intel_lrc.c 73.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "intel_lrc_reg.h"
141
#include "intel_mocs.h"
142

143 144 145 146 147 148 149 150 151 152 153 154 155
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
156

157
#define GEN8_CTX_STATUS_COMPLETED_MASK \
158
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
159

160 161
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
162
#define WA_TAIL_DWORDS 2
163
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
164

165
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
166
					    struct intel_engine_cs *engine);
167 168 169 170
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
171

172
/**
173 174 175
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
176
 * @engine: Engine the descriptor will be used with
177
 *
178 179 180 181 182
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
183 184
 * This is what a descriptor looks like, from LSB to MSB::
 *
185
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
186 187 188 189
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
190
 */
191
static void
192
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
193
				   struct intel_engine_cs *engine)
194
{
195
	struct intel_context *ce = &ctx->engine[engine->id];
196
	u64 desc;
197

198
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
199

200
	desc = ctx->desc_template;				/* bits  0-11 */
201
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
202
								/* bits 12-31 */
203
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
204

205
	ce->lrc_desc = desc;
206 207
}

208 209 210 211
static struct i915_priolist *
lookup_priolist(struct intel_engine_cs *engine,
		struct i915_priotree *pt,
		int prio)
212
{
213
	struct intel_engine_execlists * const execlists = &engine->execlists;
214 215 216 217
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

218
	if (unlikely(execlists->no_priolist))
219 220 221 222 223
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
224
	parent = &execlists->queue.rb_node;
225 226 227 228 229 230 231 232 233
	while (*parent) {
		rb = *parent;
		p = rb_entry(rb, typeof(*p), node);
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
234
			return p;
235 236 237 238
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
239
		p = &execlists->default_priolist;
240 241 242 243 244 245 246 247 248 249 250 251 252 253
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
254
			execlists->no_priolist = true;
255 256 257 258 259
			goto find_priolist;
		}
	}

	p->priority = prio;
260
	INIT_LIST_HEAD(&p->requests);
261
	rb_link_node(&p->node, rb, parent);
262
	rb_insert_color(&p->node, &execlists->queue);
263 264

	if (first)
265
		execlists->first = &p->node;
266

267
	return ptr_pack_bits(p, first, 1);
268 269
}

270 271 272 273 274 275
static void unwind_wa_tail(struct drm_i915_gem_request *rq)
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

276
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
277 278
{
	struct drm_i915_gem_request *rq, *rn;
279 280
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
281 282 283 284 285 286 287 288 289 290 291 292

	lockdep_assert_held(&engine->timeline->lock);

	list_for_each_entry_safe_reverse(rq, rn,
					 &engine->timeline->requests,
					 link) {
		if (i915_gem_request_completed(rq))
			return;

		__i915_gem_request_unsubmit(rq);
		unwind_wa_tail(rq);

293 294 295 296 297 298 299 300 301 302 303
		GEM_BUG_ON(rq->priotree.priority == I915_PRIORITY_INVALID);
		if (rq->priotree.priority != last_prio) {
			p = lookup_priolist(engine,
					    &rq->priotree,
					    rq->priotree.priority);
			p = ptr_mask_bits(p, 1);

			last_prio = rq->priotree.priority;
		}

		list_add(&rq->priotree.link, &p->requests);
304 305 306
	}
}

307
void
308 309 310 311 312 313 314 315 316 317
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

	spin_lock_irq(&engine->timeline->lock);
	__unwind_incomplete_requests(engine);
	spin_unlock_irq(&engine->timeline->lock);
}

318 319 320
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
321
{
322 323 324 325 326 327
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
328

329 330
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
331 332
}

333 334 335 336
static inline void
execlists_context_schedule_in(struct drm_i915_gem_request *rq)
{
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
337
	intel_engine_context_in(rq->engine);
338 339 340 341 342
}

static inline void
execlists_context_schedule_out(struct drm_i915_gem_request *rq)
{
343
	intel_engine_context_out(rq->engine);
344 345 346
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
}

347 348 349 350 351 352 353 354 355
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

356
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
357
{
358
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
359 360
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
361
	u32 *reg_state = ce->lrc_reg_state;
362

363
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
364

365 366 367 368 369
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
370
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
371
		execlists_update_context_pdps(ppgtt, reg_state);
372 373

	return ce->lrc_desc;
374 375
}

C
Chris Wilson 已提交
376 377 378 379 380 381
static inline void elsp_write(u64 desc, u32 __iomem *elsp)
{
	writel(upper_32_bits(desc), elsp);
	writel(lower_32_bits(desc), elsp);
}

382
static void execlists_submit_ports(struct intel_engine_cs *engine)
383
{
384
	struct execlist_port *port = engine->execlists.port;
385
	unsigned int n;
386

387
	for (n = execlists_num_ports(&engine->execlists); n--; ) {
388 389 390 391 392 393 394 395
		struct drm_i915_gem_request *rq;
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
396
				execlists_context_schedule_in(rq);
397 398 399
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
400 401 402

			GEM_TRACE("%s in[%d]:  ctx=%d.%d, seqno=%x\n",
				  engine->name, n,
403
				  port[n].context_id, count,
404
				  rq->global_seqno);
405 406 407 408
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
409

410
		elsp_write(desc, engine->execlists.elsp);
411
	}
412
	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
413 414
}

415
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
416
{
417
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
418
		i915_gem_context_force_single_submission(ctx));
419
}
420

421 422 423 424 425
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
426

427 428
	if (ctx_single_port_submission(prev))
		return false;
429

430
	return true;
431 432
}

433 434 435 436 437 438 439 440 441 442 443
static void port_assign(struct execlist_port *port,
			struct drm_i915_gem_request *rq)
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
		i915_gem_request_put(port_request(port));

	port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
}

C
Chris Wilson 已提交
444 445 446 447 448 449
static void inject_preempt_context(struct intel_engine_cs *engine)
{
	struct intel_context *ce =
		&engine->i915->preempt_context->engine[engine->id];
	unsigned int n;

450 451
	GEM_BUG_ON(engine->execlists.preempt_complete_status !=
		   upper_32_bits(ce->lrc_desc));
C
Chris Wilson 已提交
452 453 454 455 456 457 458
	GEM_BUG_ON(!IS_ALIGNED(ce->ring->size, WA_TAIL_BYTES));

	memset(ce->ring->vaddr + ce->ring->tail, 0, WA_TAIL_BYTES);
	ce->ring->tail += WA_TAIL_BYTES;
	ce->ring->tail &= (ce->ring->size - 1);
	ce->lrc_reg_state[CTX_RING_TAIL+1] = ce->ring->tail;

459 460 461 462 463 464
	GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
		    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
		   _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				      CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));

465
	GEM_TRACE("%s\n", engine->name);
C
Chris Wilson 已提交
466
	for (n = execlists_num_ports(&engine->execlists); --n; )
467
		elsp_write(0, engine->execlists.elsp);
C
Chris Wilson 已提交
468

469
	elsp_write(ce->lrc_desc, engine->execlists.elsp);
470
	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
C
Chris Wilson 已提交
471 472
}

473
static void execlists_dequeue(struct intel_engine_cs *engine)
474
{
475 476
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
477 478
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
C
Chris Wilson 已提交
479
	struct drm_i915_gem_request *last = port_request(port);
480
	struct rb_node *rb;
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
	bool submit = false;

	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
502
	 */
503

504
	spin_lock_irq(&engine->timeline->lock);
505 506
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
C
Chris Wilson 已提交
507 508 509 510 511 512 513 514 515 516
	if (!rb)
		goto unlock;

	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
517
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
518 519 520
		if (port_count(&port[0]) > 1)
			goto unlock;

521 522 523 524 525 526 527 528 529 530
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
			goto unlock;

531
		if (engine->i915->preempt_context &&
C
Chris Wilson 已提交
532 533 534 535 536 537 538
		    rb_entry(rb, struct i915_priolist, node)->priority >
		    max(last->priotree.priority, 0)) {
			/*
			 * Switch to our empty preempt context so
			 * the state of the GPU is known (idle).
			 */
			inject_preempt_context(engine);
539 540
			execlists_set_active(execlists,
					     EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
			goto unlock;
		} else {
			/*
			 * In theory, we could coalesce more requests onto
			 * the second port (the first port is active, with
			 * no preemptions pending). However, that means we
			 * then have to deal with the possible lite-restore
			 * of the second port (as we submit the ELSP, there
			 * may be a context-switch) but also we may complete
			 * the resubmission before the context-switch. Ergo,
			 * coalescing onto the second port will cause a
			 * preemption event, but we cannot predict whether
			 * that will affect port[0] or port[1].
			 *
			 * If the second port is already active, we can wait
			 * until the next context-switch before contemplating
			 * new requests. The GPU will be busy and we should be
			 * able to resubmit the new ELSP before it idles,
			 * avoiding pipeline bubbles (momentary pauses where
			 * the driver is unable to keep up the supply of new
			 * work).
			 */
			if (port_count(&port[1]))
				goto unlock;

			/* WaIdleLiteRestore:bdw,skl
			 * Apply the wa NOOPs to prevent
			 * ring:HEAD == req:TAIL as we resubmit the
			 * request. See gen8_emit_breadcrumb() for
			 * where we prepare the padding after the
			 * end of the request.
			 */
			last->tail = last->wa_tail;
		}
	}

	do {
578 579 580 581 582 583 584 585 586 587 588 589 590 591
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		struct drm_i915_gem_request *rq, *rn;

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
592
			 */
593 594 595 596 597 598
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
599
				if (port == last_port) {
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
624 625

				GEM_BUG_ON(port_isset(port));
626
			}
627

628 629
			INIT_LIST_HEAD(&rq->priotree.link);
			__i915_gem_request_submit(rq);
630
			trace_i915_gem_request_in(rq, port_index(port, execlists));
631 632
			last = rq;
			submit = true;
633
		}
634

635
		rb = rb_next(rb);
636
		rb_erase(&p->node, &execlists->queue);
637 638
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
639
			kmem_cache_free(engine->i915->priorities, p);
C
Chris Wilson 已提交
640
	} while (rb);
641
done:
642
	execlists->first = rb;
643
	if (submit)
644
		port_assign(port, last);
645 646 647 648

	/* We must always keep the beast fed if we have work piled up */
	GEM_BUG_ON(execlists->first && !port_isset(execlists->port));

C
Chris Wilson 已提交
649
unlock:
650
	spin_unlock_irq(&engine->timeline->lock);
651

652 653
	if (submit) {
		execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
654
		execlists_submit_ports(engine);
655
	}
656 657 658

	GEM_BUG_ON(port_isset(execlists->port) &&
		   !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
659 660
}

661
void
662
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
663
{
664
	struct execlist_port *port = execlists->port;
665
	unsigned int num_ports = execlists_num_ports(execlists);
666

667
	while (num_ports-- && port_isset(port)) {
668 669
		struct drm_i915_gem_request *rq = port_request(port);

670
		GEM_BUG_ON(!execlists->active);
671
		intel_engine_context_out(rq->engine);
672
		execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_PREEMPTED);
673 674
		i915_gem_request_put(rq);

675 676 677
		memset(port, 0, sizeof(*port));
		port++;
	}
678 679
}

680 681
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
682
	struct intel_engine_execlists * const execlists = &engine->execlists;
683 684 685 686 687 688 689
	struct drm_i915_gem_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline->lock, flags);

	/* Cancel the requests on the HW and clear the ELSP tracker. */
690
	execlists_cancel_port_requests(execlists);
691 692 693 694 695 696 697 698 699

	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline->requests, link) {
		GEM_BUG_ON(!rq->global_seqno);
		if (!i915_gem_request_completed(rq))
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
700
	rb = execlists->first;
701 702 703 704 705 706 707 708 709 710 711
	while (rb) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			INIT_LIST_HEAD(&rq->priotree.link);

			dma_fence_set_error(&rq->fence, -EIO);
			__i915_gem_request_submit(rq);
		}

		rb = rb_next(rb);
712
		rb_erase(&p->node, &execlists->queue);
713 714 715 716 717 718 719
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

720

721 722
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
723
	GEM_BUG_ON(port_isset(execlists->port));
724 725 726 727 728 729 730 731 732 733 734 735

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

736
/*
737 738 739
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
740
static void execlists_submission_tasklet(unsigned long data)
741
{
742 743
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	struct intel_engine_execlists * const execlists = &engine->execlists;
C
Chris Wilson 已提交
744
	struct execlist_port * const port = execlists->port;
745
	struct drm_i915_private *dev_priv = engine->i915;
746
	bool fw = false;
747

748 749 750 751 752 753 754 755 756
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

757 758 759 760 761
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
762 763 764
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
765
		unsigned int head, tail;
766

767
		if (unlikely(execlists->csb_use_mmio)) {
768 769
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
770
			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
771 772
		}

773 774 775 776 777 778 779 780 781 782 783
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
784
		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
785 786 787 788 789 790
			if (!fw) {
				intel_uncore_forcewake_get(dev_priv,
							   execlists->fw_domains);
				fw = true;
			}

791 792 793
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
794
			execlists->csb_head = head;
795 796 797 798 799
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

800
			head = execlists->csb_head;
801 802
			tail = READ_ONCE(buf[write_idx]);
		}
803
		GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
804
			  engine->name,
805 806
			  head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
			  tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
807

808
		while (head != tail) {
809
			struct drm_i915_gem_request *rq;
810
			unsigned int status;
811
			unsigned int count;
812 813 814

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
815

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

833
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
834
			GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
835
				  engine->name, head,
836 837
				  status, buf[2*head + 1],
				  execlists->active);
838 839 840 841 842 843 844 845 846

			if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
				      GEN8_CTX_STATUS_PREEMPTED))
				execlists_set_active(execlists,
						     EXECLISTS_ACTIVE_HWACK);
			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_HWACK);

847 848 849
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

850 851 852
			/* We should never get a COMPLETED | IDLE_ACTIVE! */
			GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

853
			if (status & GEN8_CTX_STATUS_COMPLETE &&
854
			    buf[2*head + 1] == execlists->preempt_complete_status) {
855 856
				GEM_TRACE("%s preempt-idle\n", engine->name);

857 858
				execlists_cancel_port_requests(execlists);
				execlists_unwind_incomplete_requests(execlists);
C
Chris Wilson 已提交
859

860 861 862 863
				GEM_BUG_ON(!execlists_is_active(execlists,
								EXECLISTS_ACTIVE_PREEMPT));
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
864 865 866 867
				continue;
			}

			if (status & GEN8_CTX_STATUS_PREEMPTED &&
868 869
			    execlists_is_active(execlists,
						EXECLISTS_ACTIVE_PREEMPT))
C
Chris Wilson 已提交
870 871
				continue;

872 873 874
			GEM_BUG_ON(!execlists_is_active(execlists,
							EXECLISTS_ACTIVE_USER));

875
			/* Check the context/desc id for this event matches */
876
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
877

878
			rq = port_unpack(port, &count);
879 880
			GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x\n",
				  engine->name,
881
				  port->context_id, count,
882
				  rq ? rq->global_seqno : 0);
883 884
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
885
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
886 887
				GEM_BUG_ON(port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
888
				GEM_BUG_ON(!i915_gem_request_completed(rq));
889
				execlists_context_schedule_out(rq);
890 891
				trace_i915_gem_request_out(rq);
				i915_gem_request_put(rq);
892

893
				execlists_port_complete(execlists, port);
894 895
			} else {
				port_set(port, port_pack(rq, count));
896
			}
897

898 899
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
900
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
901 902 903
			if (port_count(port) == 0)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_USER);
904
		}
905

906 907
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
908 909 910
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
911 912
	}

913
	if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
914
		execlists_dequeue(engine);
915

916 917
	if (fw)
		intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
918 919
}

920 921 922 923 924 925 926
static void insert_request(struct intel_engine_cs *engine,
			   struct i915_priotree *pt,
			   int prio)
{
	struct i915_priolist *p = lookup_priolist(engine, pt, prio);

	list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
C
Chris Wilson 已提交
927
	if (ptr_unmask_bits(p, 1))
928
		tasklet_hi_schedule(&engine->execlists.tasklet);
929 930
}

931
static void execlists_submit_request(struct drm_i915_gem_request *request)
932
{
933
	struct intel_engine_cs *engine = request->engine;
934
	unsigned long flags;
935

936 937
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
938

939
	insert_request(engine, &request->priotree, request->priotree.priority);
940

941
	GEM_BUG_ON(!engine->execlists.first);
942 943
	GEM_BUG_ON(list_empty(&request->priotree.link));

944
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
945 946
}

947 948 949 950 951
static struct drm_i915_gem_request *pt_to_request(struct i915_priotree *pt)
{
	return container_of(pt, struct drm_i915_gem_request, priotree);
}

952 953 954
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
955
	struct intel_engine_cs *engine = pt_to_request(pt)->engine;
956 957

	GEM_BUG_ON(!locked);
958 959

	if (engine != locked) {
960 961
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
962 963 964 965 966 967 968
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
969
	struct intel_engine_cs *engine;
970 971 972 973
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

974 975
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

976 977 978
	if (i915_gem_request_completed(request))
		return;

979 980 981
	if (prio <= READ_ONCE(request->priotree.priority))
		return;

982 983
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
984 985 986 987

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

988 989
	/*
	 * Recursively bump all dependent priorities to match the new request.
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
1006
	list_for_each_entry(dep, &dfs, dfs_link) {
1007 1008
		struct i915_priotree *pt = dep->signaler;

1009 1010
		/*
		 * Within an engine, there can be no cycle, but we may
1011 1012 1013 1014 1015
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
1016 1017
			GEM_BUG_ON(p == dep); /* no cycles! */

1018
			if (i915_priotree_signaled(p->signaler))
1019 1020
				continue;

1021
			GEM_BUG_ON(p->signaler->priority < pt->priority);
1022 1023
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
1024
		}
1025 1026
	}

1027 1028
	/*
	 * If we didn't need to bump any existing priorities, and we haven't
1029 1030 1031 1032
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1033
	if (request->priotree.priority == I915_PRIORITY_INVALID) {
1034 1035 1036 1037 1038 1039 1040
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1041 1042 1043
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
1056 1057 1058
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
			insert_request(engine, pt, prio);
1059
		}
1060 1061
	}

1062
	spin_unlock_irq(&engine->timeline->lock);
1063 1064
}

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;

	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
}

1088 1089 1090
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1091
{
1092
	struct intel_context *ce = &ctx->engine[engine->id];
1093
	void *vaddr;
1094
	int ret;
1095

1096
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1097

1098 1099
	if (likely(ce->pin_count++))
		goto out;
1100
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1101

1102 1103 1104
	ret = execlists_context_deferred_alloc(ctx, engine);
	if (ret)
		goto err;
1105
	GEM_BUG_ON(!ce->state);
1106

1107
	ret = __context_pin(ctx, ce->state);
1108
	if (ret)
1109
		goto err;
1110

1111
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1112 1113
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1114
		goto unpin_vma;
1115 1116
	}

1117
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1118
	if (ret)
1119
		goto unpin_map;
1120

1121
	intel_lr_context_descriptor_update(ctx, engine);
1122

1123 1124
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1125
		i915_ggtt_offset(ce->ring->vma);
1126

1127
	ce->state->obj->pin_global++;
1128
	i915_gem_context_get(ctx);
1129 1130
out:
	return ce->ring;
1131

1132
unpin_map:
1133 1134 1135
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1136
err:
1137
	ce->pin_count = 0;
1138
	return ERR_PTR(ret);
1139 1140
}

1141 1142
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1143
{
1144
	struct intel_context *ce = &ctx->engine[engine->id];
1145

1146
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1147
	GEM_BUG_ON(ce->pin_count == 0);
1148

1149
	if (--ce->pin_count)
1150
		return;
1151

1152
	intel_ring_unpin(ce->ring);
1153

1154
	ce->state->obj->pin_global--;
1155 1156
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1157

1158
	i915_gem_context_put(ctx);
1159 1160
}

1161
static int execlists_request_alloc(struct drm_i915_gem_request *request)
1162 1163 1164
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
1165
	int ret;
1166

1167 1168
	GEM_BUG_ON(!ce->pin_count);

1169 1170 1171 1172 1173 1174
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1175 1176 1177
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1206 1207
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1208
{
1209 1210 1211 1212 1213 1214 1215 1216 1217
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1218 1219 1220 1221
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1222 1223 1224 1225 1226 1227 1228

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1229 1230
}

1231 1232 1233 1234 1235 1236
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1237
 *
1238 1239
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1240
 *
1241 1242 1243 1244
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1245
 */
1246
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1247
{
1248
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1249
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1250

1251
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1252 1253
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1254

1255 1256
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1257 1258 1259 1260 1261 1262 1263
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1264

C
Chris Wilson 已提交
1265 1266
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1267
	/* Pad to end of cacheline */
1268 1269
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1270 1271 1272 1273 1274 1275 1276

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1277
	return batch;
1278 1279
}

1280
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1281
{
C
Chris Wilson 已提交
1282 1283
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

1284
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1285
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1286

1287
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1288 1289 1290 1291 1292
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1293

1294 1295
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1296
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1297 1298 1299 1300 1301 1302 1303
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1304
	}
1305

1306
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1321 1322 1323 1324 1325 1326
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1327 1328
	}

C
Chris Wilson 已提交
1329 1330
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1331
	/* Pad to end of cacheline */
1332 1333
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1334

1335
	return batch;
1336 1337
}

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1372 1373 1374
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1375
{
1376 1377 1378
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1379

1380
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1381 1382
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1383

1384
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1385 1386 1387
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1388 1389
	}

1390 1391 1392 1393 1394
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1395
	return 0;
1396 1397 1398 1399

err:
	i915_gem_object_put(obj);
	return err;
1400 1401
}

1402
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1403
{
1404
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1405 1406
}

1407 1408
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1409
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1410
{
1411
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1412 1413 1414
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1415
	struct page *page;
1416 1417
	void *batch, *batch_ptr;
	unsigned int i;
1418
	int ret;
1419

1420
	if (GEM_WARN_ON(engine->id != RCS))
1421
		return -EINVAL;
1422

1423
	switch (INTEL_GEN(engine->i915)) {
1424
	case 10:
1425 1426 1427
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
1428 1429
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1430
		wa_bb_fn[1] = NULL;
1431 1432 1433
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1434
		wa_bb_fn[1] = NULL;
1435 1436 1437
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1438
		return 0;
1439
	}
1440

1441
	ret = lrc_setup_wa_ctx(engine);
1442 1443 1444 1445 1446
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1447
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1448
	batch = batch_ptr = kmap_atomic(page);
1449

1450 1451 1452 1453 1454 1455 1456
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
1457 1458
		if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
					    CACHELINE_BYTES))) {
1459 1460 1461
			ret = -EINVAL;
			break;
		}
1462 1463
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1464
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1465 1466
	}

1467 1468
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1469 1470
	kunmap_atomic(batch);
	if (ret)
1471
		lrc_destroy_wa_ctx(engine);
1472 1473 1474 1475

	return ret;
}

1476 1477 1478 1479 1480 1481 1482 1483
static u8 gtiir[] = {
	[RCS] = 0,
	[BCS] = 0,
	[VCS] = 1,
	[VCS2] = 1,
	[VECS] = 3,
};

1484
static void enable_execlists(struct intel_engine_cs *engine)
1485
{
1486
	struct drm_i915_private *dev_priv = engine->i915;
1487 1488

	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

	/*
	 * Make sure we're not enabling the new 12-deep CSB
	 * FIFO as that requires a slightly updated handling
	 * in the ctx switch irq. Since we're currently only
	 * using only 2 elements of the enhanced execlists the
	 * deeper FIFO it's not needed and it's not worth adding
	 * more statements to the irq handler to support it.
	 */
	if (INTEL_GEN(dev_priv) >= 11)
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
	else
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));

1505 1506 1507
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1508 1509 1510

	/* Following the reset, we need to reload the CSB read/write pointers */
	engine->execlists.csb_head = -1;
1511 1512 1513 1514
}

static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
1515
	struct intel_engine_execlists * const execlists = &engine->execlists;
1516 1517 1518 1519 1520
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1521

1522
	intel_engine_reset_breadcrumbs(engine);
1523
	intel_engine_init_hangcheck(engine);
1524

1525
	enable_execlists(engine);
1526

1527
	/* After a GPU reset, we may have requests to replay */
1528
	if (execlists->first)
1529
		tasklet_schedule(&execlists->tasklet);
1530

1531
	return 0;
1532 1533
}

1534
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1535
{
1536
	struct drm_i915_private *dev_priv = engine->i915;
1537 1538
	int ret;

1539
	ret = gen8_init_common_ring(engine);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1553
	return init_workarounds_ring(engine);
1554 1555
}

1556
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1557 1558 1559
{
	int ret;

1560
	ret = gen8_init_common_ring(engine);
1561 1562 1563
	if (ret)
		return ret;

1564
	return init_workarounds_ring(engine);
1565 1566
}

1567 1568 1569
static void reset_irq(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
1570
	int i;
1571

1572 1573
	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

1574 1575 1576 1577 1578 1579 1580
	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are double
	 * buffered, and if we only reset it once there may still be
	 * an interrupt pending.
	 */
1581 1582 1583 1584 1585 1586 1587 1588
	for (i = 0; i < 2; i++) {
		I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
			   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
		POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
	}
	GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
		   (GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift));

1589 1590 1591
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
}

1592 1593 1594
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
1595
	struct intel_engine_execlists * const execlists = &engine->execlists;
1596
	struct intel_context *ce;
1597
	unsigned long flags;
1598

1599 1600
	GEM_TRACE("%s seqno=%x\n",
		  engine->name, request ? request->global_seqno : 0);
1601 1602 1603

	reset_irq(engine);

1604 1605
	spin_lock_irqsave(&engine->timeline->lock, flags);

1606 1607 1608 1609 1610 1611 1612 1613 1614
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1615
	execlists_cancel_port_requests(execlists);
1616

1617
	/* Push back any incomplete requests for replay after the reset. */
1618
	__unwind_incomplete_requests(engine);
1619

1620
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
1621

1622 1623 1624
	/* Mark all CS interrupts as complete */
	execlists->active = 0;

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1635
	if (!request || request->fence.error != -EIO)
1636
		return;
1637

1638 1639 1640 1641 1642 1643 1644
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1645
	ce = &request->ctx->engine[engine->id];
1646 1647 1648
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1649
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1650 1651
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1652
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1653

1654 1655 1656
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1657
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1658
	unwind_wa_tail(request);
1659 1660
}

1661 1662 1663
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1664
	struct intel_engine_cs *engine = req->engine;
1665
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1666 1667
	u32 *cs;
	int i;
1668

1669 1670 1671
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1672

1673
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1674
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1675 1676
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1677 1678 1679 1680
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1681 1682
	}

1683 1684
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1685 1686 1687 1688

	return 0;
}

1689
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1690
			      u64 offset, u32 len,
1691
			      const unsigned int flags)
1692
{
1693
	u32 *cs;
1694 1695
	int ret;

1696 1697 1698 1699
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1700 1701
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1702
	if (req->ctx->ppgtt &&
1703 1704 1705 1706 1707 1708
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1709

1710
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1711 1712
	}

1713 1714 1715
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1716

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
1734 1735
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1736
	/* FIXME(BDW): Address space and security selectors. */
1737 1738 1739
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1740 1741 1742
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	intel_ring_advance(req, cs);
1743 1744 1745 1746

	return 0;
}

1747
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1748
{
1749
	struct drm_i915_private *dev_priv = engine->i915;
1750 1751 1752
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1753 1754
}

1755
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1756
{
1757
	struct drm_i915_private *dev_priv = engine->i915;
1758
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1759 1760
}

1761
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1762
{
1763
	u32 cmd, *cs;
1764

1765 1766 1767
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1768 1769 1770

	cmd = MI_FLUSH_DW + 1;

1771 1772 1773 1774 1775 1776 1777
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1778
	if (mode & EMIT_INVALIDATE) {
1779
		cmd |= MI_INVALIDATE_TLB;
1780
		if (request->engine->id == VCS)
1781
			cmd |= MI_INVALIDATE_BSD;
1782 1783
	}

1784 1785 1786 1787 1788
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1789 1790 1791 1792

	return 0;
}

1793
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1794
				  u32 mode)
1795
{
1796
	struct intel_engine_cs *engine = request->engine;
1797 1798
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1799
	bool vf_flush_wa = false, dc_flush_wa = false;
1800
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1801
	int len;
1802 1803 1804

	flags |= PIPE_CONTROL_CS_STALL;

1805
	if (mode & EMIT_FLUSH) {
1806 1807
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1808
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1809
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1810 1811
	}

1812
	if (mode & EMIT_INVALIDATE) {
1813 1814 1815 1816 1817 1818 1819 1820 1821
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1822 1823 1824 1825
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1826
		if (IS_GEN9(request->i915))
1827
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1828 1829 1830 1831

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1832
	}
1833

M
Mika Kuoppala 已提交
1834 1835 1836 1837 1838 1839 1840 1841
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1842 1843 1844
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1845

1846 1847
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1848

1849 1850 1851
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1852

1853
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1854

1855 1856
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1857

1858
	intel_ring_advance(request, cs);
1859 1860 1861 1862

	return 0;
}

1863 1864 1865 1866 1867
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1868
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1869
{
C
Chris Wilson 已提交
1870 1871
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
1872 1873
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1874
}
1875

1876
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1877
{
1878 1879
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1880

1881 1882
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
1883 1884 1885
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1886
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1887

1888
	gen8_emit_wa_tail(request, cs);
1889
}
1890 1891
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

1892
static void gen8_emit_breadcrumb_rcs(struct drm_i915_gem_request *request,
1893
					u32 *cs)
1894
{
1895 1896 1897
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1898 1899
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
1900 1901 1902
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1903
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1904

1905
	gen8_emit_wa_tail(request, cs);
1906
}
1907
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
1908

1909
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1910 1911 1912
{
	int ret;

1913
	ret = intel_ring_workarounds_emit(req);
1914 1915 1916
	if (ret)
		return ret;

1917 1918 1919 1920 1921 1922 1923 1924
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1925
	return i915_gem_render_state_emit(req);
1926 1927
}

1928 1929
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1930
 * @engine: Engine Command Streamer.
1931
 */
1932
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1933
{
1934
	struct drm_i915_private *dev_priv;
1935

1936 1937 1938 1939
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
1940 1941 1942
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
1943

1944
	dev_priv = engine->i915;
1945

1946 1947
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1948
	}
1949

1950 1951
	if (engine->cleanup)
		engine->cleanup(engine);
1952

1953
	intel_engine_cleanup_common(engine);
1954

1955
	lrc_destroy_wa_ctx(engine);
1956

1957
	engine->i915 = NULL;
1958 1959
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1960 1961
}

1962
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1963
{
1964
	engine->submit_request = execlists_submit_request;
1965
	engine->cancel_requests = execlists_cancel_requests;
1966
	engine->schedule = execlists_schedule;
1967
	engine->execlists.tasklet.func = execlists_submission_tasklet;
1968 1969 1970

	engine->park = NULL;
	engine->unpark = NULL;
1971 1972

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
1973 1974 1975 1976

	engine->i915->caps.scheduler =
		I915_SCHEDULER_CAP_ENABLED |
		I915_SCHEDULER_CAP_PRIORITY;
1977
	if (engine->i915->preempt_context)
1978
		engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
1979 1980
}

1981
static void
1982
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1983 1984
{
	/* Default vfuncs which can be overriden by each engine. */
1985
	engine->init_hw = gen8_init_common_ring;
1986
	engine->reset_hw = reset_common_ring;
1987 1988 1989 1990

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1991 1992
	engine->request_alloc = execlists_request_alloc;

1993
	engine->emit_flush = gen8_emit_flush;
1994
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1995
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1996 1997

	engine->set_default_submission = execlists_set_default_submission;
1998

1999 2000
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
2001
	engine->emit_bb_start = gen8_emit_bb_start;
2002 2003
}

2004
static inline void
2005
logical_ring_default_irqs(struct intel_engine_cs *engine)
2006
{
2007
	unsigned shift = engine->irq_shift;
2008 2009
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2010 2011
}

2012 2013 2014 2015 2016 2017
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

2018 2019
	intel_engine_setup_common(engine);

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

2035
	engine->execlists.fw_domains = fw_domains;
2036

2037 2038
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2039 2040 2041 2042 2043

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

2044
static int logical_ring_init(struct intel_engine_cs *engine)
2045 2046 2047
{
	int ret;

2048
	ret = intel_engine_init_common(engine);
2049 2050 2051
	if (ret)
		goto error;

2052 2053 2054
	engine->execlists.elsp =
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));

2055 2056 2057 2058 2059
	engine->execlists.preempt_complete_status = ~0u;
	if (engine->i915->preempt_context)
		engine->execlists.preempt_complete_status =
			upper_32_bits(engine->i915->preempt_context->engine[engine->id].lrc_desc);

2060 2061 2062 2063 2064 2065 2066
	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2067
int logical_render_ring_init(struct intel_engine_cs *engine)
2068 2069 2070 2071
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2072 2073
	logical_ring_setup(engine);

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2084 2085
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2086

2087
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2102
	return logical_ring_init(engine);
2103 2104
}

2105
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2106 2107 2108 2109
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2110 2111
}

2112
static u32
2113
make_rpcs(struct drm_i915_private *dev_priv)
2114 2115 2116 2117 2118 2119 2120
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2121
	if (INTEL_GEN(dev_priv) < 9)
2122 2123 2124 2125 2126 2127 2128 2129
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2130
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2131
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2132
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2133 2134 2135 2136
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2137
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2138
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2139
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2140 2141 2142 2143
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2144 2145
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2146
			GEN8_RPCS_EU_MIN_SHIFT;
2147
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2148 2149 2150 2151 2152 2153 2154
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2155
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2156 2157 2158
{
	u32 indirect_ctx_offset;

2159
	switch (INTEL_GEN(engine->i915)) {
2160
	default:
2161
		MISSING_CASE(INTEL_GEN(engine->i915));
2162
		/* fall through */
2163 2164 2165 2166
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2180
static void execlists_init_reg_state(u32 *regs,
2181 2182 2183
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2184
{
2185 2186
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2201 2202
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				    CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2218 2219
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2220 2221 2222
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2223
		if (wa_ctx->indirect_ctx.size) {
2224
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2225

2226
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2227 2228
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2229

2230
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2231
				intel_lr_indirect_ctx_offset(engine) << 6;
2232 2233 2234 2235 2236
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2237

2238
			regs[CTX_BB_PER_CTX_PTR + 1] =
2239
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2240
		}
2241
	}
2242 2243 2244 2245

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2246
	/* PDP values well be assigned later if needed */
2247 2248 2249 2250 2251 2252 2253 2254
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2255

2256
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2257 2258 2259 2260
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2261
		ASSIGN_CTX_PML4(ppgtt, regs);
2262 2263
	}

2264 2265 2266 2267
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2268 2269

		i915_oa_init_reg_state(engine, ctx, regs);
2270
	}
2271 2272 2273 2274 2275 2276 2277 2278 2279
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2280
	u32 *regs;
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2295
	ctx_obj->mm.dirty = true;
2296

2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (IS_ERR(defaults))
			return PTR_ERR(defaults);

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2315 2316
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2317 2318 2319 2320 2321
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2322
	if (ctx == ctx->i915->preempt_context)
2323 2324 2325
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2326

2327
	i915_gem_object_unpin_map(ctx_obj);
2328 2329 2330 2331

	return 0;
}

2332
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2333
					    struct intel_engine_cs *engine)
2334
{
2335
	struct drm_i915_gem_object *ctx_obj;
2336
	struct intel_context *ce = &ctx->engine[engine->id];
2337
	struct i915_vma *vma;
2338
	uint32_t context_size;
2339
	struct intel_ring *ring;
2340 2341
	int ret;

2342 2343
	if (ce->state)
		return 0;
2344

2345
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2346

2347 2348 2349 2350 2351
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2352

2353
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2354
	if (IS_ERR(ctx_obj)) {
2355
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2356
		return PTR_ERR(ctx_obj);
2357 2358
	}

2359
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2360 2361 2362 2363 2364
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2365
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2366 2367
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2368
		goto error_deref_obj;
2369 2370
	}

2371
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2372 2373
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2374
		goto error_ring_free;
2375 2376
	}

2377
	ce->ring = ring;
2378
	ce->state = vma;
2379 2380

	return 0;
2381

2382
error_ring_free:
2383
	intel_ring_free(ring);
2384
error_deref_obj:
2385
	i915_gem_object_put(ctx_obj);
2386
	return ret;
2387
}
2388

2389
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2390
{
2391
	struct intel_engine_cs *engine;
2392
	struct i915_gem_context *ctx;
2393
	enum intel_engine_id id;
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2405
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2406
		for_each_engine(engine, dev_priv, id) {
2407 2408
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2409

2410 2411
			if (!ce->state)
				continue;
2412

2413 2414 2415 2416
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2417

2418 2419 2420
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2421

C
Chris Wilson 已提交
2422
			ce->state->obj->mm.dirty = true;
2423
			i915_gem_object_unpin_map(ce->state->obj);
2424

2425
			intel_ring_reset(ce->ring, 0);
2426
		}
2427 2428
	}
}