intel_lrc.c 84.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "i915_vgpu.h"
141
#include "intel_lrc_reg.h"
142
#include "intel_mocs.h"
143
#include "intel_workarounds.h"
144

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159
#define GEN8_CTX_STATUS_COMPLETED_MASK \
160
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
161

162 163
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
164
#define WA_TAIL_DWORDS 2
165
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
166

167
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
168 169
					    struct intel_engine_cs *engine,
					    struct intel_context *ce);
170 171 172 173
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
174

175 176 177 178 179 180 181
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
182
	return rq->sched.attr.priority;
183 184 185 186 187 188
}

static inline bool need_preempt(const struct intel_engine_cs *engine,
				const struct i915_request *last,
				int prio)
{
189
	return (intel_engine_has_preemption(engine) &&
190 191
		__execlists_need_preempt(prio, rq_prio(last)) &&
		!i915_request_completed(last));
192 193
}

194
/*
195 196 197 198 199
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
200 201
 * This is what a descriptor looks like, from LSB to MSB::
 *
202
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
203
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
204
 *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
205 206
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
207 208 209 210 211 212 213 214 215 216 217 218
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
219
 */
220
static void
221
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
222 223
				   struct intel_engine_cs *engine,
				   struct intel_context *ce)
224
{
225
	u64 desc;
226

227 228
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
229

230
	desc = ctx->desc_template;				/* bits  0-11 */
231 232
	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));

233
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
234
								/* bits 12-31 */
235 236
	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));

237 238 239 240 241
	/*
	 * The following 32bits are copied into the OA reports (dword 2).
	 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
	 * anything below.
	 */
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	if (INTEL_GEN(ctx->i915) >= 11) {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
258

259
	ce->lrc_desc = desc;
260 261
}

262
static struct i915_priolist *
263
lookup_priolist(struct intel_engine_cs *engine, int prio)
264
{
265
	struct intel_engine_execlists * const execlists = &engine->execlists;
266 267 268 269
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

270
	if (unlikely(execlists->no_priolist))
271 272 273 274 275
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
276
	parent = &execlists->queue.rb_root.rb_node;
277 278
	while (*parent) {
		rb = *parent;
279
		p = to_priolist(rb);
280 281 282 283 284 285
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
286
			return p;
287 288 289 290
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
291
		p = &execlists->default_priolist;
292 293 294 295 296 297 298 299 300 301 302 303 304 305
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
306
			execlists->no_priolist = true;
307 308 309 310 311
			goto find_priolist;
		}
	}

	p->priority = prio;
312
	INIT_LIST_HEAD(&p->requests);
313
	rb_link_node(&p->node, rb, parent);
314
	rb_insert_color_cached(&p->node, &execlists->queue, first);
315

316
	return p;
317 318
}

319
static void unwind_wa_tail(struct i915_request *rq)
320 321 322 323 324
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

325
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
326
{
327
	struct i915_request *rq, *rn;
328 329
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
330

331
	lockdep_assert_held(&engine->timeline.lock);
332 333

	list_for_each_entry_safe_reverse(rq, rn,
334
					 &engine->timeline.requests,
335
					 link) {
336
		if (i915_request_completed(rq))
337 338
			return;

339
		__i915_request_unsubmit(rq);
340 341
		unwind_wa_tail(rq);

342 343 344
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
		if (rq_prio(rq) != last_prio) {
			last_prio = rq_prio(rq);
345
			p = lookup_priolist(engine, last_prio);
346 347
		}

348
		GEM_BUG_ON(p->priority != rq_prio(rq));
349
		list_add(&rq->sched.link, &p->requests);
350 351 352
	}
}

353
void
354 355 356 357
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);
358 359 360
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline.lock, flags);
361 362

	__unwind_incomplete_requests(engine);
363 364

	spin_unlock_irqrestore(&engine->timeline.lock, flags);
365 366
}

367
static inline void
368
execlists_context_status_change(struct i915_request *rq, unsigned long status)
369
{
370 371 372 373 374 375
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
376

377 378
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
379 380
}

381 382 383 384 385 386 387 388 389 390 391 392 393
inline void
execlists_user_begin(struct intel_engine_execlists *execlists,
		     const struct execlist_port *port)
{
	execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
}

inline void
execlists_user_end(struct intel_engine_execlists *execlists)
{
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
}

394
static inline void
395
execlists_context_schedule_in(struct i915_request *rq)
396 397
{
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
398
	intel_engine_context_in(rq->engine);
399 400 401
}

static inline void
402
execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
403
{
404
	intel_engine_context_out(rq->engine);
405 406
	execlists_context_status_change(rq, status);
	trace_i915_request_out(rq);
407 408
}

409 410 411 412 413 414 415 416 417
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

418
static u64 execlists_update_context(struct i915_request *rq)
419
{
420
	struct intel_context *ce = rq->hw_context;
421
	struct i915_hw_ppgtt *ppgtt =
C
Chris Wilson 已提交
422
		rq->gem_context->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
423
	u32 *reg_state = ce->lrc_reg_state;
424

425
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
426

427 428 429 430 431
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
432
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->vm))
433
		execlists_update_context_pdps(ppgtt, reg_state);
434 435

	return ce->lrc_desc;
436 437
}

438
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
439
{
440 441 442 443 444 445 446
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
447 448
}

449
static void execlists_submit_ports(struct intel_engine_cs *engine)
450
{
451 452
	struct intel_engine_execlists *execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
453
	unsigned int n;
454

455 456 457 458 459 460 461 462 463 464
	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!engine->i915->gt.awake);

465 466 467 468 469 470 471
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
472
		struct i915_request *rq;
473 474 475 476 477 478 479
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
480
				execlists_context_schedule_in(rq);
481 482 483
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
484

485
			GEM_TRACE("%s in[%d]:  ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
486
				  engine->name, n,
487
				  port[n].context_id, count,
488
				  rq->global_seqno,
489
				  rq->fence.context, rq->fence.seqno,
490
				  intel_engine_get_seqno(engine),
491
				  rq_prio(rq));
492 493 494 495
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
496

497
		write_desc(execlists, desc, n);
498
	}
499 500 501 502 503 504

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
505 506
}

507
static bool ctx_single_port_submission(const struct intel_context *ce)
508
{
509
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
510
		i915_gem_context_force_single_submission(ce->gem_context));
511
}
512

513 514
static bool can_merge_ctx(const struct intel_context *prev,
			  const struct intel_context *next)
515 516 517
{
	if (prev != next)
		return false;
518

519 520
	if (ctx_single_port_submission(prev))
		return false;
521

522
	return true;
523 524
}

525
static void port_assign(struct execlist_port *port, struct i915_request *rq)
526 527 528 529
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
530
		i915_request_put(port_request(port));
531

532
	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
533 534
}

C
Chris Wilson 已提交
535 536
static void inject_preempt_context(struct intel_engine_cs *engine)
{
537
	struct intel_engine_execlists *execlists = &engine->execlists;
C
Chris Wilson 已提交
538
	struct intel_context *ce =
539
		to_intel_context(engine->i915->preempt_context, engine);
C
Chris Wilson 已提交
540 541
	unsigned int n;

542
	GEM_BUG_ON(execlists->preempt_complete_status !=
543
		   upper_32_bits(ce->lrc_desc));
544

545 546 547 548
	/*
	 * Switch to our empty preempt context so
	 * the state of the GPU is known (idle).
	 */
549
	GEM_TRACE("%s\n", engine->name);
550 551 552 553 554 555 556 557
	for (n = execlists_num_ports(execlists); --n; )
		write_desc(execlists, 0, n);

	write_desc(execlists, ce->lrc_desc, n);

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
C
Chris Wilson 已提交
558

559 560 561 562 563 564 565 566
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
	execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
}

static void complete_preempt_context(struct intel_engine_execlists *execlists)
{
	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));

567 568 569
	if (inject_preempt_hang(execlists))
		return;

570
	execlists_cancel_port_requests(execlists);
571 572 573
	__unwind_incomplete_requests(container_of(execlists,
						  struct intel_engine_cs,
						  execlists));
C
Chris Wilson 已提交
574 575
}

576
static void execlists_dequeue(struct intel_engine_cs *engine)
577
{
578 579
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
580 581
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
582
	struct i915_request *last = port_request(port);
583
	struct rb_node *rb;
584 585
	bool submit = false;

586 587
	/*
	 * Hardware submission is through 2 ports. Conceptually each port
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
606
	 */
607

C
Chris Wilson 已提交
608 609 610 611 612 613 614
	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
615 616
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
617
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
618

619 620 621 622 623 624 625 626
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
627
			return;
628

629
		if (need_preempt(engine, last, execlists->queue_priority)) {
C
Chris Wilson 已提交
630
			inject_preempt_context(engine);
631
			return;
C
Chris Wilson 已提交
632
		}
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655

		/*
		 * In theory, we could coalesce more requests onto
		 * the second port (the first port is active, with
		 * no preemptions pending). However, that means we
		 * then have to deal with the possible lite-restore
		 * of the second port (as we submit the ELSP, there
		 * may be a context-switch) but also we may complete
		 * the resubmission before the context-switch. Ergo,
		 * coalescing onto the second port will cause a
		 * preemption event, but we cannot predict whether
		 * that will affect port[0] or port[1].
		 *
		 * If the second port is already active, we can wait
		 * until the next context-switch before contemplating
		 * new requests. The GPU will be busy and we should be
		 * able to resubmit the new ELSP before it idles,
		 * avoiding pipeline bubbles (momentary pauses where
		 * the driver is unable to keep up the supply of new
		 * work). However, we have to double check that the
		 * priorities of the ports haven't been switch.
		 */
		if (port_count(&port[1]))
656
			return;
657 658 659 660 661 662 663 664 665 666

		/*
		 * WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent
		 * ring:HEAD == rq:TAIL as we resubmit the
		 * request. See gen8_emit_breadcrumb() for
		 * where we prepare the padding after the
		 * end of the request.
		 */
		last->tail = last->wa_tail;
C
Chris Wilson 已提交
667 668
	}

669
	while ((rb = rb_first_cached(&execlists->queue))) {
670
		struct i915_priolist *p = to_priolist(rb);
671
		struct i915_request *rq, *rn;
672

673
		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
674 675 676 677 678 679 680 681 682 683
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
684
			 */
685 686
			if (last &&
			    !can_merge_ctx(rq->hw_context, last->hw_context)) {
687 688 689 690 691
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
692
				if (port == last_port) {
693
					__list_del_many(&p->requests,
694
							&rq->sched.link);
695 696 697 698 699 700 701 702 703 704
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
705 706
				if (ctx_single_port_submission(last->hw_context) ||
				    ctx_single_port_submission(rq->hw_context)) {
707
					__list_del_many(&p->requests,
708
							&rq->sched.link);
709 710 711
					goto done;
				}

712
				GEM_BUG_ON(last->hw_context == rq->hw_context);
713 714 715 716

				if (submit)
					port_assign(port, last);
				port++;
717 718

				GEM_BUG_ON(port_isset(port));
719
			}
720

721
			INIT_LIST_HEAD(&rq->sched.link);
722 723
			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
724 725
			last = rq;
			submit = true;
726
		}
727

728
		rb_erase_cached(&p->node, &execlists->queue);
729 730
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
731
			kmem_cache_free(engine->i915->priorities, p);
732
	}
733

734
done:
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
	/*
	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
	 *
	 * We choose queue_priority such that if we add a request of greater
	 * priority than this, we kick the submission tasklet to decide on
	 * the right order of submitting the requests to hardware. We must
	 * also be prepared to reorder requests as they are in-flight on the
	 * HW. We derive the queue_priority then as the first "hole" in
	 * the HW submission ports and if there are no available slots,
	 * the priority of the lowest executing request, i.e. last.
	 *
	 * When we do receive a higher priority request ready to run from the
	 * user, see queue_request(), the queue_priority is bumped to that
	 * request triggering preemption on the next dequeue (or subsequent
	 * interrupt for secondary ports).
	 */
	execlists->queue_priority =
		port != execlists->port ? rq_prio(last) : INT_MIN;

754
	if (submit) {
755
		port_assign(port, last);
756 757
		execlists_submit_ports(engine);
	}
758 759

	/* We must always keep the beast fed if we have work piled up */
760 761
	GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
		   !port_isset(execlists->port));
762

763 764
	/* Re-evaluate the executing context setup after each preemptive kick */
	if (last)
765
		execlists_user_begin(execlists, execlists->port);
766

767 768 769 770
	/* If the engine is now idle, so should be the flag; and vice versa. */
	GEM_BUG_ON(execlists_is_active(&engine->execlists,
				       EXECLISTS_ACTIVE_USER) ==
		   !port_isset(engine->execlists.port));
771 772
}

773
void
774
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
775
{
776
	struct execlist_port *port = execlists->port;
777
	unsigned int num_ports = execlists_num_ports(execlists);
778

779
	while (num_ports-- && port_isset(port)) {
780
		struct i915_request *rq = port_request(port);
781

782 783 784 785 786 787 788
		GEM_TRACE("%s:port%u global=%d (fence %llx:%d), (current %d)\n",
			  rq->engine->name,
			  (unsigned int)(port - execlists->port),
			  rq->global_seqno,
			  rq->fence.context, rq->fence.seqno,
			  intel_engine_get_seqno(rq->engine));

789
		GEM_BUG_ON(!execlists->active);
790 791 792 793
		execlists_context_schedule_out(rq,
					       i915_request_completed(rq) ?
					       INTEL_CONTEXT_SCHEDULE_OUT :
					       INTEL_CONTEXT_SCHEDULE_PREEMPTED);
794

795
		i915_request_put(rq);
796

797 798 799
		memset(port, 0, sizeof(*port));
		port++;
	}
800

801
	execlists_clear_all_active(execlists);
802 803
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
static void reset_csb_pointers(struct intel_engine_execlists *execlists)
{
	/*
	 * After a reset, the HW starts writing into CSB entry [0]. We
	 * therefore have to set our HEAD pointer back one entry so that
	 * the *first* entry we check is entry 0. To complicate this further,
	 * as we don't wait for the first interrupt after reset, we have to
	 * fake the HW write to point back to the last entry so that our
	 * inline comparison of our cached head position against the last HW
	 * write works even before the first interrupt.
	 */
	execlists->csb_head = execlists->csb_write_reset;
	WRITE_ONCE(*execlists->csb_write, execlists->csb_write_reset);
}

819 820 821 822 823
static void nop_submission_tasklet(unsigned long data)
{
	/* The driver is wedged; don't process any more events. */
}

824 825
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
826
	struct intel_engine_execlists * const execlists = &engine->execlists;
827
	struct i915_request *rq, *rn;
828 829 830
	struct rb_node *rb;
	unsigned long flags;

831 832
	GEM_TRACE("%s current %d\n",
		  engine->name, intel_engine_get_seqno(engine));
833

834 835 836 837 838 839 840 841 842 843 844 845 846 847
	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
848
	spin_lock_irqsave(&engine->timeline.lock, flags);
849 850

	/* Cancel the requests on the HW and clear the ELSP tracker. */
851
	execlists_cancel_port_requests(execlists);
852
	execlists_user_end(execlists);
853 854

	/* Mark all executing requests as skipped. */
855
	list_for_each_entry(rq, &engine->timeline.requests, link) {
856
		GEM_BUG_ON(!rq->global_seqno);
857
		if (!i915_request_completed(rq))
858 859 860 861
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
862
	while ((rb = rb_first_cached(&execlists->queue))) {
863
		struct i915_priolist *p = to_priolist(rb);
864

865 866
		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
			INIT_LIST_HEAD(&rq->sched.link);
867 868

			dma_fence_set_error(&rq->fence, -EIO);
869
			__i915_request_submit(rq);
870 871
		}

872
		rb_erase_cached(&p->node, &execlists->queue);
873 874 875 876 877 878 879
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

880
	execlists->queue_priority = INT_MIN;
881
	execlists->queue = RB_ROOT_CACHED;
882
	GEM_BUG_ON(port_isset(execlists->port));
883

884 885 886
	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
	execlists->tasklet.func = nop_submission_tasklet;

887
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
888 889
}

890 891 892 893 894 895
static inline bool
reset_in_progress(const struct intel_engine_execlists *execlists)
{
	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
}

896
static void process_csb(struct intel_engine_cs *engine)
897
{
898
	struct intel_engine_execlists * const execlists = &engine->execlists;
899
	struct execlist_port *port = execlists->port;
900 901
	const u32 * const buf = execlists->csb_status;
	u8 head, tail;
902

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
	/*
	 * Note that csb_write, csb_status may be either in HWSP or mmio.
	 * When reading from the csb_write mmio register, we have to be
	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
	 * the low 4bits. As it happens we know the next 4bits are always
	 * zero and so we can simply masked off the low u8 of the register
	 * and treat it identically to reading from the HWSP (without having
	 * to use explicit shifting and masking, and probably bifurcating
	 * the code to handle the legacy mmio read).
	 */
	head = execlists->csb_head;
	tail = READ_ONCE(*execlists->csb_write);
	GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
	if (unlikely(head == tail))
		return;
918

919 920 921 922 923 924 925 926 927
	/*
	 * Hopefully paired with a wmb() in HW!
	 *
	 * We must complete the read of the write pointer before any reads
	 * from the CSB, so that we do not see stale values. Without an rmb
	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
	 * we perform the READ_ONCE(*csb_write).
	 */
	rmb();
928

929
	do {
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
		struct i915_request *rq;
		unsigned int status;
		unsigned int count;

		if (++head == GEN8_CSB_ENTRIES)
			head = 0;

		/*
		 * We are flying near dragons again.
		 *
		 * We hold a reference to the request in execlist_port[]
		 * but no more than that. We are operating in softirq
		 * context and so cannot hold any mutex or sleep. That
		 * prevents us stopping the requests we are processing
		 * in port[] from being retired simultaneously (the
		 * breadcrumb will be complete before we see the
		 * context-switch). As we only hold the reference to the
		 * request, any pointer chasing underneath the request
		 * is subject to a potential use-after-free. Thus we
		 * store all of the bookkeeping within port[] as
		 * required, and avoid using unguarded pointers beneath
		 * request itself. The same applies to the atomic
		 * status notifier.
		 */

		GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
			  engine->name, head,
957
			  buf[2 * head + 0], buf[2 * head + 1],
958 959
			  execlists->active);

960
		status = buf[2 * head];
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
		if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
			      GEN8_CTX_STATUS_PREEMPTED))
			execlists_set_active(execlists,
					     EXECLISTS_ACTIVE_HWACK);
		if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
			execlists_clear_active(execlists,
					       EXECLISTS_ACTIVE_HWACK);

		if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
			continue;

		/* We should never get a COMPLETED | IDLE_ACTIVE! */
		GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

		if (status & GEN8_CTX_STATUS_COMPLETE &&
		    buf[2*head + 1] == execlists->preempt_complete_status) {
			GEM_TRACE("%s preempt-idle\n", engine->name);
			complete_preempt_context(execlists);
			continue;
980
		}
981

982 983 984 985
		if (status & GEN8_CTX_STATUS_PREEMPTED &&
		    execlists_is_active(execlists,
					EXECLISTS_ACTIVE_PREEMPT))
			continue;
986

987 988
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
989

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
		rq = port_unpack(port, &count);
		GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
			  engine->name,
			  port->context_id, count,
			  rq ? rq->global_seqno : 0,
			  rq ? rq->fence.context : 0,
			  rq ? rq->fence.seqno : 0,
			  intel_engine_get_seqno(engine),
			  rq ? rq_prio(rq) : 0);

		/* Check the context/desc id for this event matches */
		GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);

		GEM_BUG_ON(count == 0);
		if (--count == 0) {
1005
			/*
1006 1007 1008 1009 1010 1011
			 * On the final event corresponding to the
			 * submission of this context, we expect either
			 * an element-switch event or a completion
			 * event (and on completion, the active-idle
			 * marker). No more preemptions, lite-restore
			 * or otherwise.
1012
			 */
1013 1014 1015 1016 1017
			GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
			GEM_BUG_ON(port_isset(&port[1]) &&
				   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
			GEM_BUG_ON(!port_isset(&port[1]) &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1018

1019 1020 1021 1022 1023 1024 1025
			/*
			 * We rely on the hardware being strongly
			 * ordered, that the breadcrumb write is
			 * coherent (visible from the CPU) before the
			 * user interrupt and CSB is processed.
			 */
			GEM_BUG_ON(!i915_request_completed(rq));
C
Chris Wilson 已提交
1026

1027 1028 1029
			execlists_context_schedule_out(rq,
						       INTEL_CONTEXT_SCHEDULE_OUT);
			i915_request_put(rq);
1030

1031 1032
			GEM_TRACE("%s completed ctx=%d\n",
				  engine->name, port->context_id);
1033

1034 1035 1036 1037 1038 1039 1040
			port = execlists_port_complete(execlists, port);
			if (port_isset(port))
				execlists_user_begin(execlists, port);
			else
				execlists_user_end(execlists);
		} else {
			port_set(port, port_pack(rq, count));
1041
		}
1042
	} while (head != tail);
1043

1044
	execlists->csb_head = head;
1045
}
1046

1047
static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1048
{
1049
	lockdep_assert_held(&engine->timeline.lock);
1050

C
Chris Wilson 已提交
1051
	process_csb(engine);
1052 1053
	if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
		execlists_dequeue(engine);
1054 1055
}

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
/*
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
static void execlists_submission_tasklet(unsigned long data)
{
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	unsigned long flags;

	GEM_TRACE("%s awake?=%d, active=%x\n",
		  engine->name,
		  engine->i915->gt.awake,
		  engine->execlists.active);

	spin_lock_irqsave(&engine->timeline.lock, flags);
1071
	__execlists_submission_tasklet(engine);
1072 1073 1074
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
}

1075
static void queue_request(struct intel_engine_cs *engine,
1076
			  struct i915_sched_node *node,
1077
			  int prio)
1078
{
1079
	list_add_tail(&node->link,
1080
		      &lookup_priolist(engine, prio)->requests);
1081
}
1082

1083
static void __update_queue(struct intel_engine_cs *engine, int prio)
1084 1085
{
	engine->execlists.queue_priority = prio;
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
}

static void __submit_queue_imm(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	if (reset_in_progress(execlists))
		return; /* defer until we restart the engine following reset */

	if (execlists->tasklet.func == execlists_submission_tasklet)
		__execlists_submission_tasklet(engine);
	else
		tasklet_hi_schedule(&execlists->tasklet);
1099 1100
}

1101 1102
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
1103 1104 1105 1106
	if (prio > engine->execlists.queue_priority) {
		__update_queue(engine, prio);
		__submit_queue_imm(engine);
	}
1107 1108
}

1109
static void execlists_submit_request(struct i915_request *request)
1110
{
1111
	struct intel_engine_cs *engine = request->engine;
1112
	unsigned long flags;
1113

1114
	/* Will be called from irq-context when using foreign fences. */
1115
	spin_lock_irqsave(&engine->timeline.lock, flags);
1116

1117
	queue_request(engine, &request->sched, rq_prio(request));
1118

1119
	GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1120
	GEM_BUG_ON(list_empty(&request->sched.link));
1121

1122 1123
	submit_queue(engine, rq_prio(request));

1124
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1125 1126
}

1127
static struct i915_request *sched_to_request(struct i915_sched_node *node)
1128
{
1129
	return container_of(node, struct i915_request, sched);
1130 1131
}

1132
static struct intel_engine_cs *
1133
sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
1134
{
1135
	struct intel_engine_cs *engine = sched_to_request(node)->engine;
1136 1137

	GEM_BUG_ON(!locked);
1138 1139

	if (engine != locked) {
1140 1141
		spin_unlock(&locked->timeline.lock);
		spin_lock(&engine->timeline.lock);
1142 1143 1144 1145 1146
	}

	return engine;
}

1147 1148
static void execlists_schedule(struct i915_request *request,
			       const struct i915_sched_attr *attr)
1149
{
1150 1151
	struct i915_priolist *uninitialized_var(pl);
	struct intel_engine_cs *engine, *last;
1152 1153
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
1154
	const int prio = attr->priority;
1155 1156
	LIST_HEAD(dfs);

1157 1158
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

1159
	if (i915_request_completed(request))
1160 1161
		return;

1162
	if (prio <= READ_ONCE(request->sched.attr.priority))
1163 1164
		return;

1165 1166
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
1167

1168
	stack.signaler = &request->sched;
1169 1170
	list_add(&stack.dfs_link, &dfs);

1171 1172
	/*
	 * Recursively bump all dependent priorities to match the new request.
1173 1174
	 *
	 * A naive approach would be to use recursion:
1175 1176
	 * static void update_priorities(struct i915_sched_node *node, prio) {
	 *	list_for_each_entry(dep, &node->signalers_list, signal_link)
1177
	 *		update_priorities(dep->signal, prio)
1178
	 *	queue_request(node);
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
1189
	list_for_each_entry(dep, &dfs, dfs_link) {
1190
		struct i915_sched_node *node = dep->signaler;
1191

1192 1193
		/*
		 * Within an engine, there can be no cycle, but we may
1194 1195 1196 1197
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
1198
		list_for_each_entry(p, &node->signalers_list, signal_link) {
1199 1200
			GEM_BUG_ON(p == dep); /* no cycles! */

1201
			if (i915_sched_node_signaled(p->signaler))
1202 1203
				continue;

1204 1205
			GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
			if (prio > READ_ONCE(p->signaler->attr.priority))
1206
				list_move_tail(&p->dfs_link, &dfs);
1207
		}
1208 1209
	}

1210 1211
	/*
	 * If we didn't need to bump any existing priorities, and we haven't
1212 1213 1214 1215
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1216
	if (request->sched.attr.priority == I915_PRIORITY_INVALID) {
1217
		GEM_BUG_ON(!list_empty(&request->sched.link));
1218
		request->sched.attr = *attr;
1219 1220 1221 1222 1223
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1224
	last = NULL;
1225
	engine = request->engine;
1226
	spin_lock_irq(&engine->timeline.lock);
1227

1228 1229
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1230
		struct i915_sched_node *node = dep->signaler;
1231 1232 1233

		INIT_LIST_HEAD(&dep->dfs_link);

1234
		engine = sched_lock_engine(node, engine);
1235

1236
		if (prio <= node->attr.priority)
1237 1238
			continue;

1239
		node->attr.priority = prio;
1240
		if (!list_empty(&node->link)) {
1241 1242 1243 1244 1245 1246
			if (last != engine) {
				pl = lookup_priolist(engine, prio);
				last = engine;
			}
			GEM_BUG_ON(pl->priority != prio);
			list_move_tail(&node->link, &pl->requests);
1247
		}
1248 1249

		if (prio > engine->execlists.queue_priority &&
1250 1251 1252 1253 1254
		    i915_sw_fence_done(&sched_to_request(node)->submit)) {
			/* defer submission until after all of our updates */
			__update_queue(engine, prio);
			tasklet_hi_schedule(&engine->execlists.tasklet);
		}
1255 1256
	}

1257
	spin_unlock_irq(&engine->timeline.lock);
1258 1259
}

1260 1261 1262 1263
static void execlists_context_destroy(struct intel_context *ce)
{
	GEM_BUG_ON(ce->pin_count);

1264 1265 1266
	if (!ce->state)
		return;

1267
	intel_ring_free(ce->ring);
1268 1269 1270

	GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
	i915_gem_object_put(ce->state->obj);
1271 1272
}

1273
static void execlists_context_unpin(struct intel_context *ce)
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
{
	intel_ring_unpin(ce->ring);

	ce->state->obj->pin_global--;
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);

	i915_gem_context_put(ce->gem_context);
}

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
1301
	flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1302

1303
	return i915_vma_pin(vma, 0, 0, flags);
1304 1305
}

1306 1307 1308 1309
static struct intel_context *
__execlists_context_pin(struct intel_engine_cs *engine,
			struct i915_gem_context *ctx,
			struct intel_context *ce)
1310
{
1311
	void *vaddr;
1312
	int ret;
1313

1314
	ret = execlists_context_deferred_alloc(ctx, engine, ce);
1315 1316
	if (ret)
		goto err;
1317
	GEM_BUG_ON(!ce->state);
1318

1319
	ret = __context_pin(ctx, ce->state);
1320
	if (ret)
1321
		goto err;
1322

1323
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1324 1325
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1326
		goto unpin_vma;
1327 1328
	}

1329
	ret = intel_ring_pin(ce->ring);
1330
	if (ret)
1331
		goto unpin_map;
1332

1333
	intel_lr_context_descriptor_update(ctx, engine, ce);
1334

1335 1336
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1337
		i915_ggtt_offset(ce->ring->vma);
1338
	GEM_BUG_ON(!intel_ring_offset_valid(ce->ring, ce->ring->head));
1339
	ce->lrc_reg_state[CTX_RING_HEAD+1] = ce->ring->head;
1340

1341
	ce->state->obj->pin_global++;
1342
	i915_gem_context_get(ctx);
1343
	return ce;
1344

1345
unpin_map:
1346 1347 1348
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1349
err:
1350
	ce->pin_count = 0;
1351
	return ERR_PTR(ret);
1352 1353
}

1354 1355 1356 1357 1358 1359 1360 1361
static const struct intel_context_ops execlists_context_ops = {
	.unpin = execlists_context_unpin,
	.destroy = execlists_context_destroy,
};

static struct intel_context *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1362
{
1363
	struct intel_context *ce = to_intel_context(ctx, engine);
1364

1365
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1366

1367 1368 1369
	if (likely(ce->pin_count++))
		return ce;
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1370

1371
	ce->ops = &execlists_context_ops;
1372

1373
	return __execlists_context_pin(engine, ctx, ce);
1374 1375
}

1376
static int execlists_request_alloc(struct i915_request *request)
1377
{
1378
	int ret;
1379

1380
	GEM_BUG_ON(!request->hw_context->pin_count);
1381

1382 1383 1384 1385 1386 1387
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1388 1389 1390
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1419 1420
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1421
{
1422 1423 1424 1425 1426 1427 1428 1429 1430
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1431 1432 1433 1434
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1435 1436 1437 1438 1439 1440 1441

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1442 1443
}

1444 1445 1446 1447 1448 1449
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1450
 *
1451 1452
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1453
 *
1454 1455 1456 1457
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1458
 */
1459
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1460
{
1461
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1462
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1463

1464
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1465 1466
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1467

1468 1469
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1470 1471 1472 1473 1474 1475 1476
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1477

C
Chris Wilson 已提交
1478 1479
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1480
	/* Pad to end of cacheline */
1481 1482
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1483 1484 1485 1486 1487 1488 1489

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1490
	return batch;
1491 1492
}

1493 1494 1495 1496 1497 1498
struct lri {
	i915_reg_t reg;
	u32 value;
};

static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1499
{
1500
	GEM_BUG_ON(!count || count > 63);
C
Chris Wilson 已提交
1501

1502 1503 1504 1505 1506 1507
	*batch++ = MI_LOAD_REGISTER_IMM(count);
	do {
		*batch++ = i915_mmio_reg_offset(lri->reg);
		*batch++ = lri->value;
	} while (lri++, --count);
	*batch++ = MI_NOOP;
1508

1509 1510
	return batch;
}
1511

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	static const struct lri lri[] = {
		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
		{
			COMMON_SLICE_CHICKEN2,
			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
				       0),
		},

		/* BSpec: 11391 */
		{
			FF_SLICE_CHICKEN,
			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
		},

		/* BSpec: 11299 */
		{
			_3D_CHICKEN3,
			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
		}
	};
1536

1537
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1538

1539 1540
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1541

1542
	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1543

1544 1545
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1546
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1547 1548 1549 1550 1551 1552 1553
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1554
	}
1555

1556
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1571 1572 1573 1574 1575 1576
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1577 1578
	}

C
Chris Wilson 已提交
1579 1580
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1581
	/* Pad to end of cacheline */
1582 1583
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1584

1585
	return batch;
1586 1587
}

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1622 1623 1624
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1625
{
1626 1627 1628
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1629

1630
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1631 1632
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1633

1634
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1635 1636 1637
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1638 1639
	}

1640
	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1641 1642 1643 1644
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1645
	return 0;
1646 1647 1648 1649

err:
	i915_gem_object_put(obj);
	return err;
1650 1651
}

1652
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1653
{
1654
	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1655 1656
}

1657 1658
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1659
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1660
{
1661
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1662 1663 1664
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1665
	struct page *page;
1666 1667
	void *batch, *batch_ptr;
	unsigned int i;
1668
	int ret;
1669

1670
	if (GEM_WARN_ON(engine->id != RCS))
1671
		return -EINVAL;
1672

1673
	switch (INTEL_GEN(engine->i915)) {
1674 1675
	case 11:
		return 0;
1676
	case 10:
1677 1678 1679
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
1680 1681
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1682
		wa_bb_fn[1] = NULL;
1683 1684 1685
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1686
		wa_bb_fn[1] = NULL;
1687 1688 1689
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1690
		return 0;
1691
	}
1692

1693
	ret = lrc_setup_wa_ctx(engine);
1694 1695 1696 1697 1698
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1699
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1700
	batch = batch_ptr = kmap_atomic(page);
1701

1702 1703 1704 1705 1706 1707 1708
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
1709 1710
		if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
					    CACHELINE_BYTES))) {
1711 1712 1713
			ret = -EINVAL;
			break;
		}
1714 1715
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1716
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1717 1718
	}

1719 1720
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1721 1722
	kunmap_atomic(batch);
	if (ret)
1723
		lrc_destroy_wa_ctx(engine);
1724 1725 1726 1727

	return ret;
}

1728
static void enable_execlists(struct intel_engine_cs *engine)
1729
{
1730
	struct drm_i915_private *dev_priv = engine->i915;
1731 1732

	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748

	/*
	 * Make sure we're not enabling the new 12-deep CSB
	 * FIFO as that requires a slightly updated handling
	 * in the ctx switch irq. Since we're currently only
	 * using only 2 elements of the enhanced execlists the
	 * deeper FIFO it's not needed and it's not worth adding
	 * more statements to the irq handler to support it.
	 */
	if (INTEL_GEN(dev_priv) >= 11)
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
	else
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));

1749 1750 1751
	I915_WRITE(RING_MI_MODE(engine->mmio_base),
		   _MASKED_BIT_DISABLE(STOP_RING));

1752 1753 1754 1755 1756
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
static bool unexpected_starting_state(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	bool unexpected = false;

	if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
		DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
		unexpected = true;
	}

	return unexpected;
}

1770 1771
static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
1772 1773 1774 1775 1776
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1777

1778
	intel_engine_reset_breadcrumbs(engine);
1779

1780 1781 1782 1783 1784 1785
	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
		struct drm_printer p = drm_debug_printer(__func__);

		intel_engine_dump(engine, &p, NULL);
	}

1786
	enable_execlists(engine);
1787

1788
	return 0;
1789 1790
}

1791
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1792
{
1793
	struct drm_i915_private *dev_priv = engine->i915;
1794 1795
	int ret;

1796
	ret = gen8_init_common_ring(engine);
1797 1798 1799
	if (ret)
		return ret;

1800
	intel_whitelist_workarounds_apply(engine);
1801

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1812
	return 0;
1813 1814
}

1815
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1816 1817 1818
{
	int ret;

1819
	ret = gen8_init_common_ring(engine);
1820 1821 1822
	if (ret)
		return ret;

1823
	intel_whitelist_workarounds_apply(engine);
1824 1825

	return 0;
1826 1827
}

1828 1829 1830 1831
static struct i915_request *
execlists_reset_prepare(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
1832
	struct i915_request *request, *active;
1833
	unsigned long flags;
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847

	GEM_TRACE("%s\n", engine->name);

	/*
	 * Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its execlists->tasklet *just* as we are
	 * calling engine->init_hw() and also writing the ELSP.
	 * Turning off the execlists->tasklet until the reset is over
	 * prevents the race.
	 */
	__tasklet_disable_sync_once(&execlists->tasklet);

1848 1849
	spin_lock_irqsave(&engine->timeline.lock, flags);

1850 1851 1852 1853 1854 1855 1856
	/*
	 * We want to flush the pending context switches, having disabled
	 * the tasklet above, we can assume exclusive access to the execlists.
	 * For this allows us to catch up with an inflight preemption event,
	 * and avoid blaming an innocent request if the stall was due to the
	 * preemption itself.
	 */
C
Chris Wilson 已提交
1857
	process_csb(engine);
1858 1859 1860 1861 1862 1863 1864 1865 1866

	/*
	 * The last active request can then be no later than the last request
	 * now in ELSP[0]. So search backwards from there, so that if the GPU
	 * has advanced beyond the last CSB update, it will be pardoned.
	 */
	active = NULL;
	request = port_request(execlists->port);
	if (request) {
1867 1868 1869 1870 1871 1872
		/*
		 * Prevent the breadcrumb from advancing before we decide
		 * which request is currently active.
		 */
		intel_engine_stop_cs(engine);

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
		list_for_each_entry_from_reverse(request,
						 &engine->timeline.requests,
						 link) {
			if (__i915_request_completed(request,
						     request->global_seqno))
				break;

			active = request;
		}
	}

1884 1885
	spin_unlock_irqrestore(&engine->timeline.lock, flags);

1886
	return active;
1887 1888 1889 1890
}

static void execlists_reset(struct intel_engine_cs *engine,
			    struct i915_request *request)
1891
{
1892
	struct intel_engine_execlists * const execlists = &engine->execlists;
1893
	unsigned long flags;
1894
	u32 *regs;
1895

1896 1897 1898
	GEM_TRACE("%s request global=%x, current=%d\n",
		  engine->name, request ? request->global_seqno : 0,
		  intel_engine_get_seqno(engine));
1899

1900
	spin_lock_irqsave(&engine->timeline.lock, flags);
1901

1902 1903 1904 1905 1906 1907 1908 1909 1910
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1911
	execlists_cancel_port_requests(execlists);
1912

1913
	/* Push back any incomplete requests for replay after the reset. */
1914
	__unwind_incomplete_requests(engine);
1915

1916
	/* Following the reset, we need to reload the CSB read/write pointers */
1917
	reset_csb_pointers(&engine->execlists);
1918

1919
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1920

1921 1922
	/*
	 * If the request was innocent, we leave the request in the ELSP
1923 1924 1925 1926 1927 1928 1929 1930 1931
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1932
	if (!request || request->fence.error != -EIO)
1933
		return;
1934

1935 1936
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
1937 1938 1939 1940 1941 1942
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1943
	regs = request->hw_context->lrc_reg_state;
1944 1945 1946 1947
	if (engine->pinned_default_state) {
		memcpy(regs, /* skip restoring the vanilla PPHWSP */
		       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
		       engine->context_size - PAGE_SIZE);
1948
	}
C
Chris Wilson 已提交
1949 1950
	execlists_init_reg_state(regs,
				 request->gem_context, engine, request->ring);
1951

1952
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1953
	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
1954

1955 1956 1957
	request->ring->head = intel_ring_wrap(request->ring, request->postfix);
	regs[CTX_RING_HEAD + 1] = request->ring->head;

1958 1959
	intel_ring_update_space(request->ring);

1960
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1961
	unwind_wa_tail(request);
1962 1963
}

1964 1965
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
1966 1967 1968
	struct intel_engine_execlists * const execlists = &engine->execlists;

	/* After a GPU reset, we may have requests to replay */
1969
	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
1970 1971
		tasklet_schedule(&execlists->tasklet);

1972 1973 1974 1975 1976 1977 1978 1979 1980
	/*
	 * Flush the tasklet while we still have the forcewake to be sure
	 * that it is not allowed to sleep before we restart and reload a
	 * context.
	 *
	 * As before (with execlists_reset_prepare) we rely on the caller
	 * serialising multiple attempts to reset so that we know that we
	 * are the only one manipulating tasklet state.
	 */
1981
	__tasklet_enable_sync_once(&execlists->tasklet);
1982 1983 1984 1985

	GEM_TRACE("%s\n", engine->name);
}

1986
static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1987
{
C
Chris Wilson 已提交
1988
	struct i915_hw_ppgtt *ppgtt = rq->gem_context->ppgtt;
1989
	struct intel_engine_cs *engine = rq->engine;
1990
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1991 1992
	u32 *cs;
	int i;
1993

1994
	cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
1995 1996
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1997

1998
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1999
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
2000 2001
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

2002 2003 2004 2005
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
2006 2007
	}

2008
	*cs++ = MI_NOOP;
2009
	intel_ring_advance(rq, cs);
2010 2011 2012 2013

	return 0;
}

2014
static int gen8_emit_bb_start(struct i915_request *rq,
2015
			      u64 offset, u32 len,
2016
			      const unsigned int flags)
2017
{
2018
	u32 *cs;
2019 2020
	int ret;

2021 2022 2023 2024
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
2025 2026
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
C
Chris Wilson 已提交
2027 2028
	if (rq->gem_context->ppgtt &&
	    (intel_engine_flag(rq->engine) & rq->gem_context->ppgtt->pd_dirty_rings) &&
2029
	    !i915_vm_is_48bit(&rq->gem_context->ppgtt->vm) &&
2030 2031
	    !intel_vgpu_active(rq->i915)) {
		ret = intel_logical_ring_emit_pdps(rq);
2032 2033
		if (ret)
			return ret;
2034

C
Chris Wilson 已提交
2035
		rq->gem_context->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
2036 2037
	}

2038
	cs = intel_ring_begin(rq, 6);
2039 2040
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2041

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
2059 2060
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

2061
	/* FIXME(BDW): Address space and security selectors. */
2062
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
2063
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2064 2065
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
2066 2067 2068

	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;
2069
	intel_ring_advance(rq, cs);
2070 2071 2072 2073

	return 0;
}

2074
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2075
{
2076
	struct drm_i915_private *dev_priv = engine->i915;
2077 2078 2079
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
2080 2081
}

2082
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2083
{
2084
	struct drm_i915_private *dev_priv = engine->i915;
2085
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
2086 2087
}

2088
static int gen8_emit_flush(struct i915_request *request, u32 mode)
2089
{
2090
	u32 cmd, *cs;
2091

2092 2093 2094
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2095 2096 2097

	cmd = MI_FLUSH_DW + 1;

2098 2099 2100 2101 2102 2103 2104
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2105
	if (mode & EMIT_INVALIDATE) {
2106
		cmd |= MI_INVALIDATE_TLB;
2107
		if (request->engine->id == VCS)
2108
			cmd |= MI_INVALIDATE_BSD;
2109 2110
	}

2111 2112 2113 2114 2115
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
2116 2117 2118 2119

	return 0;
}

2120
static int gen8_emit_flush_render(struct i915_request *request,
2121
				  u32 mode)
2122
{
2123
	struct intel_engine_cs *engine = request->engine;
2124 2125
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
2126
	bool vf_flush_wa = false, dc_flush_wa = false;
2127
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
2128
	int len;
2129 2130 2131

	flags |= PIPE_CONTROL_CS_STALL;

2132
	if (mode & EMIT_FLUSH) {
2133 2134
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2135
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2136
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2137 2138
	}

2139
	if (mode & EMIT_INVALIDATE) {
2140 2141 2142 2143 2144 2145 2146 2147 2148
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

2149 2150 2151 2152
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
2153
		if (IS_GEN9(request->i915))
2154
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
2155 2156 2157 2158

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
2159
	}
2160

M
Mika Kuoppala 已提交
2161 2162 2163 2164 2165 2166 2167 2168
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

2169 2170 2171
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2172

2173 2174
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
2175

2176 2177 2178
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
2179

2180
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
2181

2182 2183
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
2184

2185
	intel_ring_advance(request, cs);
2186 2187 2188 2189

	return 0;
}

2190 2191 2192 2193 2194
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
2195
static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2196
{
C
Chris Wilson 已提交
2197 2198
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
2199 2200
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
2201
}
2202

2203
static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
2204
{
2205 2206
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2207

2208 2209
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
2210
	*cs++ = MI_USER_INTERRUPT;
2211
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2212
	request->tail = intel_ring_offset(request, cs);
2213
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2214

2215
	gen8_emit_wa_tail(request, cs);
2216
}
2217 2218
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

2219
static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2220
{
2221 2222 2223
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

2224 2225
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
2226
	*cs++ = MI_USER_INTERRUPT;
2227
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2228
	request->tail = intel_ring_offset(request, cs);
2229
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2230

2231
	gen8_emit_wa_tail(request, cs);
2232
}
2233
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2234

2235
static int gen8_init_rcs_context(struct i915_request *rq)
2236 2237 2238
{
	int ret;

2239
	ret = intel_ctx_workarounds_emit(rq);
2240 2241 2242
	if (ret)
		return ret;

2243
	ret = intel_rcs_context_init_mocs(rq);
2244 2245 2246 2247 2248 2249 2250
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2251
	return i915_gem_render_state_emit(rq);
2252 2253
}

2254 2255
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2256
 * @engine: Engine Command Streamer.
2257
 */
2258
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2259
{
2260
	struct drm_i915_private *dev_priv;
2261

2262 2263 2264 2265
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
2266 2267 2268
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
2269

2270
	dev_priv = engine->i915;
2271

2272 2273
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2274
	}
2275

2276 2277
	if (engine->cleanup)
		engine->cleanup(engine);
2278

2279
	intel_engine_cleanup_common(engine);
2280

2281
	lrc_destroy_wa_ctx(engine);
2282

2283
	engine->i915 = NULL;
2284 2285
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
2286 2287
}

2288
void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2289
{
2290
	engine->submit_request = execlists_submit_request;
2291
	engine->cancel_requests = execlists_cancel_requests;
2292
	engine->schedule = execlists_schedule;
2293
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2294

2295 2296
	engine->reset.prepare = execlists_reset_prepare;

2297 2298
	engine->park = NULL;
	engine->unpark = NULL;
2299 2300

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2301 2302
	if (engine->i915->preempt_context)
		engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2303 2304 2305 2306

	engine->i915->caps.scheduler =
		I915_SCHEDULER_CAP_ENABLED |
		I915_SCHEDULER_CAP_PRIORITY;
2307
	if (intel_engine_has_preemption(engine))
2308
		engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2309 2310
}

2311
static void
2312
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2313 2314
{
	/* Default vfuncs which can be overriden by each engine. */
2315
	engine->init_hw = gen8_init_common_ring;
2316 2317 2318 2319

	engine->reset.prepare = execlists_reset_prepare;
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2320 2321

	engine->context_pin = execlists_context_pin;
2322 2323
	engine->request_alloc = execlists_request_alloc;

2324
	engine->emit_flush = gen8_emit_flush;
2325
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
2326
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2327

2328
	engine->set_default_submission = intel_execlists_set_default_submission;
2329

2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
2341
	engine->emit_bb_start = gen8_emit_bb_start;
2342 2343
}

2344
static inline void
2345
logical_ring_default_irqs(struct intel_engine_cs *engine)
2346
{
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
			[RCS]  = GEN8_RCS_IRQ_SHIFT,
			[BCS]  = GEN8_BCS_IRQ_SHIFT,
			[VCS]  = GEN8_VCS1_IRQ_SHIFT,
			[VCS2] = GEN8_VCS2_IRQ_SHIFT,
			[VECS] = GEN8_VECS_IRQ_SHIFT,
		};

		shift = irq_shifts[engine->id];
	}

2361 2362
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2363 2364
}

2365 2366 2367
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
2368 2369
	intel_engine_setup_common(engine);

2370 2371 2372
	/* Intentionally left blank. */
	engine->buffer = NULL;

2373 2374
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2375 2376 2377 2378 2379

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

2380 2381 2382 2383 2384 2385
static bool csb_force_mmio(struct drm_i915_private *i915)
{
	/* Older GVT emulation depends upon intercepting CSB mmio */
	return intel_vgpu_active(i915) && !intel_vgpu_has_hwsp_emulation(i915);
}

2386
static int logical_ring_init(struct intel_engine_cs *engine)
2387
{
2388 2389
	struct drm_i915_private *i915 = engine->i915;
	struct intel_engine_execlists * const execlists = &engine->execlists;
2390 2391
	int ret;

2392
	ret = intel_engine_init_common(engine);
2393 2394 2395
	if (ret)
		goto error;

2396 2397
	if (HAS_LOGICAL_RING_ELSQ(i915)) {
		execlists->submit_reg = i915->regs +
2398
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2399
		execlists->ctrl_reg = i915->regs +
2400 2401
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
	} else {
2402
		execlists->submit_reg = i915->regs +
2403 2404
			i915_mmio_reg_offset(RING_ELSP(engine));
	}
2405

2406 2407
	execlists->preempt_complete_status = ~0u;
	if (i915->preempt_context) {
2408
		struct intel_context *ce =
2409
			to_intel_context(i915->preempt_context, engine);
2410

2411
		execlists->preempt_complete_status =
2412 2413
			upper_32_bits(ce->lrc_desc);
	}
2414

2415 2416 2417 2418 2419 2420 2421
	execlists->csb_read =
		i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
	if (csb_force_mmio(i915)) {
		execlists->csb_status = (u32 __force *)
			(i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));

		execlists->csb_write = (u32 __force *)execlists->csb_read;
2422 2423 2424
		execlists->csb_write_reset =
			_MASKED_FIELD(GEN8_CSB_WRITE_PTR_MASK,
				      GEN8_CSB_ENTRIES - 1);
2425 2426 2427 2428 2429 2430
	} else {
		execlists->csb_status =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];

		execlists->csb_write =
			&engine->status_page.page_addr[intel_hws_csb_write_index(i915)];
2431
		execlists->csb_write_reset = GEN8_CSB_ENTRIES - 1;
2432
	}
2433
	reset_csb_pointers(execlists);
2434

2435 2436 2437 2438 2439 2440 2441
	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2442
int logical_render_ring_init(struct intel_engine_cs *engine)
2443 2444 2445 2446
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2447 2448
	logical_ring_setup(engine);

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2459 2460
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2461

2462
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2477
	return logical_ring_init(engine);
2478 2479
}

2480
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2481 2482 2483 2484
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2485 2486
}

2487
static u32
2488
make_rpcs(struct drm_i915_private *dev_priv)
2489 2490 2491 2492 2493 2494 2495
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2496
	if (INTEL_GEN(dev_priv) < 9)
2497 2498 2499 2500 2501 2502 2503 2504
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2505
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2506
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2507
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2508 2509 2510 2511
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2512
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2513
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2514
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2515 2516 2517 2518
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2519 2520
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2521
			GEN8_RPCS_EU_MIN_SHIFT;
2522
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2523 2524 2525 2526 2527 2528 2529
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2530
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2531 2532 2533
{
	u32 indirect_ctx_offset;

2534
	switch (INTEL_GEN(engine->i915)) {
2535
	default:
2536
		MISSING_CASE(INTEL_GEN(engine->i915));
2537
		/* fall through */
2538 2539 2540 2541
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2542 2543 2544 2545
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2559
static void execlists_init_reg_state(u32 *regs,
2560 2561 2562
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2563
{
2564 2565
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2566
	u32 base = engine->mmio_base;
2567
	bool rcs = engine->class == RENDER_CLASS;
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2580
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2581
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2582 2583 2584 2585 2586
	if (INTEL_GEN(dev_priv) < 11) {
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
					    CTX_CTRL_RS_CTX_ENABLE);
	}
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2599 2600
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2601 2602 2603
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2604
		if (wa_ctx->indirect_ctx.size) {
2605
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2606

2607
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2608 2609
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2610

2611
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2612
				intel_lr_indirect_ctx_offset(engine) << 6;
2613 2614 2615 2616 2617
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2618

2619
			regs[CTX_BB_PER_CTX_PTR + 1] =
2620
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2621
		}
2622
	}
2623 2624 2625 2626

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2627
	/* PDP values well be assigned later if needed */
2628 2629 2630 2631 2632 2633 2634 2635
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2636

2637
	if (ppgtt && i915_vm_is_48bit(&ppgtt->vm)) {
2638 2639 2640 2641
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2642
		ASSIGN_CTX_PML4(ppgtt, regs);
2643 2644
	}

2645 2646 2647 2648
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2649 2650

		i915_oa_init_reg_state(engine, ctx, regs);
2651
	}
2652 2653 2654 2655

	regs[CTX_END] = MI_BATCH_BUFFER_END;
	if (INTEL_GEN(dev_priv) >= 10)
		regs[CTX_END] |= BIT(0);
2656 2657 2658 2659 2660 2661 2662 2663 2664
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2665
	u32 *regs;
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2680
	ctx_obj->mm.dirty = true;
2681

2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
2693 2694 2695 2696
		if (IS_ERR(defaults)) {
			ret = PTR_ERR(defaults);
			goto err_unpin_ctx;
		}
2697 2698 2699 2700 2701

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2702 2703
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2704 2705 2706 2707 2708
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2709
	if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2710 2711 2712
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2713

2714
err_unpin_ctx:
2715
	i915_gem_object_unpin_map(ctx_obj);
2716
	return ret;
2717 2718
}

2719
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2720 2721
					    struct intel_engine_cs *engine,
					    struct intel_context *ce)
2722
{
2723
	struct drm_i915_gem_object *ctx_obj;
2724
	struct i915_vma *vma;
2725
	uint32_t context_size;
2726
	struct intel_ring *ring;
2727
	struct i915_timeline *timeline;
2728 2729
	int ret;

2730 2731
	if (ce->state)
		return 0;
2732

2733
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2734

2735 2736 2737 2738 2739
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2740

2741
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2742 2743
	if (IS_ERR(ctx_obj))
		return PTR_ERR(ctx_obj);
2744

2745
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.vm, NULL);
2746 2747 2748 2749 2750
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2751 2752 2753 2754 2755 2756 2757 2758
	timeline = i915_timeline_create(ctx->i915, ctx->name);
	if (IS_ERR(timeline)) {
		ret = PTR_ERR(timeline);
		goto error_deref_obj;
	}

	ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
	i915_timeline_put(timeline);
2759 2760
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2761
		goto error_deref_obj;
2762 2763
	}

2764
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2765 2766
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2767
		goto error_ring_free;
2768 2769
	}

2770
	ce->ring = ring;
2771
	ce->state = vma;
2772 2773

	return 0;
2774

2775
error_ring_free:
2776
	intel_ring_free(ring);
2777
error_deref_obj:
2778
	i915_gem_object_put(ctx_obj);
2779
	return ret;
2780
}
2781

2782
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2783
{
2784
	struct intel_engine_cs *engine;
2785
	struct i915_gem_context *ctx;
2786
	enum intel_engine_id id;
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2798
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2799
		for_each_engine(engine, dev_priv, id) {
2800 2801
			struct intel_context *ce =
				to_intel_context(ctx, engine);
2802
			u32 *reg;
2803

2804 2805
			if (!ce->state)
				continue;
2806

2807 2808 2809 2810
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2811

2812 2813 2814
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2815

C
Chris Wilson 已提交
2816
			ce->state->obj->mm.dirty = true;
2817
			i915_gem_object_unpin_map(ce->state->obj);
2818

2819
			intel_ring_reset(ce->ring, 0);
2820
		}
2821 2822
	}
}
2823 2824 2825 2826

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_lrc.c"
#endif