sched.c 224.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
99
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
100
 */
101
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
102

I
Ingo Molnar 已提交
103 104 105
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
106 107 108
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
109
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
110 111 112
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
113

114 115 116 117 118
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

140 141
static inline int rt_policy(int policy)
{
142
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
143 144 145 146 147 148 149 150 151
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
152
/*
I
Ingo Molnar 已提交
153
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
154
 */
I
Ingo Molnar 已提交
155 156 157 158 159
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

160
struct rt_bandwidth {
I
Ingo Molnar 已提交
161 162 163 164 165
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
199 200
	spin_lock_init(&rt_b->rt_runtime_lock);

201 202 203 204 205 206
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

207 208 209 210
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
}
211

212 213 214 215
static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

216
	if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

243 244 245 246 247 248
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

249
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
250

251 252
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
253 254
struct cfs_rq;

P
Peter Zijlstra 已提交
255 256
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
257
/* task group related information */
258
struct task_group {
259
#ifdef CONFIG_CGROUP_SCHED
260 261
	struct cgroup_subsys_state css;
#endif
262 263

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
264 265 266 267 268
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
269 270 271 272 273 274
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

275
	struct rt_bandwidth rt_bandwidth;
276
#endif
277

278
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
279
	struct list_head list;
P
Peter Zijlstra 已提交
280 281 282 283

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
284 285
};

D
Dhaval Giani 已提交
286
#ifdef CONFIG_USER_SCHED
287 288 289 290 291 292 293 294

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

295
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
296 297 298 299
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
300
#endif /* CONFIG_FAIR_GROUP_SCHED */
301 302 303 304

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
305
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
306
#else /* !CONFIG_USER_SCHED */
307
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
308
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
309

310
/* task_group_lock serializes add/remove of task groups and also changes to
311 312
 * a task group's cpu shares.
 */
313
static DEFINE_SPINLOCK(task_group_lock);
314

315 316 317
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
318
#else /* !CONFIG_USER_SCHED */
319
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
320
#endif /* CONFIG_USER_SCHED */
321

322
/*
323 324 325 326
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
327 328 329
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
330
#define MIN_SHARES	2
331
#define MAX_SHARES	(1UL << 18)
332

333 334 335
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
336
/* Default task group.
I
Ingo Molnar 已提交
337
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
338
 */
339
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
340 341

/* return group to which a task belongs */
342
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
343
{
344
	struct task_group *tg;
345

346
#ifdef CONFIG_USER_SCHED
347
	tg = p->user->tg;
348
#elif defined(CONFIG_CGROUP_SCHED)
349 350
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
351
#else
I
Ingo Molnar 已提交
352
	tg = &init_task_group;
353
#endif
354
	return tg;
S
Srivatsa Vaddagiri 已提交
355 356 357
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
358
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
359
{
360
#ifdef CONFIG_FAIR_GROUP_SCHED
361 362
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
363
#endif
P
Peter Zijlstra 已提交
364

365
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
366 367
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
368
#endif
S
Srivatsa Vaddagiri 已提交
369 370 371 372
}

#else

P
Peter Zijlstra 已提交
373
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
374 375 376 377
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
378

379
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
380

I
Ingo Molnar 已提交
381 382 383 384 385 386
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
387
	u64 min_vruntime;
388
	u64 pair_start;
I
Ingo Molnar 已提交
389 390 391

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
392 393 394 395 396 397

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
398 399
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
400
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
401 402 403

	unsigned long nr_spread_over;

404
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
405 406
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
407 408
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
409 410 411 412 413 414
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
415 416
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
417 418 419

#ifdef CONFIG_SMP
	/*
420
	 * the part of load.weight contributed by tasks
421
	 */
422
	unsigned long task_weight;
423

424 425 426 427 428 429 430
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
431

432 433 434 435
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
436 437 438 439 440

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
441
#endif
I
Ingo Molnar 已提交
442 443
#endif
};
L
Linus Torvalds 已提交
444

I
Ingo Molnar 已提交
445 446 447
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
448
	unsigned long rt_nr_running;
449
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
450 451
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
452
#ifdef CONFIG_SMP
453
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
454
	int overloaded;
P
Peter Zijlstra 已提交
455
#endif
P
Peter Zijlstra 已提交
456
	int rt_throttled;
P
Peter Zijlstra 已提交
457
	u64 rt_time;
P
Peter Zijlstra 已提交
458
	u64 rt_runtime;
I
Ingo Molnar 已提交
459
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
460
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
461

462
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
463 464
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
465 466 467 468 469
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
470 471
};

G
Gregory Haskins 已提交
472 473 474 475
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
476 477
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
478 479 480 481 482 483 484 485
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
486

I
Ingo Molnar 已提交
487
	/*
488 489 490 491
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
492
	atomic_t rto_count;
493 494 495
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
496 497
};

498 499 500 501
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
502 503 504 505
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
506 507 508 509 510 511 512
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
513
struct rq {
514 515
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
516 517 518 519 520 521

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
522 523
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
524
	unsigned char idle_at_tick;
525
#ifdef CONFIG_NO_HZ
526
	unsigned long last_tick_seen;
527 528
	unsigned char in_nohz_recently;
#endif
529 530
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
531 532 533 534
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
535 536
	struct rt_rq rt;

I
Ingo Molnar 已提交
537
#ifdef CONFIG_FAIR_GROUP_SCHED
538 539
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
540 541
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
542
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
543 544 545 546 547 548 549 550 551 552
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

553
	struct task_struct *curr, *idle;
554
	unsigned long next_balance;
L
Linus Torvalds 已提交
555
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
556

557
	u64 clock;
I
Ingo Molnar 已提交
558

L
Linus Torvalds 已提交
559 560 561
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
562
	struct root_domain *rd;
L
Linus Torvalds 已提交
563 564 565 566 567
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
568 569
	/* cpu of this runqueue: */
	int cpu;
570
	int online;
L
Linus Torvalds 已提交
571

572
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
573

574
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
575 576 577
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
578
#ifdef CONFIG_SCHED_HRTICK
579 580 581 582
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
583 584 585
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
586 587 588 589 590
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
591 592 593 594
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
595 596

	/* schedule() stats */
597 598 599
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
600 601

	/* try_to_wake_up() stats */
602 603
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
604 605

	/* BKL stats */
606
	unsigned int bkl_count;
L
Linus Torvalds 已提交
607 608 609
#endif
};

610
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
611

612
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
613
{
614
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
615 616
}

617 618 619 620 621 622 623 624 625
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
626 627
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
628
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
629 630 631 632
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
633 634
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
635 636 637 638 639 640

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

641 642 643 644 645
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
646 647 648 649 650 651 652 653 654
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
673 674 675
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
676 677 678 679

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
680
enum {
P
Peter Zijlstra 已提交
681
#include "sched_features.h"
I
Ingo Molnar 已提交
682 683
};

P
Peter Zijlstra 已提交
684 685 686 687 688
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
689
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
690 691 692 693 694 695 696 697 698
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

699
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
700 701 702 703 704 705
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

706
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
734
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
764
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
807

808 809 810 811 812 813
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
814 815
/*
 * ratelimit for updating the group shares.
816
 * default: 0.25ms
P
Peter Zijlstra 已提交
817
 */
818
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
819

P
Peter Zijlstra 已提交
820
/*
P
Peter Zijlstra 已提交
821
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
822 823
 * default: 1s
 */
P
Peter Zijlstra 已提交
824
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
825

826 827
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
828 829 830 831 832
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
833

834 835 836 837 838 839 840
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
841
	if (sysctl_sched_rt_runtime < 0)
842 843 844 845
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
846

L
Linus Torvalds 已提交
847
#ifndef prepare_arch_switch
848 849 850 851 852 853
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

854 855 856 857 858
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

859
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
860
static inline int task_running(struct rq *rq, struct task_struct *p)
861
{
862
	return task_current(rq, p);
863 864
}

865
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
866 867 868
{
}

869
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
870
{
871 872 873 874
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
875 876 877 878 879 880 881
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

882 883 884 885
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
886
static inline int task_running(struct rq *rq, struct task_struct *p)
887 888 889 890
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
891
	return task_current(rq, p);
892 893 894
#endif
}

895
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

912
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
913 914 915 916 917 918 919 920 921 922 923 924
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
925
#endif
926 927
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
928

929 930 931 932
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
933
static inline struct rq *__task_rq_lock(struct task_struct *p)
934 935
	__acquires(rq->lock)
{
936 937 938 939 940
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
941 942 943 944
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
945 946
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
947
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
948 949
 * explicitly disabling preemption.
 */
950
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
951 952
	__acquires(rq->lock)
{
953
	struct rq *rq;
L
Linus Torvalds 已提交
954

955 956 957 958 959 960
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
961 962 963 964
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
965
static void __task_rq_unlock(struct rq *rq)
966 967 968 969 970
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

971
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
972 973 974 975 976 977
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
978
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
979
 */
A
Alexey Dobriyan 已提交
980
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
981 982
	__acquires(rq->lock)
{
983
	struct rq *rq;
L
Linus Torvalds 已提交
984 985 986 987 988 989 990 991

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1013
	if (!cpu_active(cpu_of(rq)))
1014
		return 0;
P
Peter Zijlstra 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1035
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1036 1037 1038 1039 1040 1041
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1042
#ifdef CONFIG_SMP
1043 1044 1045 1046
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1047
{
1048
	struct rq *rq = arg;
1049

1050 1051 1052 1053
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1054 1055
}

1056 1057 1058 1059 1060 1061
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1062
{
1063 1064
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1065

1066 1067 1068 1069 1070 1071 1072 1073
	timer->expires = time;

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1088
		hrtick_clear(cpu_rq(cpu));
1089 1090 1091 1092 1093 1094
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1095
static __init void init_hrtick(void)
1096 1097 1098
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1109

A
Andrew Morton 已提交
1110
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1111 1112
{
}
1113
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1114

1115
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1116
{
1117 1118
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1119

1120 1121 1122 1123
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1124

1125 1126 1127
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
P
Peter Zijlstra 已提交
1128
}
A
Andrew Morton 已提交
1129
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1130 1131 1132 1133 1134 1135 1136 1137
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1138 1139 1140
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1141
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1142

I
Ingo Molnar 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1156
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1157 1158 1159 1160 1161
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1162
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1163 1164
		return;

1165
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1228
#endif /* CONFIG_NO_HZ */
1229

1230
#else /* !CONFIG_SMP */
1231
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1232 1233
{
	assert_spin_locked(&task_rq(p)->lock);
1234
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1235
}
1236
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1237

1238 1239 1240 1241 1242 1243 1244 1245
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1246 1247 1248
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1249
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1250

1251 1252 1253
/*
 * delta *= weight / lw
 */
1254
static unsigned long
1255 1256 1257 1258 1259
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1260 1261 1262 1263 1264 1265 1266
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1267 1268 1269 1270 1271

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1272
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1273
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1274 1275
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1276
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1277

1278
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1279 1280
}

1281
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1282 1283
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1284
	lw->inv_weight = 0;
1285 1286
}

1287
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1288 1289
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1290
	lw->inv_weight = 0;
1291 1292
}

1293 1294 1295 1296
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1297
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1298 1299 1300 1301
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1313 1314 1315
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1316 1317
 */
static const int prio_to_weight[40] = {
1318 1319 1320 1321 1322 1323 1324 1325
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1326 1327
};

1328 1329 1330 1331 1332 1333 1334
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1335
static const u32 prio_to_wmult[40] = {
1336 1337 1338 1339 1340 1341 1342 1343
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1344
};
1345

I
Ingo Molnar 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1371

1372 1373 1374 1375 1376 1377
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1388
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1389
typedef int (*tg_visitor)(struct task_group *, void *);
1390 1391 1392 1393 1394

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1395
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1396 1397
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1398
	int ret;
1399 1400 1401 1402

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1403 1404 1405
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1406 1407 1408 1409 1410 1411 1412
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1413 1414 1415
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1416 1417 1418 1419 1420

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1421
out_unlock:
1422
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1423 1424

	return ret;
1425 1426
}

P
Peter Zijlstra 已提交
1427 1428 1429
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1430
}
P
Peter Zijlstra 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (rq->nr_running)
		rq->avg_load_per_task = rq->load.weight / rq->nr_running;

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1449 1450 1451 1452 1453 1454 1455

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1456
__update_group_shares_cpu(struct task_group *tg, int cpu,
1457
			  unsigned long sd_shares, unsigned long sd_rq_weight)
1458
{
1459 1460 1461 1462
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1463
	if (!tg->se[cpu])
1464 1465
		return;

1466
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1478 1479 1480
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1481 1482 1483 1484 1485 1486
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1487
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1488 1489 1490 1491

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
1492
	tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1493
	tg->cfs_rq[cpu]->rq_weight = rq_weight;
1494 1495 1496 1497 1498 1499

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;

1500
	__set_se_shares(tg->se[cpu], shares);
1501
}
1502 1503

/*
1504 1505 1506
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1507
 */
P
Peter Zijlstra 已提交
1508
static int tg_shares_up(struct task_group *tg, void *data)
1509
{
1510 1511
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1512
	struct sched_domain *sd = data;
1513
	int i;
1514

1515 1516 1517
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1518 1519
	}

1520 1521 1522 1523 1524
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1525

P
Peter Zijlstra 已提交
1526 1527 1528
	if (!rq_weight)
		rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;

1529 1530 1531 1532 1533
	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
1534
		__update_group_shares_cpu(tg, i, shares, rq_weight);
1535 1536
		spin_unlock_irqrestore(&rq->lock, flags);
	}
P
Peter Zijlstra 已提交
1537 1538

	return 0;
1539 1540 1541
}

/*
1542 1543 1544
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1545
 */
P
Peter Zijlstra 已提交
1546
static int tg_load_down(struct task_group *tg, void *data)
1547
{
1548
	unsigned long load;
P
Peter Zijlstra 已提交
1549
	long cpu = (long)data;
1550

1551 1552 1553 1554 1555 1556 1557
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1558

1559
	tg->cfs_rq[cpu]->h_load = load;
1560

P
Peter Zijlstra 已提交
1561
	return 0;
1562 1563
}

1564
static void update_shares(struct sched_domain *sd)
1565
{
P
Peter Zijlstra 已提交
1566 1567 1568 1569 1570
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1571
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1572
	}
1573 1574
}

1575 1576 1577 1578 1579 1580 1581
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1582
static void update_h_load(long cpu)
1583
{
P
Peter Zijlstra 已提交
1584
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1585 1586 1587 1588
}

#else

1589
static inline void update_shares(struct sched_domain *sd)
1590 1591 1592
{
}

1593 1594 1595 1596
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1597 1598 1599 1600
#endif

#endif

V
Vegard Nossum 已提交
1601
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1602 1603
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1604
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1605 1606 1607
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1608
#endif
1609

I
Ingo Molnar 已提交
1610 1611
#include "sched_stats.h"
#include "sched_idletask.c"
1612 1613
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1614 1615 1616 1617 1618
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1619 1620
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1621

1622
static void inc_nr_running(struct rq *rq)
1623 1624 1625 1626
{
	rq->nr_running++;
}

1627
static void dec_nr_running(struct rq *rq)
1628 1629 1630 1631
{
	rq->nr_running--;
}

1632 1633 1634
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1635 1636 1637 1638
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1639

I
Ingo Molnar 已提交
1640 1641 1642 1643 1644 1645 1646 1647
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1648

I
Ingo Molnar 已提交
1649 1650
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1651 1652
}

1653 1654 1655 1656 1657 1658
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1659
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1660
{
I
Ingo Molnar 已提交
1661
	sched_info_queued(p);
1662
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1663
	p->se.on_rq = 1;
1664 1665
}

1666
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1667
{
1668 1669 1670 1671 1672 1673
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1674
	sched_info_dequeued(p);
1675
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1676
	p->se.on_rq = 0;
1677 1678
}

1679
/*
I
Ingo Molnar 已提交
1680
 * __normal_prio - return the priority that is based on the static prio
1681 1682 1683
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1684
	return p->static_prio;
1685 1686
}

1687 1688 1689 1690 1691 1692 1693
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1694
static inline int normal_prio(struct task_struct *p)
1695 1696 1697
{
	int prio;

1698
	if (task_has_rt_policy(p))
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1712
static int effective_prio(struct task_struct *p)
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1725
/*
I
Ingo Molnar 已提交
1726
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1727
 */
I
Ingo Molnar 已提交
1728
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1729
{
1730
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1731
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1732

1733
	enqueue_task(rq, p, wakeup);
1734
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1735 1736 1737 1738 1739
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1740
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1741
{
1742
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1743 1744
		rq->nr_uninterruptible++;

1745
	dequeue_task(rq, p, sleep);
1746
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1747 1748 1749 1750 1751 1752
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1753
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1754 1755 1756 1757
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1758 1759
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1760
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1761
#ifdef CONFIG_SMP
1762 1763 1764 1765 1766 1767
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1768 1769
	task_thread_info(p)->cpu = cpu;
#endif
1770 1771
}

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1784
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1785

1786 1787 1788 1789 1790 1791
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1792 1793 1794
/*
 * Is this task likely cache-hot:
 */
1795
static int
1796 1797 1798 1799
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1800 1801 1802
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1803
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1804 1805
		return 1;

1806 1807 1808
	if (p->sched_class != &fair_sched_class)
		return 0;

1809 1810 1811 1812 1813
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1814 1815 1816 1817 1818 1819
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1820
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1821
{
I
Ingo Molnar 已提交
1822 1823
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1824 1825
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1826
	u64 clock_offset;
I
Ingo Molnar 已提交
1827 1828

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1829 1830 1831 1832

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1833 1834 1835 1836
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1837 1838 1839 1840 1841
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1842
#endif
1843 1844
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1845 1846

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1847 1848
}

1849
struct migration_req {
L
Linus Torvalds 已提交
1850 1851
	struct list_head list;

1852
	struct task_struct *task;
L
Linus Torvalds 已提交
1853 1854 1855
	int dest_cpu;

	struct completion done;
1856
};
L
Linus Torvalds 已提交
1857 1858 1859 1860 1861

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1862
static int
1863
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1864
{
1865
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1866 1867 1868 1869 1870

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1871
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1872 1873 1874 1875 1876 1877 1878 1879
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1880

L
Linus Torvalds 已提交
1881 1882 1883 1884 1885 1886
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1887 1888 1889 1890 1891 1892 1893
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1894 1895 1896 1897 1898 1899
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1900
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1901 1902
{
	unsigned long flags;
I
Ingo Molnar 已提交
1903
	int running, on_rq;
R
Roland McGrath 已提交
1904
	unsigned long ncsw;
1905
	struct rq *rq;
L
Linus Torvalds 已提交
1906

1907 1908 1909 1910 1911 1912 1913 1914
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1915

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1927 1928 1929
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1930
			cpu_relax();
R
Roland McGrath 已提交
1931
		}
1932

1933 1934 1935 1936 1937 1938 1939 1940
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
1941
		ncsw = 0;
1942
		if (!match_state || p->state == match_state)
1943
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1944
		task_rq_unlock(rq, &flags);
1945

R
Roland McGrath 已提交
1946 1947 1948 1949 1950 1951
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1962

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1976

1977 1978 1979 1980 1981 1982 1983
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1984 1985

	return ncsw;
L
Linus Torvalds 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2001
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2013 2014
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2015 2016 2017 2018
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2019
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2020
{
2021
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2022
	unsigned long total = weighted_cpuload(cpu);
2023

2024
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2025
		return total;
2026

I
Ingo Molnar 已提交
2027
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2028 2029 2030
}

/*
2031 2032
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2033
 */
A
Alexey Dobriyan 已提交
2034
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2035
{
2036
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2037
	unsigned long total = weighted_cpuload(cpu);
2038

2039
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2040
		return total;
2041

I
Ingo Molnar 已提交
2042
	return max(rq->cpu_load[type-1], total);
2043 2044
}

N
Nick Piggin 已提交
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2062 2063
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2064
			continue;
2065

N
Nick Piggin 已提交
2066 2067 2068 2069 2070
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2071
		for_each_cpu_mask_nr(i, group->cpumask) {
N
Nick Piggin 已提交
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2082 2083
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2084 2085 2086 2087 2088 2089 2090 2091

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2092
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2093 2094 2095 2096 2097 2098 2099

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2100
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2101
 */
I
Ingo Molnar 已提交
2102
static int
2103 2104
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2105 2106 2107 2108 2109
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2110
	/* Traverse only the allowed CPUs */
2111
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2112

2113
	for_each_cpu_mask_nr(i, *tmp) {
2114
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2140

2141
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2142 2143 2144
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2145 2146
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2147 2148
		if (tmp->flags & flag)
			sd = tmp;
2149
	}
N
Nick Piggin 已提交
2150

2151 2152 2153
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2154
	while (sd) {
2155
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2156
		struct sched_group *group;
2157 2158 2159 2160 2161 2162
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2163 2164 2165

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2166 2167 2168 2169
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2170

2171
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2172 2173 2174 2175 2176
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2177

2178
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2210
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2211
{
2212
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2213 2214
	unsigned long flags;
	long old_state;
2215
	struct rq *rq;
L
Linus Torvalds 已提交
2216

2217 2218 2219
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				update_shares(sd);
				break;
			}
		}
	}
#endif

2236
	smp_wmb();
L
Linus Torvalds 已提交
2237 2238 2239 2240 2241
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2242
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2243 2244 2245
		goto out_running;

	cpu = task_cpu(p);
2246
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2247 2248 2249 2250 2251 2252
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2253 2254 2255
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2256 2257 2258 2259 2260 2261
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2262
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2263 2264 2265 2266 2267 2268
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2282
#endif /* CONFIG_SCHEDSTATS */
2283

L
Linus Torvalds 已提交
2284 2285
out_activate:
#endif /* CONFIG_SMP */
2286 2287 2288 2289 2290 2291 2292 2293 2294
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2295
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2296
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2297 2298 2299
	success = 1;

out_running:
M
Mathieu Desnoyers 已提交
2300 2301 2302
	trace_mark(kernel_sched_wakeup,
		"pid %d state %ld ## rq %p task %p rq->curr %p",
		p->pid, p->state, rq, p, rq->curr);
2303
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2304

L
Linus Torvalds 已提交
2305
	p->state = TASK_RUNNING;
2306 2307 2308 2309
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2310
out:
2311 2312
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2313 2314 2315 2316 2317
	task_rq_unlock(rq, &flags);

	return success;
}

2318
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2319
{
2320
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2321 2322 2323
}
EXPORT_SYMBOL(wake_up_process);

2324
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2325 2326 2327 2328 2329 2330 2331
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2332 2333 2334 2335 2336 2337 2338
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2339
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2340 2341
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2342 2343 2344

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2345 2346 2347 2348 2349 2350
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2351
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2352
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2353
#endif
N
Nick Piggin 已提交
2354

P
Peter Zijlstra 已提交
2355
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2356
	p->se.on_rq = 0;
2357
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2358

2359 2360 2361 2362
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2363 2364 2365 2366 2367 2368 2369
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2384
	set_task_cpu(p, cpu);
2385 2386 2387 2388 2389

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2390 2391
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2392

2393
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2394
	if (likely(sched_info_on()))
2395
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2396
#endif
2397
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2398 2399
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2400
#ifdef CONFIG_PREEMPT
2401
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2402
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2403
#endif
N
Nick Piggin 已提交
2404
	put_cpu();
L
Linus Torvalds 已提交
2405 2406 2407 2408 2409 2410 2411 2412 2413
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2414
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2415 2416
{
	unsigned long flags;
I
Ingo Molnar 已提交
2417
	struct rq *rq;
L
Linus Torvalds 已提交
2418 2419

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2420
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2421
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2422 2423 2424

	p->prio = effective_prio(p);

2425
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2426
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2427 2428
	} else {
		/*
I
Ingo Molnar 已提交
2429 2430
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2431
		 */
2432
		p->sched_class->task_new(rq, p);
2433
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2434
	}
M
Mathieu Desnoyers 已提交
2435 2436 2437
	trace_mark(kernel_sched_wakeup_new,
		"pid %d state %ld ## rq %p task %p rq->curr %p",
		p->pid, p->state, rq, p, rq->curr);
2438
	check_preempt_curr(rq, p, 0);
2439 2440 2441 2442
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2443
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2444 2445
}

2446 2447 2448
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2449 2450
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2451 2452 2453 2454 2455 2456 2457 2458 2459
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2460
 * @notifier: notifier struct to unregister
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2490
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2502
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2503

2504 2505 2506
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2507
 * @prev: the current task that is being switched out
2508 2509 2510 2511 2512 2513 2514 2515 2516
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2517 2518 2519
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2520
{
2521
	fire_sched_out_preempt_notifiers(prev, next);
2522 2523 2524 2525
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2526 2527
/**
 * finish_task_switch - clean up after a task-switch
2528
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2529 2530
 * @prev: the thread we just switched away from.
 *
2531 2532 2533 2534
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2535 2536
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2537
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2538 2539 2540
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2541
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2542 2543 2544
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2545
	long prev_state;
L
Linus Torvalds 已提交
2546 2547 2548 2549 2550

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2551
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2552 2553
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2554
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2555 2556 2557 2558 2559
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2560
	prev_state = prev->state;
2561 2562
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2563 2564 2565 2566
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2567

2568
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2569 2570
	if (mm)
		mmdrop(mm);
2571
	if (unlikely(prev_state == TASK_DEAD)) {
2572 2573 2574
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2575
		 */
2576
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2577
		put_task_struct(prev);
2578
	}
L
Linus Torvalds 已提交
2579 2580 2581 2582 2583 2584
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2585
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2586 2587
	__releases(rq->lock)
{
2588 2589
	struct rq *rq = this_rq();

2590 2591 2592 2593 2594
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2595
	if (current->set_child_tid)
2596
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2597 2598 2599 2600 2601 2602
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2603
static inline void
2604
context_switch(struct rq *rq, struct task_struct *prev,
2605
	       struct task_struct *next)
L
Linus Torvalds 已提交
2606
{
I
Ingo Molnar 已提交
2607
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2608

2609
	prepare_task_switch(rq, prev, next);
M
Mathieu Desnoyers 已提交
2610 2611 2612 2613 2614
	trace_mark(kernel_sched_schedule,
		"prev_pid %d next_pid %d prev_state %ld "
		"## rq %p prev %p next %p",
		prev->pid, next->pid, prev->state,
		rq, prev, next);
I
Ingo Molnar 已提交
2615 2616
	mm = next->mm;
	oldmm = prev->active_mm;
2617 2618 2619 2620 2621 2622 2623
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2624
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2625 2626 2627 2628 2629 2630
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2631
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2632 2633 2634
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2635 2636 2637 2638 2639 2640 2641
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2642
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2643
#endif
L
Linus Torvalds 已提交
2644 2645 2646 2647

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2648 2649 2650 2651 2652 2653 2654
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2678
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2693 2694
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2695

2696
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2697 2698 2699 2700 2701 2702 2703 2704 2705
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2706
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2707 2708 2709 2710 2711
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2727
/*
I
Ingo Molnar 已提交
2728 2729
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2730
 */
I
Ingo Molnar 已提交
2731
static void update_cpu_load(struct rq *this_rq)
2732
{
2733
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2746 2747 2748 2749 2750 2751 2752
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2753 2754
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2755 2756
}

I
Ingo Molnar 已提交
2757 2758
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2759 2760 2761 2762 2763 2764
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2765
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2766 2767 2768
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2769
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2770 2771 2772 2773
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2774
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2775
			spin_lock(&rq1->lock);
2776
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2777 2778
		} else {
			spin_lock(&rq2->lock);
2779
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2780 2781
		}
	}
2782 2783
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2784 2785 2786 2787 2788 2789 2790 2791
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2792
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2806
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2807 2808 2809 2810
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2811 2812
	int ret = 0;

2813 2814 2815 2816 2817
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2818
	if (unlikely(!spin_trylock(&busiest->lock))) {
2819
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2820 2821
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
2822
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
S
Steven Rostedt 已提交
2823
			ret = 1;
L
Linus Torvalds 已提交
2824
		} else
2825
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2826
	}
S
Steven Rostedt 已提交
2827
	return ret;
L
Linus Torvalds 已提交
2828 2829
}

2830 2831 2832 2833 2834 2835 2836
static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}

L
Linus Torvalds 已提交
2837 2838 2839
/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2840
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2841 2842
 * the cpu_allowed mask is restored.
 */
2843
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2844
{
2845
	struct migration_req req;
L
Linus Torvalds 已提交
2846
	unsigned long flags;
2847
	struct rq *rq;
L
Linus Torvalds 已提交
2848 2849 2850

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
2851
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2852 2853 2854 2855 2856 2857
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2858

L
Linus Torvalds 已提交
2859 2860 2861 2862 2863
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2864

L
Linus Torvalds 已提交
2865 2866 2867 2868 2869 2870 2871
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2872 2873
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2874 2875 2876 2877
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2878
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2879
	put_cpu();
N
Nick Piggin 已提交
2880 2881
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2882 2883 2884 2885 2886 2887
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2888 2889
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2890
{
2891
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2892
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2893
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2894 2895 2896 2897
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2898
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2899 2900 2901 2902 2903
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2904
static
2905
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2906
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2907
		     int *all_pinned)
L
Linus Torvalds 已提交
2908 2909 2910 2911 2912 2913 2914
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2915 2916
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2917
		return 0;
2918
	}
2919 2920
	*all_pinned = 0;

2921 2922
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2923
		return 0;
2924
	}
L
Linus Torvalds 已提交
2925

2926 2927 2928 2929 2930 2931
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2932 2933
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2934
#ifdef CONFIG_SCHEDSTATS
2935
		if (task_hot(p, rq->clock, sd)) {
2936
			schedstat_inc(sd, lb_hot_gained[idle]);
2937 2938
			schedstat_inc(p, se.nr_forced_migrations);
		}
2939 2940 2941 2942
#endif
		return 1;
	}

2943 2944
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2945
		return 0;
2946
	}
L
Linus Torvalds 已提交
2947 2948 2949
	return 1;
}

2950 2951 2952 2953 2954
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2955
{
2956
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2957 2958
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2959

2960
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2961 2962
		goto out;

2963 2964
	pinned = 1;

L
Linus Torvalds 已提交
2965
	/*
I
Ingo Molnar 已提交
2966
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2967
	 */
I
Ingo Molnar 已提交
2968 2969
	p = iterator->start(iterator->arg);
next:
2970
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2971
		goto out;
2972 2973

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2974 2975 2976
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2977 2978
	}

I
Ingo Molnar 已提交
2979
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2980
	pulled++;
I
Ingo Molnar 已提交
2981
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2982

2983
	/*
2984
	 * We only want to steal up to the prescribed amount of weighted load.
2985
	 */
2986
	if (rem_load_move > 0) {
2987 2988
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2989 2990
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2991 2992 2993
	}
out:
	/*
2994
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2995 2996 2997 2998
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2999 3000 3001

	if (all_pinned)
		*all_pinned = pinned;
3002 3003

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3004 3005
}

I
Ingo Molnar 已提交
3006
/*
P
Peter Williams 已提交
3007 3008 3009
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3010 3011 3012 3013
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3014
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3015 3016 3017
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3018
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3019
	unsigned long total_load_moved = 0;
3020
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3021 3022

	do {
P
Peter Williams 已提交
3023 3024
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3025
				max_load_move - total_load_moved,
3026
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3027
		class = class->next;
3028 3029 3030 3031

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3032
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3033

P
Peter Williams 已提交
3034 3035 3036
	return total_load_moved > 0;
}

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3073
	const struct sched_class *class;
P
Peter Williams 已提交
3074 3075

	for (class = sched_class_highest; class; class = class->next)
3076
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3077 3078 3079
			return 1;

	return 0;
I
Ingo Molnar 已提交
3080 3081
}

L
Linus Torvalds 已提交
3082 3083
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3084 3085
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3086 3087 3088
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3089
		   unsigned long *imbalance, enum cpu_idle_type idle,
3090
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3091 3092 3093
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3094
	unsigned long max_pull;
3095 3096
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3097
	int load_idx, group_imb = 0;
3098 3099 3100 3101 3102 3103
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3104 3105

	max_load = this_load = total_load = total_pwr = 0;
3106 3107
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3108

I
Ingo Molnar 已提交
3109
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3110
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3111
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3112 3113 3114
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3115 3116

	do {
3117
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3118 3119
		int local_group;
		int i;
3120
		int __group_imb = 0;
3121
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3122
		unsigned long sum_nr_running, sum_weighted_load;
3123 3124
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3125 3126 3127

		local_group = cpu_isset(this_cpu, group->cpumask);

3128 3129 3130
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3131
		/* Tally up the load of all CPUs in the group */
3132
		sum_weighted_load = sum_nr_running = avg_load = 0;
3133 3134
		sum_avg_load_per_task = avg_load_per_task = 0;

3135 3136
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3137

3138
		for_each_cpu_mask_nr(i, group->cpumask) {
3139 3140 3141 3142 3143 3144
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3145

3146
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3147 3148
				*sd_idle = 0;

L
Linus Torvalds 已提交
3149
			/* Bias balancing toward cpus of our domain */
3150 3151 3152 3153 3154 3155
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3156
				load = target_load(i, load_idx);
3157
			} else {
N
Nick Piggin 已提交
3158
				load = source_load(i, load_idx);
3159 3160 3161 3162 3163
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3164 3165

			avg_load += load;
3166
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3167
			sum_weighted_load += weighted_cpuload(i);
3168 3169

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3170 3171
		}

3172 3173 3174
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3175 3176
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3177
		 */
3178 3179
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3180 3181 3182 3183
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3184
		total_load += avg_load;
3185
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3186 3187

		/* Adjust by relative CPU power of the group */
3188 3189
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3190

3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3205 3206
			__group_imb = 1;

3207
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3208

L
Linus Torvalds 已提交
3209 3210 3211
		if (local_group) {
			this_load = avg_load;
			this = group;
3212 3213 3214
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3215
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3216 3217
			max_load = avg_load;
			busiest = group;
3218 3219
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3220
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3221
		}
3222 3223 3224 3225 3226 3227

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3228 3229 3230
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3231 3232 3233 3234 3235 3236 3237 3238 3239

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3240
		/*
3241 3242
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3243 3244
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3245
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3246
			goto group_next;
3247

I
Ingo Molnar 已提交
3248
		/*
3249
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3250 3251 3252 3253 3254
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3255 3256
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3257 3258
			group_min = group;
			min_nr_running = sum_nr_running;
3259 3260
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3261
		}
3262

I
Ingo Molnar 已提交
3263
		/*
3264
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3276
		}
3277 3278
group_next:
#endif
L
Linus Torvalds 已提交
3279 3280 3281
		group = group->next;
	} while (group != sd->groups);

3282
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3283 3284 3285 3286 3287 3288 3289 3290
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3291
	busiest_load_per_task /= busiest_nr_running;
3292 3293 3294
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3295 3296 3297 3298 3299 3300 3301 3302
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3303
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3304 3305
	 * appear as very large values with unsigned longs.
	 */
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3318 3319

	/* Don't want to pull so many tasks that a group would go idle */
3320
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3321

L
Linus Torvalds 已提交
3322
	/* How much load to actually move to equalise the imbalance */
3323 3324
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3325 3326
			/ SCHED_LOAD_SCALE;

3327 3328 3329 3330 3331 3332
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3333
	if (*imbalance < busiest_load_per_task) {
3334
		unsigned long tmp, pwr_now, pwr_move;
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3345
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3346

3347
		if (max_load - this_load + 2*busiest_load_per_task >=
I
Ingo Molnar 已提交
3348
					busiest_load_per_task * imbn) {
3349
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3350 3351 3352 3353 3354 3355 3356 3357 3358
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3359 3360 3361 3362
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3363 3364 3365
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3366 3367
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3368
		if (max_load > tmp)
3369
			pwr_move += busiest->__cpu_power *
3370
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3371 3372

		/* Amount of load we'd add */
3373
		if (max_load * busiest->__cpu_power <
3374
				busiest_load_per_task * SCHED_LOAD_SCALE)
3375 3376
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3377
		else
3378 3379 3380 3381
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3382 3383 3384
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3385 3386
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3387 3388 3389 3390 3391
	}

	return busiest;

out_balanced:
3392
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3393
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3394
		goto ret;
L
Linus Torvalds 已提交
3395

3396 3397 3398 3399 3400
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3401
ret:
L
Linus Torvalds 已提交
3402 3403 3404 3405 3406 3407 3408
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3409
static struct rq *
I
Ingo Molnar 已提交
3410
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3411
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3412
{
3413
	struct rq *busiest = NULL, *rq;
3414
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3415 3416
	int i;

3417
	for_each_cpu_mask_nr(i, group->cpumask) {
I
Ingo Molnar 已提交
3418
		unsigned long wl;
3419 3420 3421 3422

		if (!cpu_isset(i, *cpus))
			continue;

3423
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3424
		wl = weighted_cpuload(i);
3425

I
Ingo Molnar 已提交
3426
		if (rq->nr_running == 1 && wl > imbalance)
3427
			continue;
L
Linus Torvalds 已提交
3428

I
Ingo Molnar 已提交
3429 3430
		if (wl > max_load) {
			max_load = wl;
3431
			busiest = rq;
L
Linus Torvalds 已提交
3432 3433 3434 3435 3436 3437
		}
	}

	return busiest;
}

3438 3439 3440 3441 3442 3443
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3444 3445 3446 3447
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3448
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3449
			struct sched_domain *sd, enum cpu_idle_type idle,
3450
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3451
{
P
Peter Williams 已提交
3452
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3453 3454
	struct sched_group *group;
	unsigned long imbalance;
3455
	struct rq *busiest;
3456
	unsigned long flags;
N
Nick Piggin 已提交
3457

3458 3459
	cpus_setall(*cpus);

3460 3461 3462
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3463
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3464
	 * portraying it as CPU_NOT_IDLE.
3465
	 */
I
Ingo Molnar 已提交
3466
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3467
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3468
		sd_idle = 1;
L
Linus Torvalds 已提交
3469

3470
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3471

3472
redo:
3473
	update_shares(sd);
3474
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3475
				   cpus, balance);
3476

3477
	if (*balance == 0)
3478 3479
		goto out_balanced;

L
Linus Torvalds 已提交
3480 3481 3482 3483 3484
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3485
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3486 3487 3488 3489 3490
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3491
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3492 3493 3494

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3495
	ld_moved = 0;
L
Linus Torvalds 已提交
3496 3497 3498 3499
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3500
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3501 3502
		 * correctly treated as an imbalance.
		 */
3503
		local_irq_save(flags);
N
Nick Piggin 已提交
3504
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3505
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3506
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3507
		double_rq_unlock(this_rq, busiest);
3508
		local_irq_restore(flags);
3509

3510 3511 3512
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3513
		if (ld_moved && this_cpu != smp_processor_id())
3514 3515
			resched_cpu(this_cpu);

3516
		/* All tasks on this runqueue were pinned by CPU affinity */
3517
		if (unlikely(all_pinned)) {
3518 3519
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3520
				goto redo;
3521
			goto out_balanced;
3522
		}
L
Linus Torvalds 已提交
3523
	}
3524

P
Peter Williams 已提交
3525
	if (!ld_moved) {
L
Linus Torvalds 已提交
3526 3527 3528 3529 3530
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3531
			spin_lock_irqsave(&busiest->lock, flags);
3532 3533 3534 3535 3536

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3537
				spin_unlock_irqrestore(&busiest->lock, flags);
3538 3539 3540 3541
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3542 3543 3544
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3545
				active_balance = 1;
L
Linus Torvalds 已提交
3546
			}
3547
			spin_unlock_irqrestore(&busiest->lock, flags);
3548
			if (active_balance)
L
Linus Torvalds 已提交
3549 3550 3551 3552 3553 3554
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3555
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3556
		}
3557
	} else
L
Linus Torvalds 已提交
3558 3559
		sd->nr_balance_failed = 0;

3560
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3561 3562
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3563 3564 3565 3566 3567 3568 3569 3570 3571
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3572 3573
	}

P
Peter Williams 已提交
3574
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3575
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3576 3577 3578
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3579 3580 3581 3582

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3583
	sd->nr_balance_failed = 0;
3584 3585

out_one_pinned:
L
Linus Torvalds 已提交
3586
	/* tune up the balancing interval */
3587 3588
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3589 3590
		sd->balance_interval *= 2;

3591
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3592
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3593 3594 3595 3596
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3597 3598
	if (ld_moved)
		update_shares(sd);
3599
	return ld_moved;
L
Linus Torvalds 已提交
3600 3601 3602 3603 3604 3605
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3606
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3607 3608
 * this_rq is locked.
 */
3609
static int
3610 3611
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3612 3613
{
	struct sched_group *group;
3614
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3615
	unsigned long imbalance;
P
Peter Williams 已提交
3616
	int ld_moved = 0;
N
Nick Piggin 已提交
3617
	int sd_idle = 0;
3618
	int all_pinned = 0;
3619 3620

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3621

3622 3623 3624 3625
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3626
	 * portraying it as CPU_NOT_IDLE.
3627 3628 3629
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3630
		sd_idle = 1;
L
Linus Torvalds 已提交
3631

3632
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3633
redo:
3634
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3635
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3636
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3637
	if (!group) {
I
Ingo Molnar 已提交
3638
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3639
		goto out_balanced;
L
Linus Torvalds 已提交
3640 3641
	}

3642
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3643
	if (!busiest) {
I
Ingo Molnar 已提交
3644
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3645
		goto out_balanced;
L
Linus Torvalds 已提交
3646 3647
	}

N
Nick Piggin 已提交
3648 3649
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3650
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3651

P
Peter Williams 已提交
3652
	ld_moved = 0;
3653 3654 3655
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3656 3657
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3658
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3659 3660
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3661
		double_unlock_balance(this_rq, busiest);
3662

3663
		if (unlikely(all_pinned)) {
3664 3665
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3666 3667
				goto redo;
		}
3668 3669
	}

P
Peter Williams 已提交
3670
	if (!ld_moved) {
I
Ingo Molnar 已提交
3671
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3672 3673
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3674 3675
			return -1;
	} else
3676
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3677

3678
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3679
	return ld_moved;
3680 3681

out_balanced:
I
Ingo Molnar 已提交
3682
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3683
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3684
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3685
		return -1;
3686
	sd->nr_balance_failed = 0;
3687

3688
	return 0;
L
Linus Torvalds 已提交
3689 3690 3691 3692 3693 3694
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3695
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3696 3697
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3698 3699
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3700
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3701 3702

	for_each_domain(this_cpu, sd) {
3703 3704 3705 3706 3707 3708
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3709
			/* If we've pulled tasks over stop searching: */
3710 3711
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3712 3713 3714 3715 3716 3717

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3718
	}
I
Ingo Molnar 已提交
3719
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3720 3721 3722 3723 3724
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3725
	}
L
Linus Torvalds 已提交
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3736
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3737
{
3738
	int target_cpu = busiest_rq->push_cpu;
3739 3740
	struct sched_domain *sd;
	struct rq *target_rq;
3741

3742
	/* Is there any task to move? */
3743 3744 3745 3746
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3747 3748

	/*
3749
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3750
	 * we need to fix it. Originally reported by
3751
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3752
	 */
3753
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3754

3755 3756
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3757 3758
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3759 3760

	/* Search for an sd spanning us and the target CPU. */
3761
	for_each_domain(target_cpu, sd) {
3762
		if ((sd->flags & SD_LOAD_BALANCE) &&
3763
		    cpu_isset(busiest_cpu, sd->span))
3764
				break;
3765
	}
3766

3767
	if (likely(sd)) {
3768
		schedstat_inc(sd, alb_count);
3769

P
Peter Williams 已提交
3770 3771
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3772 3773 3774 3775
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3776
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3777 3778
}

3779 3780 3781
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3782
	cpumask_t cpu_mask;
3783 3784 3785 3786 3787
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3788
/*
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3799
 *
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3819
		if (!cpu_active(cpu) &&
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3856 3857 3858 3859 3860
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3861
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3862
{
3863 3864
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3865 3866
	unsigned long interval;
	struct sched_domain *sd;
3867
	/* Earliest time when we have to do rebalance again */
3868
	unsigned long next_balance = jiffies + 60*HZ;
3869
	int update_next_balance = 0;
3870
	int need_serialize;
3871
	cpumask_t tmp;
L
Linus Torvalds 已提交
3872

3873
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3874 3875 3876 3877
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3878
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3879 3880 3881 3882 3883 3884
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3885 3886 3887
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3888
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3889

3890
		if (need_serialize) {
3891 3892 3893 3894
			if (!spin_trylock(&balancing))
				goto out;
		}

3895
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3896
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3897 3898
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3899 3900 3901
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3902
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3903
			}
3904
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3905
		}
3906
		if (need_serialize)
3907 3908
			spin_unlock(&balancing);
out:
3909
		if (time_after(next_balance, sd->last_balance + interval)) {
3910
			next_balance = sd->last_balance + interval;
3911 3912
			update_next_balance = 1;
		}
3913 3914 3915 3916 3917 3918 3919 3920

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3921
	}
3922 3923 3924 3925 3926 3927 3928 3929

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3930 3931 3932 3933 3934 3935 3936 3937 3938
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3939 3940 3941 3942
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3943

I
Ingo Molnar 已提交
3944
	rebalance_domains(this_cpu, idle);
3945 3946 3947 3948 3949 3950 3951

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3952 3953
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3954 3955 3956 3957
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3958
		cpu_clear(this_cpu, cpus);
3959
		for_each_cpu_mask_nr(balance_cpu, cpus) {
3960 3961 3962 3963 3964 3965 3966 3967
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3968
			rebalance_domains(balance_cpu, CPU_IDLE);
3969 3970

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3971 3972
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3985
static inline void trigger_load_balance(struct rq *rq, int cpu)
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

4012
			if (ilb < nr_cpu_ids)
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4037
}
I
Ingo Molnar 已提交
4038 4039 4040

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4041 4042 4043
/*
 * on UP we do not need to balance between CPUs:
 */
4044
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4045 4046
{
}
I
Ingo Molnar 已提交
4047

L
Linus Torvalds 已提交
4048 4049 4050 4051 4052 4053 4054
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4055 4056
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
4057
 */
4058
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
4059 4060
{
	unsigned long flags;
4061 4062
	u64 ns, delta_exec;
	struct rq *rq;
4063

4064 4065
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
4066
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
4067 4068
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4069 4070 4071 4072
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
4073

L
Linus Torvalds 已提交
4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4095 4096
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4097 4098
}

4099 4100 4101 4102 4103
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4104
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4138
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4139 4140
	cputime64_t tmp;

4141 4142 4143 4144
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4145

L
Linus Torvalds 已提交
4146 4147 4148 4149 4150 4151 4152 4153
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4154
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4155
		cpustat->system = cputime64_add(cpustat->system, tmp);
4156
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4157 4158 4159 4160 4161 4162 4163
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4175 4176 4177 4178 4179 4180 4181 4182 4183
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4184
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4185 4186 4187 4188 4189 4190 4191

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4192
	} else
L
Linus Torvalds 已提交
4193 4194 4195
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4266
	struct task_struct *curr = rq->curr;
4267 4268

	sched_clock_tick();
I
Ingo Molnar 已提交
4269 4270

	spin_lock(&rq->lock);
4271
	update_rq_clock(rq);
4272
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4273
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4274
	spin_unlock(&rq->lock);
4275

4276
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4277 4278
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4279
#endif
L
Linus Torvalds 已提交
4280 4281
}

4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4294

4295
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4296
{
4297
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4298 4299 4300
	/*
	 * Underflow?
	 */
4301 4302
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4303
#endif
L
Linus Torvalds 已提交
4304
	preempt_count() += val;
4305
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4306 4307 4308
	/*
	 * Spinlock count overflowing soon?
	 */
4309 4310
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4311 4312 4313
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4314 4315 4316
}
EXPORT_SYMBOL(add_preempt_count);

4317
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4318
{
4319
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4320 4321 4322
	/*
	 * Underflow?
	 */
4323 4324
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4325 4326 4327
	/*
	 * Is the spinlock portion underflowing?
	 */
4328 4329 4330
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4331
#endif
4332

4333 4334
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4335 4336 4337 4338 4339 4340 4341
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4342
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4343
 */
I
Ingo Molnar 已提交
4344
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4345
{
4346 4347 4348 4349 4350
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4351
	debug_show_held_locks(prev);
4352
	print_modules();
I
Ingo Molnar 已提交
4353 4354
	if (irqs_disabled())
		print_irqtrace_events(prev);
4355 4356 4357 4358 4359

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4360
}
L
Linus Torvalds 已提交
4361

I
Ingo Molnar 已提交
4362 4363 4364 4365 4366
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4367
	/*
I
Ingo Molnar 已提交
4368
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4369 4370 4371
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4372
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4373 4374
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4375 4376
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4377
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4378 4379
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4380 4381
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4382 4383
	}
#endif
I
Ingo Molnar 已提交
4384 4385 4386 4387 4388 4389
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4390
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4391
{
4392
	const struct sched_class *class;
I
Ingo Molnar 已提交
4393
	struct task_struct *p;
L
Linus Torvalds 已提交
4394 4395

	/*
I
Ingo Molnar 已提交
4396 4397
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4398
	 */
I
Ingo Molnar 已提交
4399
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4400
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4401 4402
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4403 4404
	}

I
Ingo Molnar 已提交
4405 4406
	class = sched_class_highest;
	for ( ; ; ) {
4407
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4408 4409 4410 4411 4412 4413 4414 4415 4416
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4417

I
Ingo Molnar 已提交
4418 4419 4420 4421 4422 4423
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4424
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4425
	struct rq *rq;
4426
	int cpu;
I
Ingo Molnar 已提交
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4440

4441
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4442
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4443

4444 4445 4446 4447
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4448
	update_rq_clock(rq);
4449 4450
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4451 4452

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4453
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4454
			prev->state = TASK_RUNNING;
4455
		else
4456
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4457
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4458 4459
	}

4460 4461 4462 4463
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4464

I
Ingo Molnar 已提交
4465
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4466 4467
		idle_balance(cpu, rq);

4468
	prev->sched_class->put_prev_task(rq, prev);
4469
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4470 4471

	if (likely(prev != next)) {
4472 4473
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4474 4475 4476 4477
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4478
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4479 4480 4481 4482 4483 4484
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4485 4486 4487
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4488
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4489
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4490

L
Linus Torvalds 已提交
4491 4492 4493 4494 4495 4496 4497 4498
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4499
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4500
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4501 4502 4503 4504 4505
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4506

L
Linus Torvalds 已提交
4507 4508
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4509
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4510
	 */
N
Nick Piggin 已提交
4511
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4512 4513
		return;

4514 4515 4516 4517
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4518

4519 4520 4521 4522 4523 4524
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4525 4526 4527 4528
}
EXPORT_SYMBOL(preempt_schedule);

/*
4529
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4530 4531 4532 4533 4534 4535 4536
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4537

4538
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4539 4540
	BUG_ON(ti->preempt_count || !irqs_disabled());

4541 4542 4543 4544 4545 4546
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4547

4548 4549 4550 4551 4552 4553
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4554 4555 4556 4557
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4558 4559
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4560
{
4561
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4562 4563 4564 4565
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4566 4567
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4568 4569 4570
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4571
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4572 4573 4574 4575 4576
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4577
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4578

4579
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4580 4581
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4582
		if (curr->func(curr, mode, sync, key) &&
4583
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4584 4585 4586 4587 4588 4589 4590 4591 4592
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4593
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4594
 */
4595
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4596
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4609
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4610 4611 4612 4613 4614
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4615
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4627
void
I
Ingo Molnar 已提交
4628
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4645 4646 4647 4648 4649 4650 4651 4652 4653
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
4654
void complete(struct completion *x)
L
Linus Torvalds 已提交
4655 4656 4657 4658 4659
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4660
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4661 4662 4663 4664
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4665 4666 4667 4668 4669 4670
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
4671
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4672 4673 4674 4675 4676
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4677
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4678 4679 4680 4681
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4682 4683
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4684 4685 4686 4687 4688 4689 4690
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4691
			if (signal_pending_state(state, current)) {
4692 4693
				timeout = -ERESTARTSYS;
				break;
4694 4695
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4696 4697 4698
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4699
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4700
		__remove_wait_queue(&x->wait, &wait);
4701 4702
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4703 4704
	}
	x->done--;
4705
	return timeout ?: 1;
L
Linus Torvalds 已提交
4706 4707
}

4708 4709
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4710 4711 4712 4713
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4714
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4715
	spin_unlock_irq(&x->wait.lock);
4716 4717
	return timeout;
}
L
Linus Torvalds 已提交
4718

4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4729
void __sched wait_for_completion(struct completion *x)
4730 4731
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4732
}
4733
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4734

4735 4736 4737 4738 4739 4740 4741 4742 4743
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4744
unsigned long __sched
4745
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4746
{
4747
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4748
}
4749
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4750

4751 4752 4753 4754 4755 4756 4757
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4758
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4759
{
4760 4761 4762 4763
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4764
}
4765
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4766

4767 4768 4769 4770 4771 4772 4773 4774
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4775
unsigned long __sched
4776 4777
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4778
{
4779
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4780
}
4781
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4782

4783 4784 4785 4786 4787 4788 4789
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4790 4791 4792 4793 4794 4795 4796 4797 4798
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

4845 4846
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4847
{
I
Ingo Molnar 已提交
4848 4849 4850 4851
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4852

4853
	__set_current_state(state);
L
Linus Torvalds 已提交
4854

4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4869 4870 4871
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4872
long __sched
I
Ingo Molnar 已提交
4873
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4874
{
4875
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4876 4877 4878
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4879
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4880
{
4881
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4882 4883 4884
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4885
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4886
{
4887
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4888 4889 4890
}
EXPORT_SYMBOL(sleep_on_timeout);

4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4903
void rt_mutex_setprio(struct task_struct *p, int prio)
4904 4905
{
	unsigned long flags;
4906
	int oldprio, on_rq, running;
4907
	struct rq *rq;
4908
	const struct sched_class *prev_class = p->sched_class;
4909 4910 4911 4912

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4913
	update_rq_clock(rq);
4914

4915
	oldprio = p->prio;
I
Ingo Molnar 已提交
4916
	on_rq = p->se.on_rq;
4917
	running = task_current(rq, p);
4918
	if (on_rq)
4919
		dequeue_task(rq, p, 0);
4920 4921
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4922 4923 4924 4925 4926 4927

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4928 4929
	p->prio = prio;

4930 4931
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4932
	if (on_rq) {
4933
		enqueue_task(rq, p, 0);
4934 4935

		check_class_changed(rq, p, prev_class, oldprio, running);
4936 4937 4938 4939 4940 4941
	}
	task_rq_unlock(rq, &flags);
}

#endif

4942
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4943
{
I
Ingo Molnar 已提交
4944
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4945
	unsigned long flags;
4946
	struct rq *rq;
L
Linus Torvalds 已提交
4947 4948 4949 4950 4951 4952 4953 4954

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4955
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4956 4957 4958 4959
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4960
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4961
	 */
4962
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4963 4964 4965
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4966
	on_rq = p->se.on_rq;
4967
	if (on_rq)
4968
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4969 4970

	p->static_prio = NICE_TO_PRIO(nice);
4971
	set_load_weight(p);
4972 4973 4974
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4975

I
Ingo Molnar 已提交
4976
	if (on_rq) {
4977
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4978
		/*
4979 4980
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4981
		 */
4982
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4983 4984 4985 4986 4987 4988 4989
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4990 4991 4992 4993 4994
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4995
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4996
{
4997 4998
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4999

M
Matt Mackall 已提交
5000 5001 5002 5003
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
5015
	long nice, retval;
L
Linus Torvalds 已提交
5016 5017 5018 5019 5020 5021

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5022 5023
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5024 5025 5026 5027 5028 5029 5030 5031 5032
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5033 5034 5035
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5054
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5055 5056 5057 5058 5059 5060 5061 5062
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5063
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5064 5065 5066
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5067
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5082
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5083 5084 5085 5086 5087 5088 5089 5090
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5091
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5092
{
5093
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5094 5095 5096
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5097 5098
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5099
{
I
Ingo Molnar 已提交
5100
	BUG_ON(p->se.on_rq);
5101

L
Linus Torvalds 已提交
5102
	p->policy = policy;
I
Ingo Molnar 已提交
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5115
	p->rt_priority = prio;
5116 5117 5118
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5119
	set_load_weight(p);
L
Linus Torvalds 已提交
5120 5121
}

5122 5123
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5124
{
5125
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5126
	unsigned long flags;
5127
	const struct sched_class *prev_class = p->sched_class;
5128
	struct rq *rq;
L
Linus Torvalds 已提交
5129

5130 5131
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5132 5133 5134 5135 5136
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5137 5138
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5139
		return -EINVAL;
L
Linus Torvalds 已提交
5140 5141
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5142 5143
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5144 5145
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5146
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5147
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5148
		return -EINVAL;
5149
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5150 5151
		return -EINVAL;

5152 5153 5154
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5155
	if (user && !capable(CAP_SYS_NICE)) {
5156
		if (rt_policy(policy)) {
5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5173 5174 5175 5176 5177 5178
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5179

5180 5181 5182 5183 5184
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5185

5186
	if (user) {
5187
#ifdef CONFIG_RT_GROUP_SCHED
5188 5189 5190 5191
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5192 5193
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5194
			return -EPERM;
5195 5196
#endif

5197 5198 5199 5200 5201
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5202 5203 5204 5205 5206
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5207 5208 5209 5210
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5211
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5212 5213 5214
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5215 5216
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5217 5218
		goto recheck;
	}
I
Ingo Molnar 已提交
5219
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5220
	on_rq = p->se.on_rq;
5221
	running = task_current(rq, p);
5222
	if (on_rq)
5223
		deactivate_task(rq, p, 0);
5224 5225
	if (running)
		p->sched_class->put_prev_task(rq, p);
5226

L
Linus Torvalds 已提交
5227
	oldprio = p->prio;
I
Ingo Molnar 已提交
5228
	__setscheduler(rq, p, policy, param->sched_priority);
5229

5230 5231
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5232 5233
	if (on_rq) {
		activate_task(rq, p, 0);
5234 5235

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5236
	}
5237 5238 5239
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5240 5241
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5242 5243
	return 0;
}
5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5258 5259
EXPORT_SYMBOL_GPL(sched_setscheduler);

5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5277 5278
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5279 5280 5281
{
	struct sched_param lparam;
	struct task_struct *p;
5282
	int retval;
L
Linus Torvalds 已提交
5283 5284 5285 5286 5287

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5288 5289 5290

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5291
	p = find_process_by_pid(pid);
5292 5293 5294
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5295

L
Linus Torvalds 已提交
5296 5297 5298 5299 5300 5301 5302 5303 5304
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5305 5306
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5307
{
5308 5309 5310 5311
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5331
	struct task_struct *p;
5332
	int retval;
L
Linus Torvalds 已提交
5333 5334

	if (pid < 0)
5335
		return -EINVAL;
L
Linus Torvalds 已提交
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5357
	struct task_struct *p;
5358
	int retval;
L
Linus Torvalds 已提交
5359 5360

	if (!param || pid < 0)
5361
		return -EINVAL;
L
Linus Torvalds 已提交
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5388
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5389 5390
{
	cpumask_t cpus_allowed;
5391
	cpumask_t new_mask = *in_mask;
5392 5393
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5394

5395
	get_online_cpus();
L
Linus Torvalds 已提交
5396 5397 5398 5399 5400
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5401
		put_online_cpus();
L
Linus Torvalds 已提交
5402 5403 5404 5405 5406
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5407
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5418 5419 5420 5421
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5422
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5423
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5424
 again:
5425
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5426

P
Paul Menage 已提交
5427
	if (!retval) {
5428
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5439 5440
out_unlock:
	put_task_struct(p);
5441
	put_online_cpus();
L
Linus Torvalds 已提交
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5472
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5473 5474 5475 5476
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5477
	struct task_struct *p;
L
Linus Torvalds 已提交
5478 5479
	int retval;

5480
	get_online_cpus();
L
Linus Torvalds 已提交
5481 5482 5483 5484 5485 5486 5487
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5488 5489 5490 5491
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5492
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5493 5494 5495

out_unlock:
	read_unlock(&tasklist_lock);
5496
	put_online_cpus();
L
Linus Torvalds 已提交
5497

5498
	return retval;
L
Linus Torvalds 已提交
5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5529 5530
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5531 5532 5533
 */
asmlinkage long sys_sched_yield(void)
{
5534
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5535

5536
	schedstat_inc(rq, yld_count);
5537
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5538 5539 5540 5541 5542 5543

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5544
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5545 5546 5547 5548 5549 5550 5551 5552
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5553
static void __cond_resched(void)
L
Linus Torvalds 已提交
5554
{
5555 5556 5557
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5558 5559 5560 5561 5562
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5563 5564 5565 5566 5567 5568 5569
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5570
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5571
{
5572 5573
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5574 5575 5576 5577 5578
		__cond_resched();
		return 1;
	}
	return 0;
}
5579
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5580 5581 5582 5583 5584

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5585
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5586 5587 5588
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5589
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5590
{
N
Nick Piggin 已提交
5591
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5592 5593
	int ret = 0;

N
Nick Piggin 已提交
5594
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5595
		spin_unlock(lock);
N
Nick Piggin 已提交
5596 5597 5598 5599
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5600
		ret = 1;
L
Linus Torvalds 已提交
5601 5602
		spin_lock(lock);
	}
J
Jan Kara 已提交
5603
	return ret;
L
Linus Torvalds 已提交
5604 5605 5606 5607 5608 5609 5610
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5611
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5612
		local_bh_enable();
L
Linus Torvalds 已提交
5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5624
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5635
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5636 5637 5638 5639 5640 5641 5642
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5643
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5644

5645
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5646 5647 5648
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5649
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5650 5651 5652 5653 5654
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5655
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5656 5657
	long ret;

5658
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5659 5660 5661
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5662
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5683
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5684
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5708
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5709
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5726
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5727
	unsigned int time_slice;
5728
	int retval;
L
Linus Torvalds 已提交
5729 5730 5731
	struct timespec t;

	if (pid < 0)
5732
		return -EINVAL;
L
Linus Torvalds 已提交
5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5744 5745 5746 5747 5748 5749
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5750
		time_slice = DEF_TIMESLICE;
5751
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5752 5753 5754 5755 5756
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5757 5758
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5759 5760
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5761
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5762
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5763 5764
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5765

L
Linus Torvalds 已提交
5766 5767 5768 5769 5770
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5771
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5772

5773
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5774 5775
{
	unsigned long free = 0;
5776
	unsigned state;
L
Linus Torvalds 已提交
5777 5778

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5779
	printk(KERN_INFO "%-13.13s %c", p->comm,
5780
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5781
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5782
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5783
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5784
	else
I
Ingo Molnar 已提交
5785
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5786 5787
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5788
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5789
	else
I
Ingo Molnar 已提交
5790
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5791 5792 5793
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5794
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5795 5796
		while (!*n)
			n++;
5797
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5798 5799
	}
#endif
5800
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5801
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5802

5803
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5804 5805
}

I
Ingo Molnar 已提交
5806
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5807
{
5808
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5809

5810 5811 5812
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5813
#else
5814 5815
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5816 5817 5818 5819 5820 5821 5822 5823
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5824
		if (!state_filter || (p->state & state_filter))
5825
			sched_show_task(p);
L
Linus Torvalds 已提交
5826 5827
	} while_each_thread(g, p);

5828 5829
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5830 5831 5832
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5833
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5834 5835 5836 5837 5838
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5839 5840
}

I
Ingo Molnar 已提交
5841 5842
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5843
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5844 5845
}

5846 5847 5848 5849 5850 5851 5852 5853
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5854
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5855
{
5856
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5857 5858
	unsigned long flags;

I
Ingo Molnar 已提交
5859 5860 5861
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5862
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5863
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5864
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5865 5866 5867

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5868 5869 5870
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5871 5872 5873
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5874 5875 5876
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5877
	task_thread_info(idle)->preempt_count = 0;
5878
#endif
I
Ingo Molnar 已提交
5879 5880 5881 5882
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
5917 5918

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
5919 5920
}

L
Linus Torvalds 已提交
5921 5922 5923 5924
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5925
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5944
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5945 5946
 * call is not atomic; no spinlocks may be held.
 */
5947
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5948
{
5949
	struct migration_req req;
L
Linus Torvalds 已提交
5950
	unsigned long flags;
5951
	struct rq *rq;
5952
	int ret = 0;
L
Linus Torvalds 已提交
5953 5954

	rq = task_rq_lock(p, &flags);
5955
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5956 5957 5958 5959
		ret = -EINVAL;
		goto out;
	}

5960 5961 5962 5963 5964 5965
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5966
	if (p->sched_class->set_cpus_allowed)
5967
		p->sched_class->set_cpus_allowed(p, new_mask);
5968
	else {
5969 5970
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5971 5972
	}

L
Linus Torvalds 已提交
5973
	/* Can the task run on the task's current CPU? If so, we're done */
5974
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5975 5976
		goto out;

5977
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5978 5979 5980 5981 5982 5983 5984 5985 5986
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5987

L
Linus Torvalds 已提交
5988 5989
	return ret;
}
5990
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5991 5992

/*
I
Ingo Molnar 已提交
5993
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5994 5995 5996 5997 5998 5999
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6000 6001
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6002
 */
6003
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6004
{
6005
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6006
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6007

6008
	if (unlikely(!cpu_active(dest_cpu)))
6009
		return ret;
L
Linus Torvalds 已提交
6010 6011 6012 6013 6014 6015 6016

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6017
		goto done;
L
Linus Torvalds 已提交
6018 6019
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
L
Linus Torvalds 已提交
6020
		goto fail;
L
Linus Torvalds 已提交
6021

I
Ingo Molnar 已提交
6022
	on_rq = p->se.on_rq;
6023
	if (on_rq)
6024
		deactivate_task(rq_src, p, 0);
6025

L
Linus Torvalds 已提交
6026
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6027 6028
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6029
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6030
	}
L
Linus Torvalds 已提交
6031
done:
6032
	ret = 1;
L
Linus Torvalds 已提交
6033
fail:
L
Linus Torvalds 已提交
6034
	double_rq_unlock(rq_src, rq_dest);
6035
	return ret;
L
Linus Torvalds 已提交
6036 6037 6038 6039 6040 6041 6042
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6043
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6044 6045
{
	int cpu = (long)data;
6046
	struct rq *rq;
L
Linus Torvalds 已提交
6047 6048 6049 6050 6051 6052

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6053
		struct migration_req *req;
L
Linus Torvalds 已提交
6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6076
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6077 6078
		list_del_init(head->next);

N
Nick Piggin 已提交
6079 6080 6081
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6111
/*
6112
 * Figure out where task on dead CPU should go, use force if necessary.
6113 6114
 * NOTE: interrupts should be disabled by the caller
 */
6115
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6116
{
6117
	unsigned long flags;
L
Linus Torvalds 已提交
6118
	cpumask_t mask;
6119 6120
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
6121

6122 6123 6124 6125 6126 6127 6128
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6129
		if (dest_cpu >= nr_cpu_ids)
6130 6131 6132
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6133
		if (dest_cpu >= nr_cpu_ids) {
6134 6135 6136
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6137 6138 6139 6140
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6141
			 * cpuset_cpus_allowed() will not block. It must be
6142 6143
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6144
			rq = task_rq_lock(p, &flags);
6145
			p->cpus_allowed = cpus_allowed;
6146 6147
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6148

6149 6150 6151 6152 6153
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6154
			if (p->mm && printk_ratelimit()) {
6155 6156
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6157 6158
					task_pid_nr(p), p->comm, dead_cpu);
			}
6159
		}
6160
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6161 6162 6163 6164 6165 6166 6167 6168 6169
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6170
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6171
{
6172
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6186
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6187

6188
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6189

6190 6191
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6192 6193
			continue;

6194 6195 6196
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6197

6198
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6199 6200
}

I
Ingo Molnar 已提交
6201 6202
/*
 * Schedules idle task to be the next runnable task on current CPU.
6203 6204
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6205 6206 6207
 */
void sched_idle_next(void)
{
6208
	int this_cpu = smp_processor_id();
6209
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6210 6211 6212 6213
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6214
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6215

6216 6217 6218
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6219 6220 6221
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6222
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6223

6224 6225
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6226 6227 6228 6229

	spin_unlock_irqrestore(&rq->lock, flags);
}

6230 6231
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6245
/* called under rq->lock with disabled interrupts */
6246
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6247
{
6248
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6249 6250

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6251
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6252 6253

	/* Cannot have done final schedule yet: would have vanished. */
6254
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6255

6256
	get_task_struct(p);
L
Linus Torvalds 已提交
6257 6258 6259

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6260
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6261 6262
	 * fine.
	 */
6263
	spin_unlock_irq(&rq->lock);
6264
	move_task_off_dead_cpu(dead_cpu, p);
6265
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6266

6267
	put_task_struct(p);
L
Linus Torvalds 已提交
6268 6269 6270 6271 6272
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6273
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6274
	struct task_struct *next;
6275

I
Ingo Molnar 已提交
6276 6277 6278
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6279
		update_rq_clock(rq);
6280
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6281 6282
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6283
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6284
		migrate_dead(dead_cpu, next);
6285

L
Linus Torvalds 已提交
6286 6287 6288 6289
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6290 6291 6292
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6293 6294
	{
		.procname	= "sched_domain",
6295
		.mode		= 0555,
6296
	},
I
Ingo Molnar 已提交
6297
	{0, },
6298 6299 6300
};

static struct ctl_table sd_ctl_root[] = {
6301
	{
6302
		.ctl_name	= CTL_KERN,
6303
		.procname	= "kernel",
6304
		.mode		= 0555,
6305 6306
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6307
	{0, },
6308 6309 6310 6311 6312
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6313
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6314 6315 6316 6317

	return entry;
}

6318 6319
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6320
	struct ctl_table *entry;
6321

6322 6323 6324
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6325
	 * will always be set. In the lowest directory the names are
6326 6327 6328
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6329 6330
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6331 6332 6333
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6334 6335 6336 6337 6338

	kfree(*tablep);
	*tablep = NULL;
}

6339
static void
6340
set_table_entry(struct ctl_table *entry,
6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6354
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6355

6356 6357 6358
	if (table == NULL)
		return NULL;

6359
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6360
		sizeof(long), 0644, proc_doulongvec_minmax);
6361
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6362
		sizeof(long), 0644, proc_doulongvec_minmax);
6363
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6364
		sizeof(int), 0644, proc_dointvec_minmax);
6365
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6366
		sizeof(int), 0644, proc_dointvec_minmax);
6367
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6368
		sizeof(int), 0644, proc_dointvec_minmax);
6369
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6370
		sizeof(int), 0644, proc_dointvec_minmax);
6371
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6372
		sizeof(int), 0644, proc_dointvec_minmax);
6373
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6374
		sizeof(int), 0644, proc_dointvec_minmax);
6375
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6376
		sizeof(int), 0644, proc_dointvec_minmax);
6377
	set_table_entry(&table[9], "cache_nice_tries",
6378 6379
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6380
	set_table_entry(&table[10], "flags", &sd->flags,
6381
		sizeof(int), 0644, proc_dointvec_minmax);
6382
	/* &table[11] is terminator */
6383 6384 6385 6386

	return table;
}

6387
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6388 6389 6390 6391 6392 6393 6394 6395 6396
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6397 6398
	if (table == NULL)
		return NULL;
6399 6400 6401 6402 6403

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6404
		entry->mode = 0555;
6405 6406 6407 6408 6409 6410 6411 6412
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6413
static void register_sched_domain_sysctl(void)
6414 6415 6416 6417 6418
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6419 6420 6421
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6422 6423 6424
	if (entry == NULL)
		return;

6425
	for_each_online_cpu(i) {
6426 6427
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6428
		entry->mode = 0555;
6429
		entry->child = sd_alloc_ctl_cpu_table(i);
6430
		entry++;
6431
	}
6432 6433

	WARN_ON(sd_sysctl_header);
6434 6435
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6436

6437
/* may be called multiple times per register */
6438 6439
static void unregister_sched_domain_sysctl(void)
{
6440 6441
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6442
	sd_sysctl_header = NULL;
6443 6444
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6445
}
6446
#else
6447 6448 6449 6450
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6451 6452 6453 6454
{
}
#endif

6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6485 6486 6487 6488
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6489 6490
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6491 6492
{
	struct task_struct *p;
6493
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6494
	unsigned long flags;
6495
	struct rq *rq;
L
Linus Torvalds 已提交
6496 6497

	switch (action) {
6498

L
Linus Torvalds 已提交
6499
	case CPU_UP_PREPARE:
6500
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6501
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6502 6503 6504 6505 6506
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6507
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6508 6509 6510
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6511

L
Linus Torvalds 已提交
6512
	case CPU_ONLINE:
6513
	case CPU_ONLINE_FROZEN:
6514
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6515
		wake_up_process(cpu_rq(cpu)->migration_thread);
6516 6517 6518 6519 6520 6521

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6522 6523

			set_rq_online(rq);
6524 6525
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6526
		break;
6527

L
Linus Torvalds 已提交
6528 6529
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6530
	case CPU_UP_CANCELED_FROZEN:
6531 6532
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6533
		/* Unbind it from offline cpu so it can run. Fall thru. */
6534 6535
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6536 6537 6538
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6539

L
Linus Torvalds 已提交
6540
	case CPU_DEAD:
6541
	case CPU_DEAD_FROZEN:
6542
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6543 6544 6545 6546 6547
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6548
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6549
		update_rq_clock(rq);
6550
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6551
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6552 6553
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6554
		migrate_dead_tasks(cpu);
6555
		spin_unlock_irq(&rq->lock);
6556
		cpuset_unlock();
L
Linus Torvalds 已提交
6557 6558 6559
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6560 6561 6562 6563 6564
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6565 6566
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6567 6568
			struct migration_req *req;

L
Linus Torvalds 已提交
6569
			req = list_entry(rq->migration_queue.next,
6570
					 struct migration_req, list);
L
Linus Torvalds 已提交
6571 6572 6573 6574 6575
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6576

6577 6578
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6579 6580 6581 6582 6583
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6584
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6585 6586 6587
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6588 6589 6590 6591 6592 6593 6594 6595
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6596
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6597 6598 6599 6600
	.notifier_call = migration_call,
	.priority = 10
};

6601
static int __init migration_init(void)
L
Linus Torvalds 已提交
6602 6603
{
	void *cpu = (void *)(long)smp_processor_id();
6604
	int err;
6605 6606

	/* Start one for the boot CPU: */
6607 6608
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6609 6610
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6611 6612

	return err;
L
Linus Torvalds 已提交
6613
}
6614
early_initcall(migration_init);
L
Linus Torvalds 已提交
6615 6616 6617
#endif

#ifdef CONFIG_SMP
6618

6619
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6620

6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6643 6644
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6645
{
I
Ingo Molnar 已提交
6646
	struct sched_group *group = sd->groups;
6647
	char str[256];
L
Linus Torvalds 已提交
6648

6649
	cpulist_scnprintf(str, sizeof(str), sd->span);
6650
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6651 6652 6653 6654 6655 6656 6657 6658 6659

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6660 6661
	}

6662 6663
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6664 6665 6666 6667 6668 6669 6670 6671 6672

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6673

I
Ingo Molnar 已提交
6674
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6675
	do {
I
Ingo Molnar 已提交
6676 6677 6678
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6679 6680 6681
			break;
		}

I
Ingo Molnar 已提交
6682 6683 6684 6685 6686 6687
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6688

I
Ingo Molnar 已提交
6689 6690 6691 6692 6693
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6694

6695
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6696 6697 6698 6699
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6700

6701
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6702

6703
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6704
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6705

I
Ingo Molnar 已提交
6706 6707 6708
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6709

6710
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6711
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6712

6713
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6714 6715 6716 6717
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6718

I
Ingo Molnar 已提交
6719 6720
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6721
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6722
	int level = 0;
L
Linus Torvalds 已提交
6723

I
Ingo Molnar 已提交
6724 6725 6726 6727
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6728

I
Ingo Molnar 已提交
6729 6730
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6731 6732 6733 6734 6735 6736
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6737
	for (;;) {
6738
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6739
			break;
L
Linus Torvalds 已提交
6740 6741
		level++;
		sd = sd->parent;
6742
		if (!sd)
I
Ingo Molnar 已提交
6743 6744
			break;
	}
6745
	kfree(groupmask);
L
Linus Torvalds 已提交
6746
}
6747
#else /* !CONFIG_SCHED_DEBUG */
6748
# define sched_domain_debug(sd, cpu) do { } while (0)
6749
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6750

6751
static int sd_degenerate(struct sched_domain *sd)
6752 6753 6754 6755 6756 6757 6758 6759
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6760 6761 6762
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6776 6777
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6796 6797 6798
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6799 6800 6801 6802 6803 6804 6805
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6806 6807 6808 6809 6810 6811 6812 6813 6814
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6815 6816
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6817

6818 6819
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6820 6821 6822 6823 6824 6825 6826
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6827
	cpu_set(rq->cpu, rd->span);
6828
	if (cpu_isset(rq->cpu, cpu_online_map))
6829
		set_rq_online(rq);
G
Gregory Haskins 已提交
6830 6831 6832 6833

	spin_unlock_irqrestore(&rq->lock, flags);
}

6834
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6835 6836 6837
{
	memset(rd, 0, sizeof(*rd));

6838 6839
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6840 6841

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6842 6843 6844 6845
}

static void init_defrootdomain(void)
{
6846
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6847 6848 6849
	atomic_set(&def_root_domain.refcount, 1);
}

6850
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6851 6852 6853 6854 6855 6856 6857
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6858
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6859 6860 6861 6862

	return rd;
}

L
Linus Torvalds 已提交
6863
/*
I
Ingo Molnar 已提交
6864
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6865 6866
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6867 6868
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6869
{
6870
	struct rq *rq = cpu_rq(cpu);
6871 6872 6873 6874 6875 6876 6877
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6878
		if (sd_parent_degenerate(tmp, parent)) {
6879
			tmp->parent = parent->parent;
6880 6881 6882
			if (parent->parent)
				parent->parent->child = tmp;
		}
6883 6884
	}

6885
	if (sd && sd_degenerate(sd)) {
6886
		sd = sd->parent;
6887 6888 6889
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6890 6891 6892

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6893
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6894
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6895 6896 6897
}

/* cpus with isolated domains */
6898
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6899 6900 6901 6902

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6903 6904
	static int __initdata ints[NR_CPUS];
	int i;
L
Linus Torvalds 已提交
6905 6906 6907 6908 6909 6910 6911 6912 6913

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6914
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6915 6916

/*
6917 6918 6919 6920
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6921 6922 6923 6924 6925
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6926
static void
6927
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6928
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6929 6930 6931
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6932 6933 6934 6935
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6936 6937
	cpus_clear(*covered);

6938
	for_each_cpu_mask_nr(i, *span) {
6939
		struct sched_group *sg;
6940
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6941 6942
		int j;

6943
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6944 6945
			continue;

6946
		cpus_clear(sg->cpumask);
6947
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6948

6949
		for_each_cpu_mask_nr(j, *span) {
6950
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6951 6952
				continue;

6953
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6965
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6966

6967
#ifdef CONFIG_NUMA
6968

6969 6970 6971 6972 6973
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6974
 * Find the next node to include in a given scheduling domain. Simply
6975 6976 6977 6978
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6979
static int find_next_best_node(int node, nodemask_t *used_nodes)
6980 6981 6982 6983 6984
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6985
	for (i = 0; i < nr_node_ids; i++) {
6986
		/* Start at @node */
6987
		n = (node + i) % nr_node_ids;
6988 6989 6990 6991 6992

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6993
		if (node_isset(n, *used_nodes))
6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7005
	node_set(best_node, *used_nodes);
7006 7007 7008 7009 7010 7011
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7012
 * @span: resulting cpumask
7013
 *
I
Ingo Molnar 已提交
7014
 * Given a node, construct a good cpumask for its sched_domain to span. It
7015 7016 7017
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7018
static void sched_domain_node_span(int node, cpumask_t *span)
7019
{
7020 7021
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
7022
	int i;
7023

7024
	cpus_clear(*span);
7025
	nodes_clear(used_nodes);
7026

7027
	cpus_or(*span, *span, *nodemask);
7028
	node_set(node, used_nodes);
7029 7030

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7031
		int next_node = find_next_best_node(node, &used_nodes);
7032

7033
		node_to_cpumask_ptr_next(nodemask, next_node);
7034
		cpus_or(*span, *span, *nodemask);
7035 7036
	}
}
7037
#endif /* CONFIG_NUMA */
7038

7039
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7040

7041
/*
7042
 * SMT sched-domains:
7043
 */
L
Linus Torvalds 已提交
7044 7045
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7046
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7047

I
Ingo Molnar 已提交
7048
static int
7049 7050
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
7051
{
7052 7053
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
7054 7055
	return cpu;
}
7056
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7057

7058 7059 7060
/*
 * multi-core sched-domains:
 */
7061 7062
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
7063
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7064
#endif /* CONFIG_SCHED_MC */
7065 7066

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7067
static int
7068 7069
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
7070
{
7071
	int group;
7072 7073 7074 7075

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7076 7077 7078
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
7079 7080
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7081
static int
7082 7083
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
7084
{
7085 7086
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
7087 7088 7089 7090
	return cpu;
}
#endif

L
Linus Torvalds 已提交
7091
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7092
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7093

I
Ingo Molnar 已提交
7094
static int
7095 7096
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
7097
{
7098
	int group;
7099
#ifdef CONFIG_SCHED_MC
7100 7101 7102
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7103
#elif defined(CONFIG_SCHED_SMT)
7104 7105 7106
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
7107
#else
7108
	group = cpu;
L
Linus Torvalds 已提交
7109
#endif
7110 7111 7112
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
7113 7114 7115 7116
}

#ifdef CONFIG_NUMA
/*
7117 7118 7119
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7120
 */
7121
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7122
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7123

7124
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7125
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7126

7127
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7128
				 struct sched_group **sg, cpumask_t *nodemask)
7129
{
7130 7131
	int group;

7132 7133 7134
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7135 7136 7137 7138

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7139
}
7140

7141 7142 7143 7144 7145 7146 7147
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7148
	do {
7149
		for_each_cpu_mask_nr(j, sg->cpumask) {
7150
			struct sched_domain *sd;
7151

7152 7153 7154 7155 7156 7157 7158 7159
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7160

7161 7162 7163 7164
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7165
}
7166
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7167

7168
#ifdef CONFIG_NUMA
7169
/* Free memory allocated for various sched_group structures */
7170
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7171
{
7172
	int cpu, i;
7173

7174
	for_each_cpu_mask_nr(cpu, *cpu_map) {
7175 7176 7177 7178 7179 7180
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7181
		for (i = 0; i < nr_node_ids; i++) {
7182 7183
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7184 7185 7186
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7203
#else /* !CONFIG_NUMA */
7204
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7205 7206
{
}
7207
#endif /* CONFIG_NUMA */
7208

7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7235 7236
	sd->groups->__cpu_power = 0;

7237 7238 7239 7240 7241 7242 7243 7244 7245 7246
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7247
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7248 7249 7250 7251 7252 7253 7254 7255
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7256
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7257 7258 7259 7260
		group = group->next;
	} while (group != child->groups);
}

7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7272
	sd->level = SD_LV_##type;				\
7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7321 7322 7323 7324
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7325 7326 7327 7328 7329 7330
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7356
/*
7357 7358
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7359
 */
7360 7361
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7362 7363
{
	int i;
G
Gregory Haskins 已提交
7364
	struct root_domain *rd;
7365 7366
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7367 7368
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7369
	int sd_allnodes = 0;
7370 7371 7372 7373

	/*
	 * Allocate the per-node list of sched groups
	 */
7374
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7375
				    GFP_KERNEL);
7376 7377
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7378
		return -ENOMEM;
7379 7380
	}
#endif
L
Linus Torvalds 已提交
7381

7382
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7383 7384
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7385 7386 7387
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7388 7389 7390
		return -ENOMEM;
	}

7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7410
	/*
7411
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7412
	 */
7413
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7414
		struct sched_domain *sd = NULL, *p;
7415
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7416

7417 7418
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7419 7420

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7421
		if (cpus_weight(*cpu_map) >
7422
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7423
			sd = &per_cpu(allnodes_domains, i);
7424
			SD_INIT(sd, ALLNODES);
7425
			set_domain_attribute(sd, attr);
7426
			sd->span = *cpu_map;
7427
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7428
			p = sd;
7429
			sd_allnodes = 1;
7430 7431 7432
		} else
			p = NULL;

L
Linus Torvalds 已提交
7433
		sd = &per_cpu(node_domains, i);
7434
		SD_INIT(sd, NODE);
7435
		set_domain_attribute(sd, attr);
7436
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7437
		sd->parent = p;
7438 7439
		if (p)
			p->child = sd;
7440
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7441 7442 7443 7444
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7445
		SD_INIT(sd, CPU);
7446
		set_domain_attribute(sd, attr);
7447
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7448
		sd->parent = p;
7449 7450
		if (p)
			p->child = sd;
7451
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7452

7453 7454 7455
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7456
		SD_INIT(sd, MC);
7457
		set_domain_attribute(sd, attr);
7458 7459 7460
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7461
		p->child = sd;
7462
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7463 7464
#endif

L
Linus Torvalds 已提交
7465 7466 7467
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7468
		SD_INIT(sd, SIBLING);
7469
		set_domain_attribute(sd, attr);
7470
		sd->span = per_cpu(cpu_sibling_map, i);
7471
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7472
		sd->parent = p;
7473
		p->child = sd;
7474
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7475 7476 7477 7478 7479
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7480
	for_each_cpu_mask_nr(i, *cpu_map) {
7481 7482 7483 7484 7485 7486
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7487 7488
			continue;

I
Ingo Molnar 已提交
7489
		init_sched_build_groups(this_sibling_map, cpu_map,
7490 7491
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7492 7493 7494
	}
#endif

7495 7496
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7497
	for_each_cpu_mask_nr(i, *cpu_map) {
7498 7499 7500 7501 7502 7503
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7504
			continue;
7505

I
Ingo Molnar 已提交
7506
		init_sched_build_groups(this_core_map, cpu_map,
7507 7508
					&cpu_to_core_group,
					send_covered, tmpmask);
7509 7510 7511
	}
#endif

L
Linus Torvalds 已提交
7512
	/* Set up physical groups */
7513
	for (i = 0; i < nr_node_ids; i++) {
7514 7515
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7516

7517 7518 7519
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7520 7521
			continue;

7522 7523 7524
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7525 7526 7527 7528
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7529 7530 7531 7532 7533 7534 7535
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7536

7537
	for (i = 0; i < nr_node_ids; i++) {
7538 7539
		/* Set up node groups */
		struct sched_group *sg, *prev;
7540 7541 7542
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7543 7544
		int j;

7545 7546 7547 7548 7549
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7550
			sched_group_nodes[i] = NULL;
7551
			continue;
7552
		}
7553

7554
		sched_domain_node_span(i, domainspan);
7555
		cpus_and(*domainspan, *domainspan, *cpu_map);
7556

7557
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7558 7559 7560 7561 7562
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7563
		sched_group_nodes[i] = sg;
7564
		for_each_cpu_mask_nr(j, *nodemask) {
7565
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7566

7567 7568 7569
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7570
		sg->__cpu_power = 0;
7571
		sg->cpumask = *nodemask;
7572
		sg->next = sg;
7573
		cpus_or(*covered, *covered, *nodemask);
7574 7575
		prev = sg;

7576
		for (j = 0; j < nr_node_ids; j++) {
7577
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7578
			int n = (i + j) % nr_node_ids;
7579
			node_to_cpumask_ptr(pnodemask, n);
7580

7581 7582 7583 7584
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7585 7586
				break;

7587 7588
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7589 7590
				continue;

7591 7592
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7593 7594 7595
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7596
				goto error;
7597
			}
7598
			sg->__cpu_power = 0;
7599
			sg->cpumask = *tmpmask;
7600
			sg->next = prev->next;
7601
			cpus_or(*covered, *covered, *tmpmask);
7602 7603 7604 7605
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7606 7607 7608
#endif

	/* Calculate CPU power for physical packages and nodes */
7609
#ifdef CONFIG_SCHED_SMT
7610
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7611 7612
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7613
		init_sched_groups_power(i, sd);
7614
	}
L
Linus Torvalds 已提交
7615
#endif
7616
#ifdef CONFIG_SCHED_MC
7617
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7618 7619
		struct sched_domain *sd = &per_cpu(core_domains, i);

7620
		init_sched_groups_power(i, sd);
7621 7622
	}
#endif
7623

7624
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7625 7626
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7627
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7628 7629
	}

7630
#ifdef CONFIG_NUMA
7631
	for (i = 0; i < nr_node_ids; i++)
7632
		init_numa_sched_groups_power(sched_group_nodes[i]);
7633

7634 7635
	if (sd_allnodes) {
		struct sched_group *sg;
7636

7637 7638
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7639 7640
		init_numa_sched_groups_power(sg);
	}
7641 7642
#endif

L
Linus Torvalds 已提交
7643
	/* Attach the domains */
7644
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7645 7646 7647
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7648 7649
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7650 7651 7652
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7653
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7654
	}
7655

7656
	SCHED_CPUMASK_FREE((void *)allmasks);
7657 7658
	return 0;

7659
#ifdef CONFIG_NUMA
7660
error:
7661 7662
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7663
	return -ENOMEM;
7664
#endif
L
Linus Torvalds 已提交
7665
}
P
Paul Jackson 已提交
7666

7667 7668 7669 7670 7671
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7672 7673
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7674 7675
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7676 7677 7678 7679 7680 7681 7682 7683

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7684 7685 7686 7687
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7688
/*
I
Ingo Molnar 已提交
7689
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7690 7691
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7692
 */
7693
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7694
{
7695 7696
	int err;

7697
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7698 7699 7700 7701 7702
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7703
	dattr_cur = NULL;
7704
	err = build_sched_domains(doms_cur);
7705
	register_sched_domain_sysctl();
7706 7707

	return err;
7708 7709
}

7710 7711
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7712
{
7713
	free_sched_groups(cpu_map, tmpmask);
7714
}
L
Linus Torvalds 已提交
7715

7716 7717 7718 7719
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7720
static void detach_destroy_domains(const cpumask_t *cpu_map)
7721
{
7722
	cpumask_t tmpmask;
7723 7724
	int i;

7725 7726
	unregister_sched_domain_sysctl();

7727
	for_each_cpu_mask_nr(i, *cpu_map)
G
Gregory Haskins 已提交
7728
		cpu_attach_domain(NULL, &def_root_domain, i);
7729
	synchronize_sched();
7730
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7731 7732
}

7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7749 7750
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7751
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7752 7753 7754 7755
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7756 7757 7758
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7759 7760 7761
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7762 7763
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7764 7765
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
7766
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7767
 *
7768 7769 7770 7771
 * If doms_new==NULL it will be replaced with cpu_online_map.
 * ndoms_new==0 is a special case for destroying existing domains.
 * It will not create the default domain.
 *
P
Paul Jackson 已提交
7772 7773
 * Call with hotplug lock held
 */
7774 7775
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7776
{
7777
	int i, j, n;
P
Paul Jackson 已提交
7778

7779
	mutex_lock(&sched_domains_mutex);
7780

7781 7782 7783
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7784
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7785 7786 7787

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7788
		for (j = 0; j < n; j++) {
7789 7790
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7791 7792 7793 7794 7795 7796 7797 7798
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7799 7800 7801 7802 7803 7804 7805
	if (doms_new == NULL) {
		ndoms_cur = 0;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
		dattr_new = NULL;
	}

P
Paul Jackson 已提交
7806 7807 7808
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7809 7810
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7811 7812 7813
				goto match2;
		}
		/* no match - add a new doms_new */
7814 7815
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7816 7817 7818 7819 7820 7821 7822
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7823
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7824
	doms_cur = doms_new;
7825
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7826
	ndoms_cur = ndoms_new;
7827 7828

	register_sched_domain_sysctl();
7829

7830
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7831 7832
}

7833
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7834
int arch_reinit_sched_domains(void)
7835
{
7836
	get_online_cpus();
7837 7838 7839 7840

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7841
	rebuild_sched_domains();
7842
	put_online_cpus();
7843

7844
	return 0;
7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
7865 7866
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
7867 7868 7869
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7870
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7871
					    const char *buf, size_t count)
7872 7873 7874
{
	return sched_power_savings_store(buf, count, 0);
}
7875 7876 7877
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7878 7879 7880
#endif

#ifdef CONFIG_SCHED_SMT
7881 7882
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
7883 7884 7885
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7886
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7887
					     const char *buf, size_t count)
7888 7889 7890
{
	return sched_power_savings_store(buf, count, 1);
}
7891 7892
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7912
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7913

7914
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7915
/*
7916 7917
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7918 7919 7920
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7921 7922 7923 7924 7925 7926
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
7927
		partition_sched_domains(1, NULL, NULL);
7928 7929 7930 7931 7932 7933 7934 7935 7936 7937
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7938
{
P
Peter Zijlstra 已提交
7939 7940
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7941 7942
	switch (action) {
	case CPU_DOWN_PREPARE:
7943
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7944
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7945 7946 7947
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7948
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7949
	case CPU_ONLINE:
7950
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7951
		enable_runtime(cpu_rq(cpu));
7952 7953
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7954 7955 7956 7957 7958 7959 7960
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7961 7962
	cpumask_t non_isolated_cpus;

7963 7964 7965 7966 7967
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7968
	get_online_cpus();
7969
	mutex_lock(&sched_domains_mutex);
7970
	arch_init_sched_domains(&cpu_online_map);
7971
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7972 7973
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7974
	mutex_unlock(&sched_domains_mutex);
7975
	put_online_cpus();
7976 7977

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7978 7979
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7980 7981 7982 7983 7984
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7985
	init_hrtick();
7986 7987

	/* Move init over to a non-isolated CPU */
7988
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7989
		BUG();
I
Ingo Molnar 已提交
7990
	sched_init_granularity();
L
Linus Torvalds 已提交
7991 7992 7993 7994
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7995
	sched_init_granularity();
L
Linus Torvalds 已提交
7996 7997 7998 7999 8000 8001 8002 8003 8004 8005
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8006
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8007 8008
{
	cfs_rq->tasks_timeline = RB_ROOT;
8009
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8010 8011 8012
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8013
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8014 8015
}

P
Peter Zijlstra 已提交
8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8029
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8030 8031
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
8032 8033 8034 8035 8036 8037 8038
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8039 8040
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8041

8042
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8043
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8044 8045
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8046 8047
}

P
Peter Zijlstra 已提交
8048
#ifdef CONFIG_FAIR_GROUP_SCHED
8049 8050 8051
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8052
{
8053
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8054 8055 8056 8057 8058 8059 8060
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8061 8062 8063 8064
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8065 8066 8067 8068 8069
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8070 8071
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8072
	se->load.inv_weight = 0;
8073
	se->parent = parent;
P
Peter Zijlstra 已提交
8074
}
8075
#endif
P
Peter Zijlstra 已提交
8076

8077
#ifdef CONFIG_RT_GROUP_SCHED
8078 8079 8080
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8081
{
8082 8083
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8084 8085 8086 8087
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8088
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8089 8090 8091 8092
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8093 8094 8095
	if (!rt_se)
		return;

8096 8097 8098 8099 8100
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8101
	rt_se->my_q = rt_rq;
8102
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8103 8104 8105 8106
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8107 8108
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8109
	int i, j;
8110 8111 8112 8113 8114 8115 8116
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8117 8118 8119
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8120 8121 8122 8123 8124 8125
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8126
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8127 8128 8129 8130 8131 8132 8133

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8134 8135 8136 8137 8138 8139 8140

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8141 8142
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8143 8144 8145 8146 8147
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8148 8149 8150 8151 8152 8153 8154 8155
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8156 8157
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8158
	}
I
Ingo Molnar 已提交
8159

G
Gregory Haskins 已提交
8160 8161 8162 8163
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8164 8165 8166 8167 8168 8169
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8170 8171 8172
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8173 8174
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8175

8176
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8177
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8178 8179 8180 8181 8182 8183
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8184 8185
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8186

8187
	for_each_possible_cpu(i) {
8188
		struct rq *rq;
L
Linus Torvalds 已提交
8189 8190 8191

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8192
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8193
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8194
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8195
#ifdef CONFIG_FAIR_GROUP_SCHED
8196
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8197
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8218
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8219
#elif defined CONFIG_USER_SCHED
8220 8221
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8233
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8234
				&per_cpu(init_cfs_rq, i),
8235 8236
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8237

8238
#endif
D
Dhaval Giani 已提交
8239 8240 8241
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8242
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8243
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8244
#ifdef CONFIG_CGROUP_SCHED
8245
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8246
#elif defined CONFIG_USER_SCHED
8247
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8248
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8249
				&per_cpu(init_rt_rq, i),
8250 8251
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8252
#endif
I
Ingo Molnar 已提交
8253
#endif
L
Linus Torvalds 已提交
8254

I
Ingo Molnar 已提交
8255 8256
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8257
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8258
		rq->sd = NULL;
G
Gregory Haskins 已提交
8259
		rq->rd = NULL;
L
Linus Torvalds 已提交
8260
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8261
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8262
		rq->push_cpu = 0;
8263
		rq->cpu = i;
8264
		rq->online = 0;
L
Linus Torvalds 已提交
8265 8266
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8267
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8268
#endif
P
Peter Zijlstra 已提交
8269
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8270 8271 8272
		atomic_set(&rq->nr_iowait, 0);
	}

8273
	set_load_weight(&init_task);
8274

8275 8276 8277 8278
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8279
#ifdef CONFIG_SMP
8280
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8281 8282
#endif

8283 8284 8285 8286
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8300 8301 8302 8303
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8304 8305

	scheduler_running = 1;
L
Linus Torvalds 已提交
8306 8307 8308 8309 8310
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8311
#ifdef in_atomic
L
Linus Torvalds 已提交
8312 8313
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8333 8334 8335 8336 8337 8338
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8339 8340 8341
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8342

8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8354 8355
void normalize_rt_tasks(void)
{
8356
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8357
	unsigned long flags;
8358
	struct rq *rq;
L
Linus Torvalds 已提交
8359

8360
	read_lock_irqsave(&tasklist_lock, flags);
8361
	do_each_thread(g, p) {
8362 8363 8364 8365 8366 8367
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8368 8369
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8370 8371 8372
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8373
#endif
I
Ingo Molnar 已提交
8374 8375 8376 8377 8378 8379 8380 8381

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8382
			continue;
I
Ingo Molnar 已提交
8383
		}
L
Linus Torvalds 已提交
8384

8385
		spin_lock(&p->pi_lock);
8386
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8387

8388
		normalize_task(rq, p);
8389

8390
		__task_rq_unlock(rq);
8391
		spin_unlock(&p->pi_lock);
8392 8393
	} while_each_thread(g, p);

8394
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8395 8396 8397
}

#endif /* CONFIG_MAGIC_SYSRQ */
8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8416
struct task_struct *curr_task(int cpu)
8417 8418 8419 8420 8421 8422 8423 8424 8425 8426
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8427 8428
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8429 8430 8431 8432 8433 8434 8435
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8436
void set_curr_task(int cpu, struct task_struct *p)
8437 8438 8439 8440 8441
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8442

8443 8444
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8459 8460
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8461 8462
{
	struct cfs_rq *cfs_rq;
8463
	struct sched_entity *se, *parent_se;
8464
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8465 8466
	int i;

8467
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8468 8469
	if (!tg->cfs_rq)
		goto err;
8470
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8471 8472
	if (!tg->se)
		goto err;
8473 8474

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8475 8476

	for_each_possible_cpu(i) {
8477
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8478

P
Peter Zijlstra 已提交
8479 8480
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8481 8482 8483
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8484 8485
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8486 8487 8488
		if (!se)
			goto err;

8489 8490
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8509
#else /* !CONFG_FAIR_GROUP_SCHED */
8510 8511 8512 8513
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8514 8515
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8527
#endif /* CONFIG_FAIR_GROUP_SCHED */
8528 8529

#ifdef CONFIG_RT_GROUP_SCHED
8530 8531 8532 8533
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8534 8535
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8547 8548
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8549 8550
{
	struct rt_rq *rt_rq;
8551
	struct sched_rt_entity *rt_se, *parent_se;
8552 8553 8554
	struct rq *rq;
	int i;

8555
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8556 8557
	if (!tg->rt_rq)
		goto err;
8558
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8559 8560 8561
	if (!tg->rt_se)
		goto err;

8562 8563
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8564 8565 8566 8567

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8568 8569 8570 8571
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8572

P
Peter Zijlstra 已提交
8573 8574 8575 8576
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8577

8578 8579
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8580 8581
	}

8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8598
#else /* !CONFIG_RT_GROUP_SCHED */
8599 8600 8601 8602
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8603 8604
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8616
#endif /* CONFIG_RT_GROUP_SCHED */
8617

8618
#ifdef CONFIG_GROUP_SCHED
8619 8620 8621 8622 8623 8624 8625 8626
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8627
struct task_group *sched_create_group(struct task_group *parent)
8628 8629 8630 8631 8632 8633 8634 8635 8636
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8637
	if (!alloc_fair_sched_group(tg, parent))
8638 8639
		goto err;

8640
	if (!alloc_rt_sched_group(tg, parent))
8641 8642
		goto err;

8643
	spin_lock_irqsave(&task_group_lock, flags);
8644
	for_each_possible_cpu(i) {
8645 8646
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8647
	}
P
Peter Zijlstra 已提交
8648
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8649 8650 8651 8652 8653

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8654
	list_add_rcu(&tg->siblings, &parent->children);
8655
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8656

8657
	return tg;
S
Srivatsa Vaddagiri 已提交
8658 8659

err:
P
Peter Zijlstra 已提交
8660
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8661 8662 8663
	return ERR_PTR(-ENOMEM);
}

8664
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8665
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8666 8667
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8668
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8669 8670
}

8671
/* Destroy runqueue etc associated with a task group */
8672
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8673
{
8674
	unsigned long flags;
8675
	int i;
S
Srivatsa Vaddagiri 已提交
8676

8677
	spin_lock_irqsave(&task_group_lock, flags);
8678
	for_each_possible_cpu(i) {
8679 8680
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8681
	}
P
Peter Zijlstra 已提交
8682
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8683
	list_del_rcu(&tg->siblings);
8684
	spin_unlock_irqrestore(&task_group_lock, flags);
8685 8686

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8687
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8688 8689
}

8690
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8691 8692 8693
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8694 8695
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8696 8697 8698 8699 8700 8701 8702 8703 8704
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8705
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8706 8707
	on_rq = tsk->se.on_rq;

8708
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8709
		dequeue_task(rq, tsk, 0);
8710 8711
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8712

P
Peter Zijlstra 已提交
8713
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8714

P
Peter Zijlstra 已提交
8715 8716 8717 8718 8719
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8720 8721 8722
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8723
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8724 8725 8726

	task_rq_unlock(rq, &flags);
}
8727
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8728

8729
#ifdef CONFIG_FAIR_GROUP_SCHED
8730
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8731 8732 8733 8734 8735
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8736
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8737 8738 8739
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8740
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8741

8742
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8743
		enqueue_entity(cfs_rq, se, 0);
8744
}
8745

8746 8747 8748 8749 8750 8751 8752 8753 8754
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8755 8756
}

8757 8758
static DEFINE_MUTEX(shares_mutex);

8759
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8760 8761
{
	int i;
8762
	unsigned long flags;
8763

8764 8765 8766 8767 8768 8769
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8770 8771
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8772 8773
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8774

8775
	mutex_lock(&shares_mutex);
8776
	if (tg->shares == shares)
8777
		goto done;
S
Srivatsa Vaddagiri 已提交
8778

8779
	spin_lock_irqsave(&task_group_lock, flags);
8780 8781
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8782
	list_del_rcu(&tg->siblings);
8783
	spin_unlock_irqrestore(&task_group_lock, flags);
8784 8785 8786 8787 8788 8789 8790 8791

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8792
	tg->shares = shares;
8793 8794 8795 8796 8797
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8798
		set_se_shares(tg->se[i], shares);
8799
	}
S
Srivatsa Vaddagiri 已提交
8800

8801 8802 8803 8804
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8805
	spin_lock_irqsave(&task_group_lock, flags);
8806 8807
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8808
	list_add_rcu(&tg->siblings, &tg->parent->children);
8809
	spin_unlock_irqrestore(&task_group_lock, flags);
8810
done:
8811
	mutex_unlock(&shares_mutex);
8812
	return 0;
S
Srivatsa Vaddagiri 已提交
8813 8814
}

8815 8816 8817 8818
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8819
#endif
8820

8821
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8822
/*
P
Peter Zijlstra 已提交
8823
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8824
 */
P
Peter Zijlstra 已提交
8825 8826 8827 8828 8829
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8830
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8831

P
Peter Zijlstra 已提交
8832
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8833 8834
}

P
Peter Zijlstra 已提交
8835 8836
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8837
{
P
Peter Zijlstra 已提交
8838
	struct task_struct *g, *p;
8839

P
Peter Zijlstra 已提交
8840 8841 8842 8843
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8844

P
Peter Zijlstra 已提交
8845 8846
	return 0;
}
8847

P
Peter Zijlstra 已提交
8848 8849 8850 8851 8852
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8853

P
Peter Zijlstra 已提交
8854 8855 8856 8857 8858 8859
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8860

P
Peter Zijlstra 已提交
8861 8862
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8863

P
Peter Zijlstra 已提交
8864 8865 8866
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8867 8868
	}

8869 8870 8871 8872 8873 8874 8875 8876 8877
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;

	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8878 8879
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8880

P
Peter Zijlstra 已提交
8881
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8882

8883 8884 8885 8886 8887 8888 8889 8890 8891
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;

	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8892 8893 8894
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8895

P
Peter Zijlstra 已提交
8896 8897 8898 8899
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8900

P
Peter Zijlstra 已提交
8901
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8902
	}
P
Peter Zijlstra 已提交
8903

P
Peter Zijlstra 已提交
8904 8905 8906 8907
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8908 8909
}

P
Peter Zijlstra 已提交
8910
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8911
{
P
Peter Zijlstra 已提交
8912 8913 8914 8915 8916 8917 8918
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8919 8920
}

8921 8922
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8923
{
P
Peter Zijlstra 已提交
8924
	int i, err = 0;
P
Peter Zijlstra 已提交
8925 8926

	mutex_lock(&rt_constraints_mutex);
8927
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8928 8929
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
8930
		goto unlock;
P
Peter Zijlstra 已提交
8931 8932

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8933 8934
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8935 8936 8937 8938 8939 8940 8941 8942 8943

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8944
 unlock:
8945
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8946 8947 8948
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8949 8950
}

8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8963 8964 8965 8966
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8967
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8968 8969
		return -1;

8970
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8971 8972 8973
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8974 8975 8976 8977 8978 8979 8980 8981

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8982 8983 8984
	if (rt_period == 0)
		return -EINVAL;

8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8999
	u64 runtime, period;
9000 9001
	int ret = 0;

9002 9003 9004
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9005 9006 9007 9008 9009 9010 9011 9012
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9013

9014
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9015
	read_lock(&tasklist_lock);
9016
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9017
	read_unlock(&tasklist_lock);
9018 9019 9020 9021
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9022
#else /* !CONFIG_RT_GROUP_SCHED */
9023 9024
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9025 9026 9027
	unsigned long flags;
	int i;

9028 9029 9030
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9031 9032 9033 9034 9035 9036 9037 9038 9039 9040
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9041 9042
	return 0;
}
9043
#endif /* CONFIG_RT_GROUP_SCHED */
9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9074

9075
#ifdef CONFIG_CGROUP_SCHED
9076 9077

/* return corresponding task_group object of a cgroup */
9078
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9079
{
9080 9081
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9082 9083 9084
}

static struct cgroup_subsys_state *
9085
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9086
{
9087
	struct task_group *tg, *parent;
9088

9089
	if (!cgrp->parent) {
9090
		/* This is early initialization for the top cgroup */
9091
		init_task_group.css.cgroup = cgrp;
9092 9093 9094
		return &init_task_group.css;
	}

9095 9096
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9097 9098 9099 9100
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
9101
	tg->css.cgroup = cgrp;
9102 9103 9104 9105

	return &tg->css;
}

I
Ingo Molnar 已提交
9106 9107
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9108
{
9109
	struct task_group *tg = cgroup_tg(cgrp);
9110 9111 9112 9113

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9114 9115 9116
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9117
{
9118 9119
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9120
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9121 9122
		return -EINVAL;
#else
9123 9124 9125
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9126
#endif
9127 9128 9129 9130 9131

	return 0;
}

static void
9132
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9133 9134 9135 9136 9137
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9138
#ifdef CONFIG_FAIR_GROUP_SCHED
9139
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9140
				u64 shareval)
9141
{
9142
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9143 9144
}

9145
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9146
{
9147
	struct task_group *tg = cgroup_tg(cgrp);
9148 9149 9150

	return (u64) tg->shares;
}
9151
#endif /* CONFIG_FAIR_GROUP_SCHED */
9152

9153
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9154
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9155
				s64 val)
P
Peter Zijlstra 已提交
9156
{
9157
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9158 9159
}

9160
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9161
{
9162
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9163
}
9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9175
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9176

9177
static struct cftype cpu_files[] = {
9178
#ifdef CONFIG_FAIR_GROUP_SCHED
9179 9180
	{
		.name = "shares",
9181 9182
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9183
	},
9184 9185
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9186
	{
P
Peter Zijlstra 已提交
9187
		.name = "rt_runtime_us",
9188 9189
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9190
	},
9191 9192
	{
		.name = "rt_period_us",
9193 9194
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9195
	},
9196
#endif
9197 9198 9199 9200
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9201
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9202 9203 9204
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9205 9206 9207 9208 9209 9210 9211
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9212 9213 9214
	.early_init	= 1,
};

9215
#endif	/* CONFIG_CGROUP_SCHED */
9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9236
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9237
{
9238
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9251
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9268
static void
9269
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9270
{
9271
	struct cpuacct *ca = cgroup_ca(cgrp);
9272 9273 9274 9275 9276 9277

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9278
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9279
{
9280
	struct cpuacct *ca = cgroup_ca(cgrp);
9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9322 9323 9324
static struct cftype files[] = {
	{
		.name = "usage",
9325 9326
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9327 9328 9329
	},
};

9330
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9331
{
9332
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */