593 4594 4595 4596 4597 4598 4599
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4600 4601 4602 4603
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4604 4605
				timeout = -ERESTARTSYS;
				break;
4606 4607
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4608 4609 4610
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4611
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4612
		__remove_wait_queue(&x->wait, &wait);
4613 4614
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4615 4616
	}
	x->done--;
4617
	return timeout ?: 1;
L
Linus Torvalds 已提交
4618 4619
}

4620 4621
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4622 4623 4624 4625
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4626
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4627
	spin_unlock_irq(&x->wait.lock);
4628 4629
	return timeout;
}
L
Linus Torvalds 已提交
4630

4631
void __sched wait_for_completion(struct completion *x)
4632 4633
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4634
}
4635
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4636

4637
unsigned long __sched
4638
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4639
{
4640
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4641
}
4642
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4643

4644
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4645
{
4646 4647 4648 4649
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4650
}
4651
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4652

4653
unsigned long __sched
4654 4655
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4656
{
4657
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4658
}
4659
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4660

M
Matthew Wilcox 已提交
4661 4662 4663 4664 4665 4666 4667 4668 4669
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4670 4671
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4672
{
I
Ingo Molnar 已提交
4673 4674 4675 4676
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4677

4678
	__set_current_state(state);
L
Linus Torvalds 已提交
4679

4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4694 4695 4696
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4697
long __sched
I
Ingo Molnar 已提交
4698
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4699
{
4700
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4701 4702 4703
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4704
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4705
{
4706
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4707 4708 4709
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4710
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4711
{
4712
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4713 4714 4715
}
EXPORT_SYMBOL(sleep_on_timeout);

4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4728
void rt_mutex_setprio(struct task_struct *p, int prio)
4729 4730
{
	unsigned long flags;
4731
	int oldprio, on_rq, running;
4732
	struct rq *rq;
4733
	const struct sched_class *prev_class = p->sched_class;
4734 4735 4736 4737

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4738
	update_rq_clock(rq);
4739

4740
	oldprio = p->prio;
I
Ingo Molnar 已提交
4741
	on_rq = p->se.on_rq;
4742
	running = task_current(rq, p);
4743
	if (on_rq)
4744
		dequeue_task(rq, p, 0);
4745 4746
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4747 4748 4749 4750 4751 4752

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4753 4754
	p->prio = prio;

4755 4756
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4757
	if (on_rq) {
4758
		enqueue_task(rq, p, 0);
4759 4760

		check_class_changed(rq, p, prev_class, oldprio, running);
4761 4762 4763 4764 4765 4766
	}
	task_rq_unlock(rq, &flags);
}

#endif

4767
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4768
{
I
Ingo Molnar 已提交
4769
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4770
	unsigned long flags;
4771
	struct rq *rq;
L
Linus Torvalds 已提交
4772 4773 4774 4775 4776 4777 4778 4779

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4780
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4781 4782 4783 4784
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4785
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4786
	 */
4787
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4788 4789 4790
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4791
	on_rq = p->se.on_rq;
4792
	if (on_rq)
4793
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4794 4795

	p->static_prio = NICE_TO_PRIO(nice);
4796
	set_load_weight(p);
4797 4798 4799
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4800

I
Ingo Molnar 已提交
4801
	if (on_rq) {
4802
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4803
		/*
4804 4805
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4806
		 */
4807
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4808 4809 4810 4811 4812 4813 4814
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4815 4816 4817 4818 4819
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4820
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4821
{
4822 4823
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4824

M
Matt Mackall 已提交
4825 4826 4827 4828
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4840
	long nice, retval;
L
Linus Torvalds 已提交
4841 4842 4843 4844 4845 4846

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4847 4848
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4849 4850 4851 4852 4853 4854 4855 4856 4857
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4858 4859 4860
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4879
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4880 4881 4882 4883 4884 4885 4886 4887
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4888
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4889 4890 4891
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4892
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4907
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4908 4909 4910 4911 4912 4913 4914 4915
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4916
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4917
{
4918
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4919 4920 4921
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4922 4923
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4924
{
I
Ingo Molnar 已提交
4925
	BUG_ON(p->se.on_rq);
4926

L
Linus Torvalds 已提交
4927
	p->policy = policy;
I
Ingo Molnar 已提交
4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4940
	p->rt_priority = prio;
4941 4942 4943
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4944
	set_load_weight(p);
L
Linus Torvalds 已提交
4945 4946 4947
}

/**
4948
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4949 4950 4951
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4952
 *
4953
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4954
 */
I
Ingo Molnar 已提交
4955 4956
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4957
{
4958
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4959
	unsigned long flags;
4960
	const struct sched_class *prev_class = p->sched_class;
4961
	struct rq *rq;
L
Linus Torvalds 已提交
4962

4963 4964
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4965 4966 4967 4968 4969
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4970 4971
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4972
		return -EINVAL;
L
Linus Torvalds 已提交
4973 4974
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4975 4976
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4977 4978
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4979
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4980
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4981
		return -EINVAL;
4982
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4983 4984
		return -EINVAL;

4985 4986 4987 4988
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4989
		if (rt_policy(policy)) {
4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5006 5007 5008 5009 5010 5011
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5012

5013 5014 5015 5016 5017
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5018

5019 5020 5021 5022 5023
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
5024
	if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5025 5026 5027
		return -EPERM;
#endif

L
Linus Torvalds 已提交
5028 5029 5030
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
5031 5032 5033 5034 5035
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5036 5037 5038 5039
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5040
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5041 5042 5043
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5044 5045
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5046 5047
		goto recheck;
	}
I
Ingo Molnar 已提交
5048
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5049
	on_rq = p->se.on_rq;
5050
	running = task_current(rq, p);
5051
	if (on_rq)
5052
		deactivate_task(rq, p, 0);
5053 5054
	if (running)
		p->sched_class->put_prev_task(rq, p);
5055

L
Linus Torvalds 已提交
5056
	oldprio = p->prio;
I
Ingo Molnar 已提交
5057
	__setscheduler(rq, p, policy, param->sched_priority);
5058

5059 5060
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5061 5062
	if (on_rq) {
		activate_task(rq, p, 0);
5063 5064

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5065
	}
5066 5067 5068
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5069 5070
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5071 5072 5073 5074
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
5075 5076
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5077 5078 5079
{
	struct sched_param lparam;
	struct task_struct *p;
5080
	int retval;
L
Linus Torvalds 已提交
5081 5082 5083 5084 5085

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5086 5087 5088

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5089
	p = find_process_by_pid(pid);
5090 5091 5092
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5093

L
Linus Torvalds 已提交
5094 5095 5096 5097 5098 5099 5100 5101 5102
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5103 5104
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5105
{
5106 5107 5108 5109
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5129
	struct task_struct *p;
5130
	int retval;
L
Linus Torvalds 已提交
5131 5132

	if (pid < 0)
5133
		return -EINVAL;
L
Linus Torvalds 已提交
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5155
	struct task_struct *p;
5156
	int retval;
L
Linus Torvalds 已提交
5157 5158

	if (!param || pid < 0)
5159
		return -EINVAL;
L
Linus Torvalds 已提交
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5186
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5187 5188
{
	cpumask_t cpus_allowed;
5189
	cpumask_t new_mask = *in_mask;
5190 5191
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5192

5193
	get_online_cpus();
L
Linus Torvalds 已提交
5194 5195 5196 5197 5198
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5199
		put_online_cpus();
L
Linus Torvalds 已提交
5200 5201 5202 5203 5204
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5205
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5216 5217 5218 5219
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5220
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5221
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5222
 again:
5223
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5224

P
Paul Menage 已提交
5225
	if (!retval) {
5226
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5227 5228 5229 5230 5231 5232 5233 5234 5235 5236
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5237 5238
out_unlock:
	put_task_struct(p);
5239
	put_online_cpus();
L
Linus Torvalds 已提交
5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5270
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5271 5272 5273 5274
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5275
	struct task_struct *p;
L
Linus Torvalds 已提交
5276 5277
	int retval;

5278
	get_online_cpus();
L
Linus Torvalds 已提交
5279 5280 5281 5282 5283 5284 5285
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5286 5287 5288 5289
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5290
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5291 5292 5293

out_unlock:
	read_unlock(&tasklist_lock);
5294
	put_online_cpus();
L
Linus Torvalds 已提交
5295

5296
	return retval;
L
Linus Torvalds 已提交
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5327 5328
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5329 5330 5331
 */
asmlinkage long sys_sched_yield(void)
{
5332
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5333

5334
	schedstat_inc(rq, yld_count);
5335
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5336 5337 5338 5339 5340 5341

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5342
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5343 5344 5345 5346 5347 5348 5349 5350
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5351
static void __cond_resched(void)
L
Linus Torvalds 已提交
5352
{
5353 5354 5355
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5356 5357 5358 5359 5360
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5361 5362 5363 5364 5365 5366 5367
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5368
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5369
{
5370 5371
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5372 5373 5374 5375 5376
		__cond_resched();
		return 1;
	}
	return 0;
}
5377
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5378 5379 5380 5381 5382

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5383
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5384 5385 5386
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5387
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5388
{
N
Nick Piggin 已提交
5389
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5390 5391
	int ret = 0;

N
Nick Piggin 已提交
5392
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5393
		spin_unlock(lock);
N
Nick Piggin 已提交
5394 5395 5396 5397
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5398
		ret = 1;
L
Linus Torvalds 已提交
5399 5400
		spin_lock(lock);
	}
J
Jan Kara 已提交
5401
	return ret;
L
Linus Torvalds 已提交
5402 5403 5404 5405 5406 5407 5408
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5409
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5410
		local_bh_enable();
L
Linus Torvalds 已提交
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5422
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5433
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5434 5435 5436 5437 5438 5439 5440
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5441
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5442

5443
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5444 5445 5446
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5447
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5448 5449 5450 5451 5452
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5453
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5454 5455
	long ret;

5456
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5457 5458 5459
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5460
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5481
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5482
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5506
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5507
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5524
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5525
	unsigned int time_slice;
5526
	int retval;
L
Linus Torvalds 已提交
5527 5528 5529
	struct timespec t;

	if (pid < 0)
5530
		return -EINVAL;
L
Linus Torvalds 已提交
5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5542 5543 5544 5545 5546 5547
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5548
		time_slice = DEF_TIMESLICE;
5549
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5550 5551 5552 5553 5554
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5555 5556
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5557 5558
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5559
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5560
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5561 5562
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5563

L
Linus Torvalds 已提交
5564 5565 5566 5567 5568
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5569
static const char stat_nam[] = "RSDTtZX";
5570

5571
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5572 5573
{
	unsigned long free = 0;
5574
	unsigned state;
L
Linus Torvalds 已提交
5575 5576

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5577
	printk(KERN_INFO "%-13.13s %c", p->comm,
5578
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5579
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5580
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5581
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5582
	else
I
Ingo Molnar 已提交
5583
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5584 5585
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5586
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5587
	else
I
Ingo Molnar 已提交
5588
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5589 5590 5591
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5592
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5593 5594
		while (!*n)
			n++;
5595
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5596 5597
	}
#endif
5598
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5599
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5600

5601
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5602 5603
}

I
Ingo Molnar 已提交
5604
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5605
{
5606
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5607

5608 5609 5610
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5611
#else
5612 5613
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5614 5615 5616 5617 5618 5619 5620 5621
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5622
		if (!state_filter || (p->state & state_filter))
5623
			sched_show_task(p);
L
Linus Torvalds 已提交
5624 5625
	} while_each_thread(g, p);

5626 5627
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5628 5629 5630
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5631
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5632 5633 5634 5635 5636
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5637 5638
}

I
Ingo Molnar 已提交
5639 5640
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5641
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5642 5643
}

5644 5645 5646 5647 5648 5649 5650 5651
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5652
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5653
{
5654
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5655 5656
	unsigned long flags;

I
Ingo Molnar 已提交
5657 5658 5659
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5660
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5661
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5662
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5663 5664 5665

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5666 5667 5668
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5669 5670 5671
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5672 5673 5674
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5675
	task_thread_info(idle)->preempt_count = 0;
5676
#endif
I
Ingo Molnar 已提交
5677 5678 5679 5680
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5717 5718 5719 5720
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5721
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5740
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5741 5742
 * call is not atomic; no spinlocks may be held.
 */
5743
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5744
{
5745
	struct migration_req req;
L
Linus Torvalds 已提交
5746
	unsigned long flags;
5747
	struct rq *rq;
5748
	int ret = 0;
L
Linus Torvalds 已提交
5749 5750

	rq = task_rq_lock(p, &flags);
5751
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5752 5753 5754 5755
		ret = -EINVAL;
		goto out;
	}

5756 5757 5758 5759 5760 5761
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5762
	if (p->sched_class->set_cpus_allowed)
5763
		p->sched_class->set_cpus_allowed(p, new_mask);
5764
	else {
5765 5766
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5767 5768
	}

L
Linus Torvalds 已提交
5769
	/* Can the task run on the task's current CPU? If so, we're done */
5770
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5771 5772
		goto out;

5773
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5774 5775 5776 5777 5778 5779 5780 5781 5782
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5783

L
Linus Torvalds 已提交
5784 5785
	return ret;
}
5786
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5787 5788

/*
I
Ingo Molnar 已提交
5789
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5790 5791 5792 5793 5794 5795
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5796 5797
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5798
 */
5799
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5800
{
5801
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5802
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5803 5804

	if (unlikely(cpu_is_offline(dest_cpu)))
5805
		return ret;
L
Linus Torvalds 已提交
5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5818
	on_rq = p->se.on_rq;
5819
	if (on_rq)
5820
		deactivate_task(rq_src, p, 0);
5821

L
Linus Torvalds 已提交
5822
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5823 5824 5825
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5826
	}
5827
	ret = 1;
L
Linus Torvalds 已提交
5828 5829
out:
	double_rq_unlock(rq_src, rq_dest);
5830
	return ret;
L
Linus Torvalds 已提交
5831 5832 5833 5834 5835 5836 5837
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5838
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5839 5840
{
	int cpu = (long)data;
5841
	struct rq *rq;
L
Linus Torvalds 已提交
5842 5843 5844 5845 5846 5847

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5848
		struct migration_req *req;
L
Linus Torvalds 已提交
5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5871
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5872 5873
		list_del_init(head->next);

N
Nick Piggin 已提交
5874 5875 5876
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5906
/*
5907
 * Figure out where task on dead CPU should go, use force if necessary.
5908 5909
 * NOTE: interrupts should be disabled by the caller
 */
5910
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5911
{
5912
	unsigned long flags;
L
Linus Torvalds 已提交
5913
	cpumask_t mask;
5914 5915
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5916

5917 5918 5919 5920 5921 5922 5923
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
5924
		if (dest_cpu >= nr_cpu_ids)
5925 5926 5927
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
5928
		if (dest_cpu >= nr_cpu_ids) {
5929 5930 5931
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
5932 5933 5934 5935
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5936
			 * cpuset_cpus_allowed() will not block. It must be
5937 5938
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5939
			rq = task_rq_lock(p, &flags);
5940
			p->cpus_allowed = cpus_allowed;
5941 5942
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5943

5944 5945 5946 5947 5948
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5949
			if (p->mm && printk_ratelimit()) {
5950 5951
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5952 5953
					task_pid_nr(p), p->comm, dead_cpu);
			}
5954
		}
5955
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5956 5957 5958 5959 5960 5961 5962 5963 5964
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5965
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5966
{
5967
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5981
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5982

5983
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5984

5985 5986
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5987 5988
			continue;

5989 5990 5991
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5992

5993
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5994 5995
}

I
Ingo Molnar 已提交
5996 5997
/*
 * Schedules idle task to be the next runnable task on current CPU.
5998 5999
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6000 6001 6002
 */
void sched_idle_next(void)
{
6003
	int this_cpu = smp_processor_id();
6004
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6005 6006 6007 6008
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6009
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6010

6011 6012 6013
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6014 6015 6016
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6017
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6018

6019 6020
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6021 6022 6023 6024

	spin_unlock_irqrestore(&rq->lock, flags);
}

6025 6026
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6040
/* called under rq->lock with disabled interrupts */
6041
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6042
{
6043
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6044 6045

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6046
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6047 6048

	/* Cannot have done final schedule yet: would have vanished. */
6049
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6050

6051
	get_task_struct(p);
L
Linus Torvalds 已提交
6052 6053 6054

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6055
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6056 6057
	 * fine.
	 */
6058
	spin_unlock_irq(&rq->lock);
6059
	move_task_off_dead_cpu(dead_cpu, p);
6060
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6061

6062
	put_task_struct(p);
L
Linus Torvalds 已提交
6063 6064 6065 6066 6067
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6068
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6069
	struct task_struct *next;
6070

I
Ingo Molnar 已提交
6071 6072 6073
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6074
		update_rq_clock(rq);
6075
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6076 6077 6078
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
6079

L
Linus Torvalds 已提交
6080 6081 6082 6083
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6084 6085 6086
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6087 6088
	{
		.procname	= "sched_domain",
6089
		.mode		= 0555,
6090
	},
I
Ingo Molnar 已提交
6091
	{0, },
6092 6093 6094
};

static struct ctl_table sd_ctl_root[] = {
6095
	{
6096
		.ctl_name	= CTL_KERN,
6097
		.procname	= "kernel",
6098
		.mode		= 0555,
6099 6100
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6101
	{0, },
6102 6103 6104 6105 6106
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6107
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6108 6109 6110 6111

	return entry;
}

6112 6113
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6114
	struct ctl_table *entry;
6115

6116 6117 6118
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6119
	 * will always be set. In the lowest directory the names are
6120 6121 6122
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6123 6124
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6125 6126 6127
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6128 6129 6130 6131 6132

	kfree(*tablep);
	*tablep = NULL;
}

6133
static void
6134
set_table_entry(struct ctl_table *entry,
6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6148
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6149

6150 6151 6152
	if (table == NULL)
		return NULL;

6153
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6154
		sizeof(long), 0644, proc_doulongvec_minmax);
6155
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6156
		sizeof(long), 0644, proc_doulongvec_minmax);
6157
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6158
		sizeof(int), 0644, proc_dointvec_minmax);
6159
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6160
		sizeof(int), 0644, proc_dointvec_minmax);
6161
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6162
		sizeof(int), 0644, proc_dointvec_minmax);
6163
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6164
		sizeof(int), 0644, proc_dointvec_minmax);
6165
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6166
		sizeof(int), 0644, proc_dointvec_minmax);
6167
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6168
		sizeof(int), 0644, proc_dointvec_minmax);
6169
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6170
		sizeof(int), 0644, proc_dointvec_minmax);
6171
	set_table_entry(&table[9], "cache_nice_tries",
6172 6173
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6174
	set_table_entry(&table[10], "flags", &sd->flags,
6175
		sizeof(int), 0644, proc_dointvec_minmax);
6176
	/* &table[11] is terminator */
6177 6178 6179 6180

	return table;
}

6181
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6182 6183 6184 6185 6186 6187 6188 6189 6190
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6191 6192
	if (table == NULL)
		return NULL;
6193 6194 6195 6196 6197

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6198
		entry->mode = 0555;
6199 6200 6201 6202 6203 6204 6205 6206
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6207
static void register_sched_domain_sysctl(void)
6208 6209 6210 6211 6212
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6213 6214 6215
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6216 6217 6218
	if (entry == NULL)
		return;

6219
	for_each_online_cpu(i) {
6220 6221
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6222
		entry->mode = 0555;
6223
		entry->child = sd_alloc_ctl_cpu_table(i);
6224
		entry++;
6225
	}
6226 6227

	WARN_ON(sd_sysctl_header);
6228 6229
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6230

6231
/* may be called multiple times per register */
6232 6233
static void unregister_sched_domain_sysctl(void)
{
6234 6235
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6236
	sd_sysctl_header = NULL;
6237 6238
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6239
}
6240
#else
6241 6242 6243 6244
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6245 6246 6247 6248
{
}
#endif

6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6279 6280 6281 6282
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6283 6284
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6285 6286
{
	struct task_struct *p;
6287
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6288
	unsigned long flags;
6289
	struct rq *rq;
L
Linus Torvalds 已提交
6290 6291

	switch (action) {
6292

L
Linus Torvalds 已提交
6293
	case CPU_UP_PREPARE:
6294
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6295
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6296 6297 6298 6299 6300
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6301
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6302 6303 6304
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6305

L
Linus Torvalds 已提交
6306
	case CPU_ONLINE:
6307
	case CPU_ONLINE_FROZEN:
6308
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6309
		wake_up_process(cpu_rq(cpu)->migration_thread);
6310 6311 6312 6313 6314 6315

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6316 6317

			set_rq_online(rq);
6318 6319
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6320
		break;
6321

L
Linus Torvalds 已提交
6322 6323
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6324
	case CPU_UP_CANCELED_FROZEN:
6325 6326
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6327
		/* Unbind it from offline cpu so it can run. Fall thru. */
6328 6329
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6330 6331 6332
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6333

L
Linus Torvalds 已提交
6334
	case CPU_DEAD:
6335
	case CPU_DEAD_FROZEN:
6336
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6337 6338 6339 6340 6341
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6342
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6343
		update_rq_clock(rq);
6344
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6345
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6346 6347
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6348
		migrate_dead_tasks(cpu);
6349
		spin_unlock_irq(&rq->lock);
6350
		cpuset_unlock();
L
Linus Torvalds 已提交
6351 6352 6353
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6354 6355 6356 6357 6358
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6359 6360
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6361 6362
			struct migration_req *req;

L
Linus Torvalds 已提交
6363
			req = list_entry(rq->migration_queue.next,
6364
					 struct migration_req, list);
L
Linus Torvalds 已提交
6365 6366 6367 6368 6369
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6370

6371 6372
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6373 6374 6375 6376 6377
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6378
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6379 6380 6381
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6382 6383 6384 6385 6386 6387 6388 6389
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6390
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6391 6392 6393 6394
	.notifier_call = migration_call,
	.priority = 10
};

6395
void __init migration_init(void)
L
Linus Torvalds 已提交
6396 6397
{
	void *cpu = (void *)(long)smp_processor_id();
6398
	int err;
6399 6400

	/* Start one for the boot CPU: */
6401 6402
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6403 6404 6405 6406 6407 6408
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6409

6410
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6411

6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6434 6435
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6436
{
I
Ingo Molnar 已提交
6437
	struct sched_group *group = sd->groups;
6438
	char str[256];
L
Linus Torvalds 已提交
6439

6440
	cpulist_scnprintf(str, sizeof(str), sd->span);
6441
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6442 6443 6444 6445 6446 6447 6448 6449 6450

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6451 6452
	}

6453 6454
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6455 6456 6457 6458 6459 6460 6461 6462 6463

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6464

I
Ingo Molnar 已提交
6465
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6466
	do {
I
Ingo Molnar 已提交
6467 6468 6469
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6470 6471 6472
			break;
		}

I
Ingo Molnar 已提交
6473 6474 6475 6476 6477 6478
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6479

I
Ingo Molnar 已提交
6480 6481 6482 6483 6484
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6485

6486
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6487 6488 6489 6490
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6491

6492
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6493

6494
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6495
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6496

I
Ingo Molnar 已提交
6497 6498 6499
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6500

6501
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6502
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6503

6504
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6505 6506 6507 6508
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6509

I
Ingo Molnar 已提交
6510 6511
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6512
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6513
	int level = 0;
L
Linus Torvalds 已提交
6514

I
Ingo Molnar 已提交
6515 6516 6517 6518
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6519

I
Ingo Molnar 已提交
6520 6521
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6522 6523 6524 6525 6526 6527
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6528
	for (;;) {
6529
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6530
			break;
L
Linus Torvalds 已提交
6531 6532
		level++;
		sd = sd->parent;
6533
		if (!sd)
I
Ingo Molnar 已提交
6534 6535
			break;
	}
6536
	kfree(groupmask);
L
Linus Torvalds 已提交
6537
}
6538
#else /* !CONFIG_SCHED_DEBUG */
6539
# define sched_domain_debug(sd, cpu) do { } while (0)
6540
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6541

6542
static int sd_degenerate(struct sched_domain *sd)
6543 6544 6545 6546 6547 6548 6549 6550
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6551 6552 6553
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6567 6568
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6587 6588 6589
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6590 6591 6592 6593 6594 6595 6596
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6597 6598 6599 6600 6601 6602 6603 6604 6605
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6606 6607
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6608

6609 6610
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6611 6612 6613 6614 6615 6616 6617
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6618
	cpu_set(rq->cpu, rd->span);
6619
	if (cpu_isset(rq->cpu, cpu_online_map))
6620
		set_rq_online(rq);
G
Gregory Haskins 已提交
6621 6622 6623 6624

	spin_unlock_irqrestore(&rq->lock, flags);
}

6625
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6626 6627 6628
{
	memset(rd, 0, sizeof(*rd));

6629 6630
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6631 6632

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6633 6634 6635 6636
}

static void init_defrootdomain(void)
{
6637
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6638 6639 6640
	atomic_set(&def_root_domain.refcount, 1);
}

6641
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6642 6643 6644 6645 6646 6647 6648
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6649
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6650 6651 6652 6653

	return rd;
}

L
Linus Torvalds 已提交
6654
/*
I
Ingo Molnar 已提交
6655
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6656 6657
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6658 6659
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6660
{
6661
	struct rq *rq = cpu_rq(cpu);
6662 6663 6664 6665 6666 6667 6668
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6669
		if (sd_parent_degenerate(tmp, parent)) {
6670
			tmp->parent = parent->parent;
6671 6672 6673
			if (parent->parent)
				parent->parent->child = tmp;
		}
6674 6675
	}

6676
	if (sd && sd_degenerate(sd)) {
6677
		sd = sd->parent;
6678 6679 6680
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6681 6682 6683

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6684
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6685
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6686 6687 6688
}

/* cpus with isolated domains */
6689
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6704
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6705 6706

/*
6707 6708 6709 6710
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6711 6712 6713 6714 6715
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6716
static void
6717
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6718
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6719 6720 6721
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6722 6723 6724 6725
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6726 6727 6728
	cpus_clear(*covered);

	for_each_cpu_mask(i, *span) {
6729
		struct sched_group *sg;
6730
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6731 6732
		int j;

6733
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6734 6735
			continue;

6736
		cpus_clear(sg->cpumask);
6737
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6738

6739 6740
		for_each_cpu_mask(j, *span) {
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6741 6742
				continue;

6743
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6755
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6756

6757
#ifdef CONFIG_NUMA
6758

6759 6760 6761 6762 6763
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6764
 * Find the next node to include in a given scheduling domain. Simply
6765 6766 6767 6768
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6769
static int find_next_best_node(int node, nodemask_t *used_nodes)
6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6783
		if (node_isset(n, *used_nodes))
6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6795
	node_set(best_node, *used_nodes);
6796 6797 6798 6799 6800 6801
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6802
 * @span: resulting cpumask
6803
 *
I
Ingo Molnar 已提交
6804
 * Given a node, construct a good cpumask for its sched_domain to span. It
6805 6806 6807
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6808
static void sched_domain_node_span(int node, cpumask_t *span)
6809
{
6810 6811
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6812
	int i;
6813

6814
	cpus_clear(*span);
6815
	nodes_clear(used_nodes);
6816

6817
	cpus_or(*span, *span, *nodemask);
6818
	node_set(node, used_nodes);
6819 6820

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6821
		int next_node = find_next_best_node(node, &used_nodes);
6822

6823
		node_to_cpumask_ptr_next(nodemask, next_node);
6824
		cpus_or(*span, *span, *nodemask);
6825 6826
	}
}
6827
#endif /* CONFIG_NUMA */
6828

6829
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6830

6831
/*
6832
 * SMT sched-domains:
6833
 */
L
Linus Torvalds 已提交
6834 6835
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6836
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6837

I
Ingo Molnar 已提交
6838
static int
6839 6840
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
6841
{
6842 6843
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6844 6845
	return cpu;
}
6846
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6847

6848 6849 6850
/*
 * multi-core sched-domains:
 */
6851 6852
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6853
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6854
#endif /* CONFIG_SCHED_MC */
6855 6856

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6857
static int
6858 6859
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
6860
{
6861
	int group;
6862 6863 6864 6865

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6866 6867 6868
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6869 6870
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6871
static int
6872 6873
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
6874
{
6875 6876
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6877 6878 6879 6880
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6881
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6882
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6883

I
Ingo Molnar 已提交
6884
static int
6885 6886
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
6887
{
6888
	int group;
6889
#ifdef CONFIG_SCHED_MC
6890 6891 6892
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6893
#elif defined(CONFIG_SCHED_SMT)
6894 6895 6896
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
6897
#else
6898
	group = cpu;
L
Linus Torvalds 已提交
6899
#endif
6900 6901 6902
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6903 6904 6905 6906
}

#ifdef CONFIG_NUMA
/*
6907 6908 6909
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6910
 */
6911
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6912
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6913

6914
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6915
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6916

6917
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6918
				 struct sched_group **sg, cpumask_t *nodemask)
6919
{
6920 6921
	int group;

6922 6923 6924
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
6925 6926 6927 6928

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6929
}
6930

6931 6932 6933 6934 6935 6936 6937
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6938 6939 6940
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6941

6942 6943 6944 6945 6946 6947 6948 6949
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6950

6951 6952 6953 6954
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6955
}
6956
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6957

6958
#ifdef CONFIG_NUMA
6959
/* Free memory allocated for various sched_group structures */
6960
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6961
{
6962
	int cpu, i;
6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6974 6975 6976
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6993
#else /* !CONFIG_NUMA */
6994
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6995 6996
{
}
6997
#endif /* CONFIG_NUMA */
6998

6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7025 7026
	sd->groups->__cpu_power = 0;

7027 7028 7029 7030 7031 7032 7033 7034 7035 7036
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7037
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7038 7039 7040 7041 7042 7043 7044 7045
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7046
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7047 7048 7049 7050
		group = group->next;
	} while (group != child->groups);
}

7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7062
	sd->level = SD_LV_##type;				\
7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7111 7112 7113 7114
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7115 7116 7117 7118 7119 7120
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7146
/*
7147 7148
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7149
 */
7150 7151
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7152 7153
{
	int i;
G
Gregory Haskins 已提交
7154
	struct root_domain *rd;
7155 7156
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7157 7158
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7159
	int sd_allnodes = 0;
7160 7161 7162 7163

	/*
	 * Allocate the per-node list of sched groups
	 */
7164
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7165
				    GFP_KERNEL);
7166 7167
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7168
		return -ENOMEM;
7169 7170
	}
#endif
L
Linus Torvalds 已提交
7171

7172
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7173 7174
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7175 7176 7177
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7178 7179 7180
		return -ENOMEM;
	}

7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7200
	/*
7201
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7202
	 */
7203
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7204
		struct sched_domain *sd = NULL, *p;
7205
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7206

7207 7208
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7209 7210

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7211
		if (cpus_weight(*cpu_map) >
7212
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7213
			sd = &per_cpu(allnodes_domains, i);
7214
			SD_INIT(sd, ALLNODES);
7215
			set_domain_attribute(sd, attr);
7216
			sd->span = *cpu_map;
7217
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7218
			p = sd;
7219
			sd_allnodes = 1;
7220 7221 7222
		} else
			p = NULL;

L
Linus Torvalds 已提交
7223
		sd = &per_cpu(node_domains, i);
7224
		SD_INIT(sd, NODE);
7225
		set_domain_attribute(sd, attr);
7226
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7227
		sd->parent = p;
7228 7229
		if (p)
			p->child = sd;
7230
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7231 7232 7233 7234
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7235
		SD_INIT(sd, CPU);
7236
		set_domain_attribute(sd, attr);
7237
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7238
		sd->parent = p;
7239 7240
		if (p)
			p->child = sd;
7241
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7242

7243 7244 7245
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7246
		SD_INIT(sd, MC);
7247
		set_domain_attribute(sd, attr);
7248 7249 7250
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7251
		p->child = sd;
7252
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7253 7254
#endif

L
Linus Torvalds 已提交
7255 7256 7257
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7258
		SD_INIT(sd, SIBLING);
7259
		set_domain_attribute(sd, attr);
7260
		sd->span = per_cpu(cpu_sibling_map, i);
7261
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7262
		sd->parent = p;
7263
		p->child = sd;
7264
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7265 7266 7267 7268 7269
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7270
	for_each_cpu_mask(i, *cpu_map) {
7271 7272 7273 7274 7275 7276
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7277 7278
			continue;

I
Ingo Molnar 已提交
7279
		init_sched_build_groups(this_sibling_map, cpu_map,
7280 7281
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7282 7283 7284
	}
#endif

7285 7286 7287
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
7288 7289 7290 7291 7292 7293
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7294
			continue;
7295

I
Ingo Molnar 已提交
7296
		init_sched_build_groups(this_core_map, cpu_map,
7297 7298
					&cpu_to_core_group,
					send_covered, tmpmask);
7299 7300 7301
	}
#endif

L
Linus Torvalds 已提交
7302 7303
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
7304 7305
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7306

7307 7308 7309
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7310 7311
			continue;

7312 7313 7314
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7315 7316 7317 7318
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7319 7320 7321 7322 7323 7324 7325
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7326 7327 7328 7329

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
7330 7331 7332
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7333 7334
		int j;

7335 7336 7337 7338 7339
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7340
			sched_group_nodes[i] = NULL;
7341
			continue;
7342
		}
7343

7344
		sched_domain_node_span(i, domainspan);
7345
		cpus_and(*domainspan, *domainspan, *cpu_map);
7346

7347
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7348 7349 7350 7351 7352
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7353
		sched_group_nodes[i] = sg;
7354
		for_each_cpu_mask(j, *nodemask) {
7355
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7356

7357 7358 7359
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7360
		sg->__cpu_power = 0;
7361
		sg->cpumask = *nodemask;
7362
		sg->next = sg;
7363
		cpus_or(*covered, *covered, *nodemask);
7364 7365 7366
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
7367
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7368
			int n = (i + j) % MAX_NUMNODES;
7369
			node_to_cpumask_ptr(pnodemask, n);
7370

7371 7372 7373 7374
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7375 7376
				break;

7377 7378
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7379 7380
				continue;

7381 7382
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7383 7384 7385
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7386
				goto error;
7387
			}
7388
			sg->__cpu_power = 0;
7389
			sg->cpumask = *tmpmask;
7390
			sg->next = prev->next;
7391
			cpus_or(*covered, *covered, *tmpmask);
7392 7393 7394 7395
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7396 7397 7398
#endif

	/* Calculate CPU power for physical packages and nodes */
7399
#ifdef CONFIG_SCHED_SMT
7400
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7401 7402
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7403
		init_sched_groups_power(i, sd);
7404
	}
L
Linus Torvalds 已提交
7405
#endif
7406
#ifdef CONFIG_SCHED_MC
7407
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7408 7409
		struct sched_domain *sd = &per_cpu(core_domains, i);

7410
		init_sched_groups_power(i, sd);
7411 7412
	}
#endif
7413

7414
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7415 7416
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7417
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7418 7419
	}

7420
#ifdef CONFIG_NUMA
7421 7422
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
7423

7424 7425
	if (sd_allnodes) {
		struct sched_group *sg;
7426

7427 7428
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7429 7430
		init_numa_sched_groups_power(sg);
	}
7431 7432
#endif

L
Linus Torvalds 已提交
7433
	/* Attach the domains */
7434
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7435 7436 7437
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7438 7439
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7440 7441 7442
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7443
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7444
	}
7445

7446
	SCHED_CPUMASK_FREE((void *)allmasks);
7447 7448
	return 0;

7449
#ifdef CONFIG_NUMA
7450
error:
7451 7452
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7453
	return -ENOMEM;
7454
#endif
L
Linus Torvalds 已提交
7455
}
P
Paul Jackson 已提交
7456

7457 7458 7459 7460 7461
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7462 7463
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7464 7465
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7466 7467 7468 7469 7470 7471 7472 7473

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7474 7475 7476 7477
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489
/*
 * Free current domain masks.
 * Called after all cpus are attached to NULL domain.
 */
static void free_sched_domains(void)
{
	ndoms_cur = 0;
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = &fallback_doms;
}

7490
/*
I
Ingo Molnar 已提交
7491
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7492 7493
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7494
 */
7495
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7496
{
7497 7498
	int err;

7499
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7500 7501 7502 7503 7504
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7505
	dattr_cur = NULL;
7506
	err = build_sched_domains(doms_cur);
7507
	register_sched_domain_sysctl();
7508 7509

	return err;
7510 7511
}

7512 7513
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7514
{
7515
	free_sched_groups(cpu_map, tmpmask);
7516
}
L
Linus Torvalds 已提交
7517

7518 7519 7520 7521
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7522
static void detach_destroy_domains(const cpumask_t *cpu_map)
7523
{
7524
	cpumask_t tmpmask;
7525 7526
	int i;

7527 7528
	unregister_sched_domain_sysctl();

7529
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7530
		cpu_attach_domain(NULL, &def_root_domain, i);
7531
	synchronize_sched();
7532
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7533 7534
}

7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7551 7552
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7553
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7554 7555 7556 7557
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7558 7559 7560
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7561 7562 7563
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7564 7565
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7566 7567 7568 7569 7570 7571
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
7572 7573
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7574 7575 7576
{
	int i, j;

7577
	mutex_lock(&sched_domains_mutex);
7578

7579 7580 7581
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7582 7583 7584 7585
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7586
		dattr_new = NULL;
P
Paul Jackson 已提交
7587 7588 7589 7590 7591
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7592 7593
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7605 7606
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7607 7608 7609
				goto match2;
		}
		/* no match - add a new doms_new */
7610 7611
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7612 7613 7614 7615 7616 7617 7618
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7619
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7620
	doms_cur = doms_new;
7621
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7622
	ndoms_cur = ndoms_new;
7623 7624

	register_sched_domain_sysctl();
7625

7626
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7627 7628
}

7629
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7630
int arch_reinit_sched_domains(void)
7631 7632 7633
{
	int err;

7634
	get_online_cpus();
7635
	mutex_lock(&sched_domains_mutex);
7636
	detach_destroy_domains(&cpu_online_map);
7637
	free_sched_domains();
7638
	err = arch_init_sched_domains(&cpu_online_map);
7639
	mutex_unlock(&sched_domains_mutex);
7640
	put_online_cpus();
7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7667 7668
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7669 7670 7671
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7672 7673
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7674 7675 7676 7677 7678 7679 7680
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7681 7682
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7683 7684 7685
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7706
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7707

L
Linus Torvalds 已提交
7708
/*
I
Ingo Molnar 已提交
7709
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7710
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7711
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7712 7713 7714 7715 7716
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
P
Peter Zijlstra 已提交
7717 7718
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7719 7720
	switch (action) {
	case CPU_DOWN_PREPARE:
7721
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7722 7723 7724 7725
		disable_runtime(cpu_rq(cpu));
		/* fall-through */
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
7726
		detach_destroy_domains(&cpu_online_map);
7727
		free_sched_domains();
L
Linus Torvalds 已提交
7728 7729
		return NOTIFY_OK;

P
Peter Zijlstra 已提交
7730

L
Linus Torvalds 已提交
7731
	case CPU_DOWN_FAILED:
7732
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7733
	case CPU_ONLINE:
7734
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7735 7736 7737 7738
		enable_runtime(cpu_rq(cpu));
		/* fall-through */
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7739
	case CPU_DEAD:
7740
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7741 7742 7743 7744 7745 7746 7747 7748
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

7749 7750 7751 7752 7753 7754 7755
#ifndef CONFIG_CPUSETS
	/*
	 * Create default domain partitioning if cpusets are disabled.
	 * Otherwise we let cpusets rebuild the domains based on the
	 * current setup.
	 */

L
Linus Torvalds 已提交
7756
	/* The hotplug lock is already held by cpu_up/cpu_down */
7757
	arch_init_sched_domains(&cpu_online_map);
7758
#endif
L
Linus Torvalds 已提交
7759 7760 7761 7762 7763 7764

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7765 7766
	cpumask_t non_isolated_cpus;

7767 7768 7769 7770 7771
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7772
	get_online_cpus();
7773
	mutex_lock(&sched_domains_mutex);
7774
	arch_init_sched_domains(&cpu_online_map);
7775
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7776 7777
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7778
	mutex_unlock(&sched_domains_mutex);
7779
	put_online_cpus();
L
Linus Torvalds 已提交
7780 7781
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7782
	init_hrtick();
7783 7784

	/* Move init over to a non-isolated CPU */
7785
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7786
		BUG();
I
Ingo Molnar 已提交
7787
	sched_init_granularity();
L
Linus Torvalds 已提交
7788 7789 7790 7791
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7792
	sched_init_granularity();
L
Linus Torvalds 已提交
7793 7794 7795 7796 7797 7798 7799 7800 7801 7802
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7803
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7804 7805
{
	cfs_rq->tasks_timeline = RB_ROOT;
7806
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7807 7808 7809
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7810
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7811 7812
}

P
Peter Zijlstra 已提交
7813 7814 7815 7816 7817 7818 7819
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
7820
		INIT_LIST_HEAD(array->queue + i);
P
Peter Zijlstra 已提交
7821 7822 7823 7824 7825
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7826
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7827 7828
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7829 7830 7831 7832 7833 7834 7835
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7836 7837
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7838

7839
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7840
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7841 7842
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7843 7844
}

P
Peter Zijlstra 已提交
7845
#ifdef CONFIG_FAIR_GROUP_SCHED
7846 7847 7848
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7849
{
7850
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7851 7852 7853 7854 7855 7856 7857
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7858 7859 7860 7861
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7862 7863 7864 7865 7866
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7867 7868
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7869
	se->load.inv_weight = 0;
7870
	se->parent = parent;
P
Peter Zijlstra 已提交
7871
}
7872
#endif
P
Peter Zijlstra 已提交
7873

7874
#ifdef CONFIG_RT_GROUP_SCHED
7875 7876 7877
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7878
{
7879 7880
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7881 7882 7883 7884
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7885
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7886 7887 7888 7889
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7890 7891 7892
	if (!rt_se)
		return;

7893 7894 7895 7896 7897
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7898
	rt_se->my_q = rt_rq;
7899
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7900 7901 7902 7903
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7904 7905
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7906
	int i, j;
7907 7908 7909 7910 7911 7912 7913
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7914 7915 7916
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
7917 7918 7919 7920 7921 7922
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
7923
		ptr = (unsigned long)alloc_bootmem(alloc_size);
7924 7925 7926 7927 7928 7929 7930

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7931 7932 7933 7934 7935 7936 7937

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7938 7939
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
7940 7941 7942 7943 7944
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7945 7946 7947 7948 7949 7950 7951 7952
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7953 7954
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7955
	}
I
Ingo Molnar 已提交
7956

G
Gregory Haskins 已提交
7957 7958 7959 7960
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7961 7962 7963 7964 7965 7966
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7967 7968 7969
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
7970 7971
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7972

7973
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
7974
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7975 7976 7977 7978 7979 7980
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
7981 7982
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
7983

7984
	for_each_possible_cpu(i) {
7985
		struct rq *rq;
L
Linus Torvalds 已提交
7986 7987 7988

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7989
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7990
		rq->nr_running = 0;
I
Ingo Molnar 已提交
7991
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7992
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7993
#ifdef CONFIG_FAIR_GROUP_SCHED
7994
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7995
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8016
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8017
#elif defined CONFIG_USER_SCHED
8018 8019
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8031
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8032
				&per_cpu(init_cfs_rq, i),
8033 8034
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8035

8036
#endif
D
Dhaval Giani 已提交
8037 8038 8039
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8040
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8041
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8042
#ifdef CONFIG_CGROUP_SCHED
8043
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8044
#elif defined CONFIG_USER_SCHED
8045
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8046
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8047
				&per_cpu(init_rt_rq, i),
8048 8049
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8050
#endif
I
Ingo Molnar 已提交
8051
#endif
L
Linus Torvalds 已提交
8052

I
Ingo Molnar 已提交
8053 8054
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8055
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8056
		rq->sd = NULL;
G
Gregory Haskins 已提交
8057
		rq->rd = NULL;
L
Linus Torvalds 已提交
8058
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8059
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8060
		rq->push_cpu = 0;
8061
		rq->cpu = i;
8062
		rq->online = 0;
L
Linus Torvalds 已提交
8063 8064
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8065
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8066
#endif
P
Peter Zijlstra 已提交
8067
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8068 8069 8070
		atomic_set(&rq->nr_iowait, 0);
	}

8071
	set_load_weight(&init_task);
8072

8073 8074 8075 8076
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8077 8078 8079 8080
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

8081 8082 8083 8084
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8098 8099 8100 8101
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8102 8103

	scheduler_running = 1;
L
Linus Torvalds 已提交
8104 8105 8106 8107 8108
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8109
#ifdef in_atomic
L
Linus Torvalds 已提交
8110 8111 8112 8113 8114 8115 8116
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
8117
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
8118 8119 8120
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
8121
		debug_show_held_locks(current);
8122 8123
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
8124 8125 8126 8127 8128 8129 8130 8131
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8132 8133 8134
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8135

8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8147 8148
void normalize_rt_tasks(void)
{
8149
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8150
	unsigned long flags;
8151
	struct rq *rq;
L
Linus Torvalds 已提交
8152

8153
	read_lock_irqsave(&tasklist_lock, flags);
8154
	do_each_thread(g, p) {
8155 8156 8157 8158 8159 8160
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8161 8162
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8163 8164 8165
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8166
#endif
I
Ingo Molnar 已提交
8167 8168 8169 8170 8171 8172 8173 8174

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8175
			continue;
I
Ingo Molnar 已提交
8176
		}
L
Linus Torvalds 已提交
8177

8178
		spin_lock(&p->pi_lock);
8179
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8180

8181
		normalize_task(rq, p);
8182

8183
		__task_rq_unlock(rq);
8184
		spin_unlock(&p->pi_lock);
8185 8186
	} while_each_thread(g, p);

8187
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8188 8189 8190
}

#endif /* CONFIG_MAGIC_SYSRQ */
8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8209
struct task_struct *curr_task(int cpu)
8210 8211 8212 8213 8214 8215 8216 8217 8218 8219
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8220 8221
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8222 8223 8224 8225 8226 8227 8228
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8229
void set_curr_task(int cpu, struct task_struct *p)
8230 8231 8232 8233 8234
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8235

8236 8237
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8252 8253
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8254 8255
{
	struct cfs_rq *cfs_rq;
8256
	struct sched_entity *se, *parent_se;
8257
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8258 8259
	int i;

8260
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8261 8262
	if (!tg->cfs_rq)
		goto err;
8263
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8264 8265
	if (!tg->se)
		goto err;
8266 8267

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8268 8269

	for_each_possible_cpu(i) {
8270
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8271

P
Peter Zijlstra 已提交
8272 8273
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8274 8275 8276
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8277 8278
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8279 8280 8281
		if (!se)
			goto err;

8282 8283
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8302
#else /* !CONFG_FAIR_GROUP_SCHED */
8303 8304 8305 8306
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8307 8308
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8320
#endif /* CONFIG_FAIR_GROUP_SCHED */
8321 8322

#ifdef CONFIG_RT_GROUP_SCHED
8323 8324 8325 8326
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8327 8328
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8340 8341
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8342 8343
{
	struct rt_rq *rt_rq;
8344
	struct sched_rt_entity *rt_se, *parent_se;
8345 8346 8347
	struct rq *rq;
	int i;

8348
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8349 8350
	if (!tg->rt_rq)
		goto err;
8351
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8352 8353 8354
	if (!tg->rt_se)
		goto err;

8355 8356
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8357 8358 8359 8360

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8361 8362 8363 8364
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8365

P
Peter Zijlstra 已提交
8366 8367 8368 8369
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8370

8371 8372
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8373 8374
	}

8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8391
#else /* !CONFIG_RT_GROUP_SCHED */
8392 8393 8394 8395
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8396 8397
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8409
#endif /* CONFIG_RT_GROUP_SCHED */
8410

8411
#ifdef CONFIG_GROUP_SCHED
8412 8413 8414 8415 8416 8417 8418 8419
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8420
struct task_group *sched_create_group(struct task_group *parent)
8421 8422 8423 8424 8425 8426 8427 8428 8429
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8430
	if (!alloc_fair_sched_group(tg, parent))
8431 8432
		goto err;

8433
	if (!alloc_rt_sched_group(tg, parent))
8434 8435
		goto err;

8436
	spin_lock_irqsave(&task_group_lock, flags);
8437
	for_each_possible_cpu(i) {
8438 8439
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8440
	}
P
Peter Zijlstra 已提交
8441
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8442 8443 8444 8445 8446 8447

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	list_add_rcu(&tg->siblings, &parent->children);
	INIT_LIST_HEAD(&tg->children);
8448
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8449

8450
	return tg;
S
Srivatsa Vaddagiri 已提交
8451 8452

err:
P
Peter Zijlstra 已提交
8453
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8454 8455 8456
	return ERR_PTR(-ENOMEM);
}

8457
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8458
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8459 8460
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8461
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8462 8463
}

8464
/* Destroy runqueue etc associated with a task group */
8465
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8466
{
8467
	unsigned long flags;
8468
	int i;
S
Srivatsa Vaddagiri 已提交
8469

8470
	spin_lock_irqsave(&task_group_lock, flags);
8471
	for_each_possible_cpu(i) {
8472 8473
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8474
	}
P
Peter Zijlstra 已提交
8475
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8476
	list_del_rcu(&tg->siblings);
8477
	spin_unlock_irqrestore(&task_group_lock, flags);
8478 8479

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8480
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8481 8482
}

8483
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8484 8485 8486
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8487 8488
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8489 8490 8491 8492 8493 8494 8495 8496 8497
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8498
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8499 8500
	on_rq = tsk->se.on_rq;

8501
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8502
		dequeue_task(rq, tsk, 0);
8503 8504
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8505

P
Peter Zijlstra 已提交
8506
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8507

P
Peter Zijlstra 已提交
8508 8509 8510 8511 8512
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8513 8514 8515
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8516
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8517 8518 8519

	task_rq_unlock(rq, &flags);
}
8520
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8521

8522
#ifdef CONFIG_FAIR_GROUP_SCHED
8523
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8524 8525 8526 8527 8528
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8529
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8530 8531 8532
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8533
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8534

8535
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8536
		enqueue_entity(cfs_rq, se, 0);
8537
}
8538

8539 8540 8541 8542 8543 8544 8545 8546 8547
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8548 8549
}

8550 8551
static DEFINE_MUTEX(shares_mutex);

8552
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8553 8554
{
	int i;
8555
	unsigned long flags;
8556

8557 8558 8559 8560 8561 8562
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8563 8564
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8565 8566
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8567

8568
	mutex_lock(&shares_mutex);
8569
	if (tg->shares == shares)
8570
		goto done;
S
Srivatsa Vaddagiri 已提交
8571

8572
	spin_lock_irqsave(&task_group_lock, flags);
8573 8574
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8575
	list_del_rcu(&tg->siblings);
8576
	spin_unlock_irqrestore(&task_group_lock, flags);
8577 8578 8579 8580 8581 8582 8583 8584

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8585
	tg->shares = shares;
8586 8587 8588 8589 8590
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8591
		set_se_shares(tg->se[i], shares);
8592
	}
S
Srivatsa Vaddagiri 已提交
8593

8594 8595 8596 8597
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8598
	spin_lock_irqsave(&task_group_lock, flags);
8599 8600
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8601
	list_add_rcu(&tg->siblings, &tg->parent->children);
8602
	spin_unlock_irqrestore(&task_group_lock, flags);
8603
done:
8604
	mutex_unlock(&shares_mutex);
8605
	return 0;
S
Srivatsa Vaddagiri 已提交
8606 8607
}

8608 8609 8610 8611
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8612
#endif
8613

8614
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8615
/*
P
Peter Zijlstra 已提交
8616
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8617
 */
P
Peter Zijlstra 已提交
8618 8619 8620 8621 8622 8623 8624
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8625
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8626 8627
}

8628 8629 8630
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
8631
	struct task_group *tgi, *parent = tg->parent;
8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

8655
	return total + to_ratio(period, runtime) <=
8656 8657 8658 8659
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8660
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8661 8662 8663
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8664
	unsigned long global_ratio =
8665
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8666 8667

	rcu_read_lock();
P
Peter Zijlstra 已提交
8668 8669 8670
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8671

8672 8673
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8674 8675
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8676

P
Peter Zijlstra 已提交
8677
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8678
}
8679
#endif
P
Peter Zijlstra 已提交
8680

8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8692 8693
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8694
{
P
Peter Zijlstra 已提交
8695
	int i, err = 0;
P
Peter Zijlstra 已提交
8696 8697

	mutex_lock(&rt_constraints_mutex);
8698
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8699
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8700 8701 8702
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8703 8704 8705 8706
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8707 8708

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8709 8710
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8711 8712 8713 8714 8715 8716 8717 8718 8719

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8720
 unlock:
8721
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8722 8723 8724
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8725 8726
}

8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8739 8740 8741 8742
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8743
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8744 8745
		return -1;

8746
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8747 8748 8749
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8772 8773
	struct task_group *tg = &root_task_group;
	u64 rt_runtime, rt_period;
8774 8775
	int ret = 0;

8776 8777 8778
	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8779
	mutex_lock(&rt_constraints_mutex);
8780
	if (!__rt_schedulable(tg, rt_period, rt_runtime))
8781 8782 8783 8784 8785
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8786
#else /* !CONFIG_RT_GROUP_SCHED */
8787 8788
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8802 8803
	return 0;
}
8804
#endif /* CONFIG_RT_GROUP_SCHED */
8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8835

8836
#ifdef CONFIG_CGROUP_SCHED
8837 8838

/* return corresponding task_group object of a cgroup */
8839
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8840
{
8841 8842
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8843 8844 8845
}

static struct cgroup_subsys_state *
8846
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8847
{
8848
	struct task_group *tg, *parent;
8849

8850
	if (!cgrp->parent) {
8851
		/* This is early initialization for the top cgroup */
8852
		init_task_group.css.cgroup = cgrp;
8853 8854 8855
		return &init_task_group.css;
	}

8856 8857
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8858 8859 8860 8861
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8862
	tg->css.cgroup = cgrp;
8863 8864 8865 8866

	return &tg->css;
}

I
Ingo Molnar 已提交
8867 8868
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8869
{
8870
	struct task_group *tg = cgroup_tg(cgrp);
8871 8872 8873 8874

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8875 8876 8877
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8878
{
8879 8880
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8881
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8882 8883
		return -EINVAL;
#else
8884 8885 8886
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8887
#endif
8888 8889 8890 8891 8892

	return 0;
}

static void
8893
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8894 8895 8896 8897 8898
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8899
#ifdef CONFIG_FAIR_GROUP_SCHED
8900
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8901
				u64 shareval)
8902
{
8903
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8904 8905
}

8906
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8907
{
8908
	struct task_group *tg = cgroup_tg(cgrp);
8909 8910 8911

	return (u64) tg->shares;
}
8912
#endif /* CONFIG_FAIR_GROUP_SCHED */
8913

8914
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8915
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8916
				s64 val)
P
Peter Zijlstra 已提交
8917
{
8918
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8919 8920
}

8921
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8922
{
8923
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8924
}
8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8936
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8937

8938
static struct cftype cpu_files[] = {
8939
#ifdef CONFIG_FAIR_GROUP_SCHED
8940 8941
	{
		.name = "shares",
8942 8943
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8944
	},
8945 8946
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8947
	{
P
Peter Zijlstra 已提交
8948
		.name = "rt_runtime_us",
8949 8950
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8951
	},
8952 8953
	{
		.name = "rt_period_us",
8954 8955
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8956
	},
8957
#endif
8958 8959 8960 8961
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8962
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8963 8964 8965
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8966 8967 8968 8969 8970 8971 8972
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8973 8974 8975
	.early_init	= 1,
};

8976
#endif	/* CONFIG_CGROUP_SCHED */
8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8997
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8998
{
8999
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9012
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9029
static void
9030
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9031
{
9032
	struct cpuacct *ca = cgroup_ca(cgrp);
9033 9034 9035 9036 9037 9038

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9039
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9040
{
9041
	struct cpuacct *ca = cgroup_ca(cgrp);
9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9083 9084 9085
static struct cftype files[] = {
	{
		.name = "usage",
9086 9087
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9088 9089 9090
	},
};

9091
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9092
{
9093
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */