intel_lrc.c 84.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "intel_lrc_reg.h"
141
#include "intel_mocs.h"
142
#include "intel_workarounds.h"
143

144 145 146 147 148 149 150 151 152 153 154 155 156
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
157

158
#define GEN8_CTX_STATUS_COMPLETED_MASK \
159
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
160

161 162
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
163
#define WA_TAIL_DWORDS 2
164
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
165

166
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
167
					    struct intel_engine_cs *engine);
168 169 170 171
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
172

173 174 175 176 177 178 179
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
180
	return rq->sched.attr.priority;
181 182 183 184 185 186
}

static inline bool need_preempt(const struct intel_engine_cs *engine,
				const struct i915_request *last,
				int prio)
{
187
	return (intel_engine_has_preemption(engine) &&
188 189
		__execlists_need_preempt(prio, rq_prio(last)) &&
		!i915_request_completed(last));
190 191
}

192
/**
193 194 195
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
196
 * @engine: Engine the descriptor will be used with
197
 *
198 199 200 201 202
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
203 204
 * This is what a descriptor looks like, from LSB to MSB::
 *
205
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
206 207 208 209
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
210 211 212 213 214 215 216 217 218 219 220 221
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
222
 */
223
static void
224
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
225
				   struct intel_engine_cs *engine)
226
{
227
	struct intel_context *ce = to_intel_context(ctx, engine);
228
	u64 desc;
229

230 231
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
232

233
	desc = ctx->desc_template;				/* bits  0-11 */
234 235
	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));

236
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
237
								/* bits 12-31 */
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));

	if (INTEL_GEN(ctx->i915) >= 11) {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
256

257
	ce->lrc_desc = desc;
258 259
}

260
static struct i915_priolist *
261
lookup_priolist(struct intel_engine_cs *engine, int prio)
262
{
263
	struct intel_engine_execlists * const execlists = &engine->execlists;
264 265 266 267
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

268
	if (unlikely(execlists->no_priolist))
269 270 271 272 273
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
274
	parent = &execlists->queue.rb_node;
275 276
	while (*parent) {
		rb = *parent;
277
		p = to_priolist(rb);
278 279 280 281 282 283
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
284
			return p;
285 286 287 288
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
289
		p = &execlists->default_priolist;
290 291 292 293 294 295 296 297 298 299 300 301 302 303
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
304
			execlists->no_priolist = true;
305 306 307 308 309
			goto find_priolist;
		}
	}

	p->priority = prio;
310
	INIT_LIST_HEAD(&p->requests);
311
	rb_link_node(&p->node, rb, parent);
312
	rb_insert_color(&p->node, &execlists->queue);
313 314

	if (first)
315
		execlists->first = &p->node;
316

317
	return p;
318 319
}

320
static void unwind_wa_tail(struct i915_request *rq)
321 322 323 324 325
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

326
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
327
{
328
	struct i915_request *rq, *rn;
329 330
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
331

332
	lockdep_assert_held(&engine->timeline.lock);
333 334

	list_for_each_entry_safe_reverse(rq, rn,
335
					 &engine->timeline.requests,
336
					 link) {
337
		if (i915_request_completed(rq))
338 339
			return;

340
		__i915_request_unsubmit(rq);
341 342
		unwind_wa_tail(rq);

343 344 345
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
		if (rq_prio(rq) != last_prio) {
			last_prio = rq_prio(rq);
346
			p = lookup_priolist(engine, last_prio);
347 348
		}

349
		GEM_BUG_ON(p->priority != rq_prio(rq));
350
		list_add(&rq->sched.link, &p->requests);
351 352 353
	}
}

354
void
355 356 357 358
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);
359 360 361
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline.lock, flags);
362 363

	__unwind_incomplete_requests(engine);
364 365

	spin_unlock_irqrestore(&engine->timeline.lock, flags);
366 367
}

368
static inline void
369
execlists_context_status_change(struct i915_request *rq, unsigned long status)
370
{
371 372 373 374 375 376
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
377

378 379
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
380 381
}

382 383 384 385 386 387 388 389 390 391 392 393 394
inline void
execlists_user_begin(struct intel_engine_execlists *execlists,
		     const struct execlist_port *port)
{
	execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
}

inline void
execlists_user_end(struct intel_engine_execlists *execlists)
{
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
}

395
static inline void
396
execlists_context_schedule_in(struct i915_request *rq)
397 398
{
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
399
	intel_engine_context_in(rq->engine);
400 401 402
}

static inline void
403
execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
404
{
405
	intel_engine_context_out(rq->engine);
406 407
	execlists_context_status_change(rq, status);
	trace_i915_request_out(rq);
408 409
}

410 411 412 413 414 415 416 417 418
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

419
static u64 execlists_update_context(struct i915_request *rq)
420
{
421
	struct intel_context *ce = to_intel_context(rq->ctx, rq->engine);
422 423
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
424
	u32 *reg_state = ce->lrc_reg_state;
425

426
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
427

428 429 430 431 432
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
433
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
434
		execlists_update_context_pdps(ppgtt, reg_state);
435 436

	return ce->lrc_desc;
437 438
}

439
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
440
{
441 442 443 444 445 446 447
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
448 449
}

450
static void execlists_submit_ports(struct intel_engine_cs *engine)
451
{
452 453
	struct intel_engine_execlists *execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
454
	unsigned int n;
455

456 457 458 459 460 461 462
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
463
		struct i915_request *rq;
464 465 466 467 468 469 470
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
471
				execlists_context_schedule_in(rq);
472 473 474
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
475

476
			GEM_TRACE("%s in[%d]:  ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
477
				  engine->name, n,
478
				  port[n].context_id, count,
479
				  rq->global_seqno,
480
				  rq->fence.context, rq->fence.seqno,
481
				  intel_engine_get_seqno(engine),
482
				  rq_prio(rq));
483 484 485 486
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
487

488
		write_desc(execlists, desc, n);
489
	}
490 491 492 493 494 495

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
496 497
}

498
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
499
{
500
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
501
		i915_gem_context_force_single_submission(ctx));
502
}
503

504 505 506 507 508
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
509

510 511
	if (ctx_single_port_submission(prev))
		return false;
512

513
	return true;
514 515
}

516
static void port_assign(struct execlist_port *port, struct i915_request *rq)
517 518 519 520
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
521
		i915_request_put(port_request(port));
522

523
	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
524 525
}

C
Chris Wilson 已提交
526 527
static void inject_preempt_context(struct intel_engine_cs *engine)
{
528
	struct intel_engine_execlists *execlists = &engine->execlists;
C
Chris Wilson 已提交
529
	struct intel_context *ce =
530
		to_intel_context(engine->i915->preempt_context, engine);
C
Chris Wilson 已提交
531 532
	unsigned int n;

533
	GEM_BUG_ON(execlists->preempt_complete_status !=
534
		   upper_32_bits(ce->lrc_desc));
535 536 537 538 539 540
	GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
		    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
		   _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				      CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));

541 542 543 544
	/*
	 * Switch to our empty preempt context so
	 * the state of the GPU is known (idle).
	 */
545
	GEM_TRACE("%s\n", engine->name);
546 547 548 549 550 551 552 553
	for (n = execlists_num_ports(execlists); --n; )
		write_desc(execlists, 0, n);

	write_desc(execlists, ce->lrc_desc, n);

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
C
Chris Wilson 已提交
554

555 556 557 558 559 560 561 562 563 564 565 566
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
	execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
}

static void complete_preempt_context(struct intel_engine_execlists *execlists)
{
	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));

	execlists_cancel_port_requests(execlists);
	execlists_unwind_incomplete_requests(execlists);

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
567 568
}

569
static bool __execlists_dequeue(struct intel_engine_cs *engine)
570
{
571 572
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
573 574
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
575
	struct i915_request *last = port_request(port);
576
	struct rb_node *rb;
577 578
	bool submit = false;

579 580
	lockdep_assert_held(&engine->timeline.lock);

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
600
	 */
601

602 603
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
C
Chris Wilson 已提交
604 605 606 607 608 609 610 611

	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
612 613
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
614
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
615

616 617 618 619 620 621 622 623
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
624
			return false;
625

626
		if (need_preempt(engine, last, execlists->queue_priority)) {
C
Chris Wilson 已提交
627
			inject_preempt_context(engine);
628
			return false;
C
Chris Wilson 已提交
629
		}
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

		/*
		 * In theory, we could coalesce more requests onto
		 * the second port (the first port is active, with
		 * no preemptions pending). However, that means we
		 * then have to deal with the possible lite-restore
		 * of the second port (as we submit the ELSP, there
		 * may be a context-switch) but also we may complete
		 * the resubmission before the context-switch. Ergo,
		 * coalescing onto the second port will cause a
		 * preemption event, but we cannot predict whether
		 * that will affect port[0] or port[1].
		 *
		 * If the second port is already active, we can wait
		 * until the next context-switch before contemplating
		 * new requests. The GPU will be busy and we should be
		 * able to resubmit the new ELSP before it idles,
		 * avoiding pipeline bubbles (momentary pauses where
		 * the driver is unable to keep up the supply of new
		 * work). However, we have to double check that the
		 * priorities of the ports haven't been switch.
		 */
		if (port_count(&port[1]))
653
			return false;
654 655 656 657 658 659 660 661 662 663

		/*
		 * WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent
		 * ring:HEAD == rq:TAIL as we resubmit the
		 * request. See gen8_emit_breadcrumb() for
		 * where we prepare the padding after the
		 * end of the request.
		 */
		last->tail = last->wa_tail;
C
Chris Wilson 已提交
664 665
	}

666 667
	while (rb) {
		struct i915_priolist *p = to_priolist(rb);
668
		struct i915_request *rq, *rn;
669

670
		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
671 672 673 674 675 676 677 678 679 680
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
681
			 */
682 683 684 685 686 687
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
688
				if (port == last_port) {
689
					__list_del_many(&p->requests,
690
							&rq->sched.link);
691 692 693 694 695 696 697 698 699 700 701 702 703
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
704
							&rq->sched.link);
705 706 707 708 709 710 711 712
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
713 714

				GEM_BUG_ON(port_isset(port));
715
			}
716

717
			INIT_LIST_HEAD(&rq->sched.link);
718 719
			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
720 721
			last = rq;
			submit = true;
722
		}
723

724
		rb = rb_next(rb);
725
		rb_erase(&p->node, &execlists->queue);
726 727
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
728
			kmem_cache_free(engine->i915->priorities, p);
729
	}
730

731
done:
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
	/*
	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
	 *
	 * We choose queue_priority such that if we add a request of greater
	 * priority than this, we kick the submission tasklet to decide on
	 * the right order of submitting the requests to hardware. We must
	 * also be prepared to reorder requests as they are in-flight on the
	 * HW. We derive the queue_priority then as the first "hole" in
	 * the HW submission ports and if there are no available slots,
	 * the priority of the lowest executing request, i.e. last.
	 *
	 * When we do receive a higher priority request ready to run from the
	 * user, see queue_request(), the queue_priority is bumped to that
	 * request triggering preemption on the next dequeue (or subsequent
	 * interrupt for secondary ports).
	 */
	execlists->queue_priority =
		port != execlists->port ? rq_prio(last) : INT_MIN;

751
	execlists->first = rb;
752
	if (submit)
753
		port_assign(port, last);
754 755 756 757

	/* We must always keep the beast fed if we have work piled up */
	GEM_BUG_ON(execlists->first && !port_isset(execlists->port));

758 759
	/* Re-evaluate the executing context setup after each preemptive kick */
	if (last)
760
		execlists_user_begin(execlists, execlists->port);
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775

	return submit;
}

static void execlists_dequeue(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	unsigned long flags;
	bool submit;

	spin_lock_irqsave(&engine->timeline.lock, flags);
	submit = __execlists_dequeue(engine);
	spin_unlock_irqrestore(&engine->timeline.lock, flags);

	if (submit)
776
		execlists_submit_ports(engine);
777 778 779

	GEM_BUG_ON(port_isset(execlists->port) &&
		   !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
780 781
}

782
void
783
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
784
{
785
	struct execlist_port *port = execlists->port;
786
	unsigned int num_ports = execlists_num_ports(execlists);
787

788
	while (num_ports-- && port_isset(port)) {
789
		struct i915_request *rq = port_request(port);
790

791 792 793 794 795 796 797
		GEM_TRACE("%s:port%u global=%d (fence %llx:%d), (current %d)\n",
			  rq->engine->name,
			  (unsigned int)(port - execlists->port),
			  rq->global_seqno,
			  rq->fence.context, rq->fence.seqno,
			  intel_engine_get_seqno(rq->engine));

798
		GEM_BUG_ON(!execlists->active);
799 800 801 802
		execlists_context_schedule_out(rq,
					       i915_request_completed(rq) ?
					       INTEL_CONTEXT_SCHEDULE_OUT :
					       INTEL_CONTEXT_SCHEDULE_PREEMPTED);
803

804
		i915_request_put(rq);
805

806 807 808
		memset(port, 0, sizeof(*port));
		port++;
	}
809

810
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
811
	execlists_user_end(execlists);
812 813
}

814 815 816 817 818 819 820 821 822 823 824 825
static void clear_gtiir(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int i;

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are
	 * double buffered, and so if we only reset it once there may
	 * still be an interrupt pending.
	 */
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
	if (INTEL_GEN(dev_priv) >= 11) {
		static const struct {
			u8 bank;
			u8 bit;
		} gen11_gtiir[] = {
			[RCS] = {0, GEN11_RCS0},
			[BCS] = {0, GEN11_BCS},
			[_VCS(0)] = {1, GEN11_VCS(0)},
			[_VCS(1)] = {1, GEN11_VCS(1)},
			[_VCS(2)] = {1, GEN11_VCS(2)},
			[_VCS(3)] = {1, GEN11_VCS(3)},
			[_VECS(0)] = {1, GEN11_VECS(0)},
			[_VECS(1)] = {1, GEN11_VECS(1)},
		};
		unsigned long irqflags;

		GEM_BUG_ON(engine->id >= ARRAY_SIZE(gen11_gtiir));

		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
		for (i = 0; i < 2; i++) {
			gen11_reset_one_iir(dev_priv,
					    gen11_gtiir[engine->id].bank,
					    gen11_gtiir[engine->id].bit);
		}
		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
	} else {
		static const u8 gtiir[] = {
			[RCS]  = 0,
			[BCS]  = 0,
			[VCS]  = 1,
			[VCS2] = 1,
			[VECS] = 3,
		};

		GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

		for (i = 0; i < 2; i++) {
			I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
				   engine->irq_keep_mask);
			POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
		}
		GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
			   engine->irq_keep_mask);
	}
}

static void reset_irq(struct intel_engine_cs *engine)
{
	/* Mark all CS interrupts as complete */
	smp_store_mb(engine->execlists.active, 0);
	synchronize_hardirq(engine->i915->drm.irq);

	clear_gtiir(engine);

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
}

889 890
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
891
	struct intel_engine_execlists * const execlists = &engine->execlists;
892
	struct i915_request *rq, *rn;
893 894 895
	struct rb_node *rb;
	unsigned long flags;

896 897
	GEM_TRACE("%s current %d\n",
		  engine->name, intel_engine_get_seqno(engine));
898

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
	local_irq_save(flags);
914 915

	/* Cancel the requests on the HW and clear the ELSP tracker. */
916
	execlists_cancel_port_requests(execlists);
917
	reset_irq(engine);
918

919
	spin_lock(&engine->timeline.lock);
920

921
	/* Mark all executing requests as skipped. */
922
	list_for_each_entry(rq, &engine->timeline.requests, link) {
923
		GEM_BUG_ON(!rq->global_seqno);
924
		if (!i915_request_completed(rq))
925 926 927 928
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
929
	rb = execlists->first;
930
	while (rb) {
931
		struct i915_priolist *p = to_priolist(rb);
932

933 934
		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
			INIT_LIST_HEAD(&rq->sched.link);
935 936

			dma_fence_set_error(&rq->fence, -EIO);
937
			__i915_request_submit(rq);
938 939 940
		}

		rb = rb_next(rb);
941
		rb_erase(&p->node, &execlists->queue);
942 943 944 945 946 947 948
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

949
	execlists->queue_priority = INT_MIN;
950 951
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
952
	GEM_BUG_ON(port_isset(execlists->port));
953

954
	spin_unlock(&engine->timeline.lock);
955 956

	local_irq_restore(flags);
957 958
}

959
static void process_csb(struct intel_engine_cs *engine)
960
{
961
	struct intel_engine_execlists * const execlists = &engine->execlists;
962
	struct execlist_port *port = execlists->port;
963
	struct drm_i915_private *i915 = engine->i915;
964
	bool fw = false;
965

966
	do {
967 968 969
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
970
		unsigned int head, tail;
971

972
		if (unlikely(execlists->csb_use_mmio)) {
973
			buf = (u32 * __force)
974 975
				(i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
			execlists->csb_head = -1; /* force mmio read of CSB */
976 977
		}

978 979 980 981
		/* Clear before reading to catch new interrupts */
		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
		smp_mb__after_atomic();

982
		if (unlikely(execlists->csb_head == -1)) { /* after a reset */
983
			if (!fw) {
984
				intel_uncore_forcewake_get(i915, execlists->fw_domains);
985 986 987
				fw = true;
			}

988
			head = readl(i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
989 990
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
991
			execlists->csb_head = head;
992 993
		} else {
			const int write_idx =
994
				intel_hws_csb_write_index(i915) -
995 996
				I915_HWS_CSB_BUF0_INDEX;

997
			head = execlists->csb_head;
998
			tail = READ_ONCE(buf[write_idx]);
999
			rmb(); /* Hopefully paired with a wmb() in HW */
1000
		}
1001
		GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
1002
			  engine->name,
1003 1004
			  head, GEN8_CSB_READ_PTR(readl(i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
			  tail, GEN8_CSB_WRITE_PTR(readl(i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
1005

1006
		while (head != tail) {
1007
			struct i915_request *rq;
1008
			unsigned int status;
1009
			unsigned int count;
1010 1011 1012

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
1013

1014 1015
			/*
			 * We are flying near dragons again.
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

1032
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
1033
			GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
1034
				  engine->name, head,
1035 1036
				  status, buf[2*head + 1],
				  execlists->active);
1037 1038 1039 1040 1041 1042 1043 1044 1045

			if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
				      GEN8_CTX_STATUS_PREEMPTED))
				execlists_set_active(execlists,
						     EXECLISTS_ACTIVE_HWACK);
			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_HWACK);

1046 1047 1048
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

1049 1050 1051
			/* We should never get a COMPLETED | IDLE_ACTIVE! */
			GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

1052
			if (status & GEN8_CTX_STATUS_COMPLETE &&
1053
			    buf[2*head + 1] == execlists->preempt_complete_status) {
1054
				GEM_TRACE("%s preempt-idle\n", engine->name);
1055
				complete_preempt_context(execlists);
C
Chris Wilson 已提交
1056 1057 1058 1059
				continue;
			}

			if (status & GEN8_CTX_STATUS_PREEMPTED &&
1060 1061
			    execlists_is_active(execlists,
						EXECLISTS_ACTIVE_PREEMPT))
C
Chris Wilson 已提交
1062 1063
				continue;

1064 1065 1066
			GEM_BUG_ON(!execlists_is_active(execlists,
							EXECLISTS_ACTIVE_USER));

1067
			rq = port_unpack(port, &count);
1068
			GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
1069
				  engine->name,
1070
				  port->context_id, count,
1071
				  rq ? rq->global_seqno : 0,
1072 1073
				  rq ? rq->fence.context : 0,
				  rq ? rq->fence.seqno : 0,
1074
				  intel_engine_get_seqno(engine),
1075
				  rq ? rq_prio(rq) : 0);
1076 1077 1078 1079

			/* Check the context/desc id for this event matches */
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);

1080 1081
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
1082 1083 1084 1085 1086 1087 1088 1089
				/*
				 * On the final event corresponding to the
				 * submission of this context, we expect either
				 * an element-switch event or a completion
				 * event (and on completion, the active-idle
				 * marker). No more preemptions, lite-restore
				 * or otherwise.
				 */
1090
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1091 1092
				GEM_BUG_ON(port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1093 1094 1095 1096 1097 1098 1099 1100 1101
				GEM_BUG_ON(!port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));

				/*
				 * We rely on the hardware being strongly
				 * ordered, that the breadcrumb write is
				 * coherent (visible from the CPU) before the
				 * user interrupt and CSB is processed.
				 */
1102
				GEM_BUG_ON(!i915_request_completed(rq));
1103

1104 1105
				execlists_context_schedule_out(rq,
							       INTEL_CONTEXT_SCHEDULE_OUT);
1106
				i915_request_put(rq);
1107

1108 1109 1110
				GEM_TRACE("%s completed ctx=%d\n",
					  engine->name, port->context_id);

1111 1112 1113 1114 1115
				port = execlists_port_complete(execlists, port);
				if (port_isset(port))
					execlists_user_begin(execlists, port);
				else
					execlists_user_end(execlists);
1116 1117
			} else {
				port_set(port, port_pack(rq, count));
1118
			}
1119
		}
1120

1121 1122
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
1123
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
1124
			       i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
1125
		}
1126
	} while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted));
1127

1128 1129 1130
	if (unlikely(fw))
		intel_uncore_forcewake_put(i915, execlists->fw_domains);
}
1131

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
/*
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
static void execlists_submission_tasklet(unsigned long data)
{
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;

	GEM_TRACE("%s awake?=%d, active=%x, irq-posted?=%d\n",
		  engine->name,
		  engine->i915->gt.awake,
		  engine->execlists.active,
		  test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted));

	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!engine->i915->gt.awake);

	/*
	 * Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	if (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted))
		process_csb(engine);

	if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
		execlists_dequeue(engine);
1166 1167 1168 1169 1170

	/* If the engine is now idle, so should be the flag; and vice versa. */
	GEM_BUG_ON(execlists_is_active(&engine->execlists,
				       EXECLISTS_ACTIVE_USER) ==
		   !port_isset(engine->execlists.port));
1171 1172
}

1173
static void queue_request(struct intel_engine_cs *engine,
1174
			  struct i915_sched_node *node,
1175
			  int prio)
1176
{
1177
	list_add_tail(&node->link,
1178
		      &lookup_priolist(engine, prio)->requests);
1179
}
1180

1181 1182 1183 1184 1185 1186
static void __submit_queue(struct intel_engine_cs *engine, int prio)
{
	engine->execlists.queue_priority = prio;
	tasklet_hi_schedule(&engine->execlists.tasklet);
}

1187 1188
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
1189 1190
	if (prio > engine->execlists.queue_priority)
		__submit_queue(engine, prio);
1191 1192
}

1193
static void execlists_submit_request(struct i915_request *request)
1194
{
1195
	struct intel_engine_cs *engine = request->engine;
1196
	unsigned long flags;
1197

1198
	/* Will be called from irq-context when using foreign fences. */
1199
	spin_lock_irqsave(&engine->timeline.lock, flags);
1200

1201
	queue_request(engine, &request->sched, rq_prio(request));
1202
	submit_queue(engine, rq_prio(request));
1203

1204
	GEM_BUG_ON(!engine->execlists.first);
1205
	GEM_BUG_ON(list_empty(&request->sched.link));
1206

1207
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1208 1209
}

1210
static struct i915_request *sched_to_request(struct i915_sched_node *node)
1211
{
1212
	return container_of(node, struct i915_request, sched);
1213 1214
}

1215
static struct intel_engine_cs *
1216
sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
1217
{
1218
	struct intel_engine_cs *engine = sched_to_request(node)->engine;
1219 1220

	GEM_BUG_ON(!locked);
1221 1222

	if (engine != locked) {
1223 1224
		spin_unlock(&locked->timeline.lock);
		spin_lock(&engine->timeline.lock);
1225 1226 1227 1228 1229
	}

	return engine;
}

1230 1231
static void execlists_schedule(struct i915_request *request,
			       const struct i915_sched_attr *attr)
1232
{
1233 1234
	struct i915_priolist *uninitialized_var(pl);
	struct intel_engine_cs *engine, *last;
1235 1236
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
1237
	const int prio = attr->priority;
1238 1239
	LIST_HEAD(dfs);

1240 1241
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

1242
	if (i915_request_completed(request))
1243 1244
		return;

1245
	if (prio <= READ_ONCE(request->sched.attr.priority))
1246 1247
		return;

1248 1249
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
1250

1251
	stack.signaler = &request->sched;
1252 1253
	list_add(&stack.dfs_link, &dfs);

1254 1255
	/*
	 * Recursively bump all dependent priorities to match the new request.
1256 1257
	 *
	 * A naive approach would be to use recursion:
1258 1259
	 * static void update_priorities(struct i915_sched_node *node, prio) {
	 *	list_for_each_entry(dep, &node->signalers_list, signal_link)
1260
	 *		update_priorities(dep->signal, prio)
1261
	 *	queue_request(node);
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
1272
	list_for_each_entry(dep, &dfs, dfs_link) {
1273
		struct i915_sched_node *node = dep->signaler;
1274

1275 1276
		/*
		 * Within an engine, there can be no cycle, but we may
1277 1278 1279 1280
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
1281
		list_for_each_entry(p, &node->signalers_list, signal_link) {
1282 1283
			GEM_BUG_ON(p == dep); /* no cycles! */

1284
			if (i915_sched_node_signaled(p->signaler))
1285 1286
				continue;

1287 1288
			GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
			if (prio > READ_ONCE(p->signaler->attr.priority))
1289
				list_move_tail(&p->dfs_link, &dfs);
1290
		}
1291 1292
	}

1293 1294
	/*
	 * If we didn't need to bump any existing priorities, and we haven't
1295 1296 1297 1298
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1299
	if (request->sched.attr.priority == I915_PRIORITY_INVALID) {
1300
		GEM_BUG_ON(!list_empty(&request->sched.link));
1301
		request->sched.attr = *attr;
1302 1303 1304 1305 1306
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1307
	last = NULL;
1308
	engine = request->engine;
1309
	spin_lock_irq(&engine->timeline.lock);
1310

1311 1312
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1313
		struct i915_sched_node *node = dep->signaler;
1314 1315 1316

		INIT_LIST_HEAD(&dep->dfs_link);

1317
		engine = sched_lock_engine(node, engine);
1318

1319
		if (prio <= node->attr.priority)
1320 1321
			continue;

1322
		node->attr.priority = prio;
1323
		if (!list_empty(&node->link)) {
1324 1325 1326 1327 1328 1329
			if (last != engine) {
				pl = lookup_priolist(engine, prio);
				last = engine;
			}
			GEM_BUG_ON(pl->priority != prio);
			list_move_tail(&node->link, &pl->requests);
1330
		}
1331 1332

		if (prio > engine->execlists.queue_priority &&
1333
		    i915_sw_fence_done(&sched_to_request(node)->submit))
1334
			__submit_queue(engine, prio);
1335 1336
	}

1337
	spin_unlock_irq(&engine->timeline.lock);
1338 1339
}

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;

	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
}

1363 1364 1365
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1366
{
1367
	struct intel_context *ce = to_intel_context(ctx, engine);
1368
	void *vaddr;
1369
	int ret;
1370

1371
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1372

1373 1374
	if (likely(ce->pin_count++))
		goto out;
1375
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1376

1377 1378 1379
	ret = execlists_context_deferred_alloc(ctx, engine);
	if (ret)
		goto err;
1380
	GEM_BUG_ON(!ce->state);
1381

1382
	ret = __context_pin(ctx, ce->state);
1383
	if (ret)
1384
		goto err;
1385

1386
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1387 1388
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1389
		goto unpin_vma;
1390 1391
	}

1392
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1393
	if (ret)
1394
		goto unpin_map;
1395

1396
	intel_lr_context_descriptor_update(ctx, engine);
1397

1398 1399
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1400
		i915_ggtt_offset(ce->ring->vma);
1401
	ce->lrc_reg_state[CTX_RING_HEAD+1] = ce->ring->head;
1402

1403
	ce->state->obj->pin_global++;
1404
	i915_gem_context_get(ctx);
1405 1406
out:
	return ce->ring;
1407

1408
unpin_map:
1409 1410 1411
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1412
err:
1413
	ce->pin_count = 0;
1414
	return ERR_PTR(ret);
1415 1416
}

1417 1418
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1419
{
1420
	struct intel_context *ce = to_intel_context(ctx, engine);
1421

1422
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1423
	GEM_BUG_ON(ce->pin_count == 0);
1424

1425
	if (--ce->pin_count)
1426
		return;
1427

1428
	intel_ring_unpin(ce->ring);
1429

1430
	ce->state->obj->pin_global--;
1431 1432
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1433

1434
	i915_gem_context_put(ctx);
1435 1436
}

1437
static int execlists_request_alloc(struct i915_request *request)
1438
{
1439 1440
	struct intel_context *ce =
		to_intel_context(request->ctx, request->engine);
1441
	int ret;
1442

1443 1444
	GEM_BUG_ON(!ce->pin_count);

1445 1446 1447 1448 1449 1450
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1451 1452 1453
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1482 1483
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1484
{
1485 1486 1487 1488 1489 1490 1491 1492 1493
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1494 1495 1496 1497
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1498 1499 1500 1501 1502 1503 1504

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1505 1506
}

1507 1508 1509 1510 1511 1512
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1513
 *
1514 1515
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1516
 *
1517 1518 1519 1520
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1521
 */
1522
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1523
{
1524
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1525
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1526

1527
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1528 1529
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1530

1531 1532
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1533 1534 1535 1536 1537 1538 1539
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1540

C
Chris Wilson 已提交
1541 1542
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1543
	/* Pad to end of cacheline */
1544 1545
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1546 1547 1548 1549 1550 1551 1552

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1553
	return batch;
1554 1555
}

1556
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1557
{
C
Chris Wilson 已提交
1558 1559
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

1560
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1561
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1562

1563
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1564 1565 1566 1567 1568
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1569

1570 1571
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1572
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1573 1574 1575 1576 1577 1578 1579
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1580
	}
1581

1582
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1597 1598 1599 1600 1601 1602
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1603 1604
	}

C
Chris Wilson 已提交
1605 1606
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1607
	/* Pad to end of cacheline */
1608 1609
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1610

1611
	return batch;
1612 1613
}

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1648 1649 1650
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1651
{
1652 1653 1654
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1655

1656
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1657 1658
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1659

1660
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1661 1662 1663
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1664 1665
	}

1666 1667 1668 1669 1670
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1671
	return 0;
1672 1673 1674 1675

err:
	i915_gem_object_put(obj);
	return err;
1676 1677
}

1678
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1679
{
1680
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1681 1682
}

1683 1684
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1685
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1686
{
1687
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1688 1689 1690
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1691
	struct page *page;
1692 1693
	void *batch, *batch_ptr;
	unsigned int i;
1694
	int ret;
1695

1696
	if (GEM_WARN_ON(engine->id != RCS))
1697
		return -EINVAL;
1698

1699
	switch (INTEL_GEN(engine->i915)) {
1700 1701
	case 11:
		return 0;
1702
	case 10:
1703 1704 1705
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
1706 1707
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1708
		wa_bb_fn[1] = NULL;
1709 1710 1711
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1712
		wa_bb_fn[1] = NULL;
1713 1714 1715
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1716
		return 0;
1717
	}
1718

1719
	ret = lrc_setup_wa_ctx(engine);
1720 1721 1722 1723 1724
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1725
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1726
	batch = batch_ptr = kmap_atomic(page);
1727

1728 1729 1730 1731 1732 1733 1734
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
1735 1736
		if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
					    CACHELINE_BYTES))) {
1737 1738 1739
			ret = -EINVAL;
			break;
		}
1740 1741
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1742
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1743 1744
	}

1745 1746
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1747 1748
	kunmap_atomic(batch);
	if (ret)
1749
		lrc_destroy_wa_ctx(engine);
1750 1751 1752 1753

	return ret;
}

1754
static void enable_execlists(struct intel_engine_cs *engine)
1755
{
1756
	struct drm_i915_private *dev_priv = engine->i915;
1757 1758

	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774

	/*
	 * Make sure we're not enabling the new 12-deep CSB
	 * FIFO as that requires a slightly updated handling
	 * in the ctx switch irq. Since we're currently only
	 * using only 2 elements of the enhanced execlists the
	 * deeper FIFO it's not needed and it's not worth adding
	 * more statements to the irq handler to support it.
	 */
	if (INTEL_GEN(dev_priv) >= 11)
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
	else
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));

1775 1776 1777
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1778 1779 1780

	/* Following the reset, we need to reload the CSB read/write pointers */
	engine->execlists.csb_head = -1;
1781 1782 1783 1784
}

static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
1785
	struct intel_engine_execlists * const execlists = &engine->execlists;
1786 1787 1788 1789 1790
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1791

1792
	intel_engine_reset_breadcrumbs(engine);
1793
	intel_engine_init_hangcheck(engine);
1794

1795
	enable_execlists(engine);
1796

1797
	/* After a GPU reset, we may have requests to replay */
1798
	if (execlists->first)
1799
		tasklet_schedule(&execlists->tasklet);
1800

1801
	return 0;
1802 1803
}

1804
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1805
{
1806
	struct drm_i915_private *dev_priv = engine->i915;
1807 1808
	int ret;

1809
	ret = gen8_init_common_ring(engine);
1810 1811 1812
	if (ret)
		return ret;

1813
	intel_whitelist_workarounds_apply(engine);
1814

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1825
	return 0;
1826 1827
}

1828
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1829 1830 1831
{
	int ret;

1832
	ret = gen8_init_common_ring(engine);
1833 1834 1835
	if (ret)
		return ret;

1836
	intel_whitelist_workarounds_apply(engine);
1837 1838

	return 0;
1839 1840
}

1841 1842 1843 1844
static struct i915_request *
execlists_reset_prepare(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
1845
	struct i915_request *request, *active;
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859

	GEM_TRACE("%s\n", engine->name);

	/*
	 * Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its execlists->tasklet *just* as we are
	 * calling engine->init_hw() and also writing the ELSP.
	 * Turning off the execlists->tasklet until the reset is over
	 * prevents the race.
	 */
	__tasklet_disable_sync_once(&execlists->tasklet);

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	/*
	 * We want to flush the pending context switches, having disabled
	 * the tasklet above, we can assume exclusive access to the execlists.
	 * For this allows us to catch up with an inflight preemption event,
	 * and avoid blaming an innocent request if the stall was due to the
	 * preemption itself.
	 */
	if (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted))
		process_csb(engine);

	/*
	 * The last active request can then be no later than the last request
	 * now in ELSP[0]. So search backwards from there, so that if the GPU
	 * has advanced beyond the last CSB update, it will be pardoned.
	 */
	active = NULL;
	request = port_request(execlists->port);
	if (request) {
		unsigned long flags;

1880 1881 1882 1883 1884 1885
		/*
		 * Prevent the breadcrumb from advancing before we decide
		 * which request is currently active.
		 */
		intel_engine_stop_cs(engine);

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
		spin_lock_irqsave(&engine->timeline.lock, flags);
		list_for_each_entry_from_reverse(request,
						 &engine->timeline.requests,
						 link) {
			if (__i915_request_completed(request,
						     request->global_seqno))
				break;

			active = request;
		}
		spin_unlock_irqrestore(&engine->timeline.lock, flags);
	}

	return active;
1900 1901 1902 1903
}

static void execlists_reset(struct intel_engine_cs *engine,
			    struct i915_request *request)
1904
{
1905
	struct intel_engine_execlists * const execlists = &engine->execlists;
1906
	unsigned long flags;
1907
	u32 *regs;
1908

1909 1910 1911
	GEM_TRACE("%s request global=%x, current=%d\n",
		  engine->name, request ? request->global_seqno : 0,
		  intel_engine_get_seqno(engine));
1912

1913 1914
	/* See execlists_cancel_requests() for the irq/spinlock split. */
	local_irq_save(flags);
1915

1916 1917 1918 1919 1920 1921 1922 1923 1924
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1925
	execlists_cancel_port_requests(execlists);
1926
	reset_irq(engine);
1927

1928
	/* Push back any incomplete requests for replay after the reset. */
1929
	spin_lock(&engine->timeline.lock);
1930
	__unwind_incomplete_requests(engine);
1931
	spin_unlock(&engine->timeline.lock);
1932

1933
	local_irq_restore(flags);
1934

1935 1936
	/*
	 * If the request was innocent, we leave the request in the ELSP
1937 1938 1939 1940 1941 1942 1943 1944 1945
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1946
	if (!request || request->fence.error != -EIO)
1947
		return;
1948

1949 1950
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
1951 1952 1953 1954 1955 1956
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1957
	regs = to_intel_context(request->ctx, engine)->lrc_reg_state;
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	if (engine->default_state) {
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (!IS_ERR(defaults)) {
			memcpy(regs, /* skip restoring the vanilla PPHWSP */
			       defaults + LRC_STATE_PN * PAGE_SIZE,
			       engine->context_size - PAGE_SIZE);
			i915_gem_object_unpin_map(engine->default_state);
		}
	}
	execlists_init_reg_state(regs, request->ctx, engine, request->ring);
1971

1972
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1973 1974
	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
	regs[CTX_RING_HEAD + 1] = request->postfix;
1975

1976 1977 1978
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1979
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1980
	unwind_wa_tail(request);
1981 1982
}

1983 1984 1985 1986 1987 1988 1989
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
	tasklet_enable(&engine->execlists.tasklet);

	GEM_TRACE("%s\n", engine->name);
}

1990
static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1991
{
1992 1993
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
	struct intel_engine_cs *engine = rq->engine;
1994
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1995 1996
	u32 *cs;
	int i;
1997

1998
	cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
1999 2000
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2001

2002
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
2003
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
2004 2005
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

2006 2007 2008 2009
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
2010 2011
	}

2012
	*cs++ = MI_NOOP;
2013
	intel_ring_advance(rq, cs);
2014 2015 2016 2017

	return 0;
}

2018
static int gen8_emit_bb_start(struct i915_request *rq,
2019
			      u64 offset, u32 len,
2020
			      const unsigned int flags)
2021
{
2022
	u32 *cs;
2023 2024
	int ret;

2025 2026 2027 2028
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
2029 2030
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
2031 2032 2033 2034 2035
	if (rq->ctx->ppgtt &&
	    (intel_engine_flag(rq->engine) & rq->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&rq->ctx->ppgtt->base) &&
	    !intel_vgpu_active(rq->i915)) {
		ret = intel_logical_ring_emit_pdps(rq);
2036 2037
		if (ret)
			return ret;
2038

2039
		rq->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
2040 2041
	}

2042
	cs = intel_ring_begin(rq, 6);
2043 2044
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2045

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
2063 2064
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

2065
	/* FIXME(BDW): Address space and security selectors. */
2066 2067 2068
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
2069 2070
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
2071 2072 2073

	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;
2074
	intel_ring_advance(rq, cs);
2075 2076 2077 2078

	return 0;
}

2079
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2080
{
2081
	struct drm_i915_private *dev_priv = engine->i915;
2082 2083 2084
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
2085 2086
}

2087
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2088
{
2089
	struct drm_i915_private *dev_priv = engine->i915;
2090
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
2091 2092
}

2093
static int gen8_emit_flush(struct i915_request *request, u32 mode)
2094
{
2095
	u32 cmd, *cs;
2096

2097 2098 2099
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2100 2101 2102

	cmd = MI_FLUSH_DW + 1;

2103 2104 2105 2106 2107 2108 2109
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2110
	if (mode & EMIT_INVALIDATE) {
2111
		cmd |= MI_INVALIDATE_TLB;
2112
		if (request->engine->id == VCS)
2113
			cmd |= MI_INVALIDATE_BSD;
2114 2115
	}

2116 2117 2118 2119 2120
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
2121 2122 2123 2124

	return 0;
}

2125
static int gen8_emit_flush_render(struct i915_request *request,
2126
				  u32 mode)
2127
{
2128
	struct intel_engine_cs *engine = request->engine;
2129 2130
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
2131
	bool vf_flush_wa = false, dc_flush_wa = false;
2132
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
2133
	int len;
2134 2135 2136

	flags |= PIPE_CONTROL_CS_STALL;

2137
	if (mode & EMIT_FLUSH) {
2138 2139
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2140
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2141
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2142 2143
	}

2144
	if (mode & EMIT_INVALIDATE) {
2145 2146 2147 2148 2149 2150 2151 2152 2153
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

2154 2155 2156 2157
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
2158
		if (IS_GEN9(request->i915))
2159
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
2160 2161 2162 2163

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
2164
	}
2165

M
Mika Kuoppala 已提交
2166 2167 2168 2169 2170 2171 2172 2173
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

2174 2175 2176
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2177

2178 2179
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
2180

2181 2182 2183
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
2184

2185
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
2186

2187 2188
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
2189

2190
	intel_ring_advance(request, cs);
2191 2192 2193 2194

	return 0;
}

2195 2196 2197 2198 2199
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
2200
static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2201
{
C
Chris Wilson 已提交
2202 2203
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
2204 2205
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
2206
}
2207

2208
static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
2209
{
2210 2211
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2212

2213 2214
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
2215
	*cs++ = MI_USER_INTERRUPT;
2216
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2217
	request->tail = intel_ring_offset(request, cs);
2218
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2219

2220
	gen8_emit_wa_tail(request, cs);
2221
}
2222 2223
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

2224
static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2225
{
2226 2227 2228
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

2229 2230
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
2231
	*cs++ = MI_USER_INTERRUPT;
2232
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2233
	request->tail = intel_ring_offset(request, cs);
2234
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2235

2236
	gen8_emit_wa_tail(request, cs);
2237
}
2238
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2239

2240
static int gen8_init_rcs_context(struct i915_request *rq)
2241 2242 2243
{
	int ret;

2244
	ret = intel_ctx_workarounds_emit(rq);
2245 2246 2247
	if (ret)
		return ret;

2248
	ret = intel_rcs_context_init_mocs(rq);
2249 2250 2251 2252 2253 2254 2255
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2256
	return i915_gem_render_state_emit(rq);
2257 2258
}

2259 2260
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2261
 * @engine: Engine Command Streamer.
2262
 */
2263
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2264
{
2265
	struct drm_i915_private *dev_priv;
2266

2267 2268 2269 2270
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
2271 2272 2273
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
2274

2275
	dev_priv = engine->i915;
2276

2277 2278
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2279
	}
2280

2281 2282
	if (engine->cleanup)
		engine->cleanup(engine);
2283

2284
	intel_engine_cleanup_common(engine);
2285

2286
	lrc_destroy_wa_ctx(engine);
2287

2288
	engine->i915 = NULL;
2289 2290
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
2291 2292
}

2293
static void execlists_set_default_submission(struct intel_engine_cs *engine)
2294
{
2295
	engine->submit_request = execlists_submit_request;
2296
	engine->cancel_requests = execlists_cancel_requests;
2297
	engine->schedule = execlists_schedule;
2298
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2299

2300 2301
	engine->reset.prepare = execlists_reset_prepare;

2302 2303
	engine->park = NULL;
	engine->unpark = NULL;
2304 2305

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2306 2307
	if (engine->i915->preempt_context)
		engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2308 2309 2310 2311

	engine->i915->caps.scheduler =
		I915_SCHEDULER_CAP_ENABLED |
		I915_SCHEDULER_CAP_PRIORITY;
2312
	if (intel_engine_has_preemption(engine))
2313
		engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2314 2315
}

2316
static void
2317
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2318 2319
{
	/* Default vfuncs which can be overriden by each engine. */
2320
	engine->init_hw = gen8_init_common_ring;
2321 2322 2323 2324

	engine->reset.prepare = execlists_reset_prepare;
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2325 2326 2327 2328

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

2329 2330
	engine->request_alloc = execlists_request_alloc;

2331
	engine->emit_flush = gen8_emit_flush;
2332
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
2333
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2334 2335

	engine->set_default_submission = execlists_set_default_submission;
2336

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
2348
	engine->emit_bb_start = gen8_emit_bb_start;
2349 2350
}

2351
static inline void
2352
logical_ring_default_irqs(struct intel_engine_cs *engine)
2353
{
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
			[RCS]  = GEN8_RCS_IRQ_SHIFT,
			[BCS]  = GEN8_BCS_IRQ_SHIFT,
			[VCS]  = GEN8_VCS1_IRQ_SHIFT,
			[VCS2] = GEN8_VCS2_IRQ_SHIFT,
			[VECS] = GEN8_VECS_IRQ_SHIFT,
		};

		shift = irq_shifts[engine->id];
	}

2368 2369
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2370 2371
}

2372 2373 2374 2375 2376 2377
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

2378 2379
	intel_engine_setup_common(engine);

2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

2395
	engine->execlists.fw_domains = fw_domains;
2396

2397 2398
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2399 2400 2401 2402 2403

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

2404
static int logical_ring_init(struct intel_engine_cs *engine)
2405 2406 2407
{
	int ret;

2408
	ret = intel_engine_init_common(engine);
2409 2410 2411
	if (ret)
		goto error;

2412 2413 2414 2415 2416 2417 2418 2419 2420
	if (HAS_LOGICAL_RING_ELSQ(engine->i915)) {
		engine->execlists.submit_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
		engine->execlists.ctrl_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
	} else {
		engine->execlists.submit_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_ELSP(engine));
	}
2421

2422
	engine->execlists.preempt_complete_status = ~0u;
2423 2424 2425 2426
	if (engine->i915->preempt_context) {
		struct intel_context *ce =
			to_intel_context(engine->i915->preempt_context, engine);

2427
		engine->execlists.preempt_complete_status =
2428 2429
			upper_32_bits(ce->lrc_desc);
	}
2430

2431 2432 2433 2434 2435 2436 2437
	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2438
int logical_render_ring_init(struct intel_engine_cs *engine)
2439 2440 2441 2442
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2443 2444
	logical_ring_setup(engine);

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2455 2456
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2457

2458
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2473
	return logical_ring_init(engine);
2474 2475
}

2476
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2477 2478 2479 2480
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2481 2482
}

2483
static u32
2484
make_rpcs(struct drm_i915_private *dev_priv)
2485 2486 2487 2488 2489 2490 2491
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2492
	if (INTEL_GEN(dev_priv) < 9)
2493 2494 2495 2496 2497 2498 2499 2500
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2501
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2502
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2503
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2504 2505 2506 2507
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2508
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2509
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2510
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2511 2512 2513 2514
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2515 2516
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2517
			GEN8_RPCS_EU_MIN_SHIFT;
2518
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2519 2520 2521 2522 2523 2524 2525
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2526
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2527 2528 2529
{
	u32 indirect_ctx_offset;

2530
	switch (INTEL_GEN(engine->i915)) {
2531
	default:
2532
		MISSING_CASE(INTEL_GEN(engine->i915));
2533
		/* fall through */
2534 2535 2536 2537
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2538 2539 2540 2541
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2555
static void execlists_init_reg_state(u32 *regs,
2556 2557 2558
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2559
{
2560 2561
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2576 2577
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				    CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2593 2594
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2595 2596 2597
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2598
		if (wa_ctx->indirect_ctx.size) {
2599
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2600

2601
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2602 2603
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2604

2605
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2606
				intel_lr_indirect_ctx_offset(engine) << 6;
2607 2608 2609 2610 2611
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2612

2613
			regs[CTX_BB_PER_CTX_PTR + 1] =
2614
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2615
		}
2616
	}
2617 2618 2619 2620

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2621
	/* PDP values well be assigned later if needed */
2622 2623 2624 2625 2626 2627 2628 2629
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2630

2631
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2632 2633 2634 2635
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2636
		ASSIGN_CTX_PML4(ppgtt, regs);
2637 2638
	}

2639 2640 2641 2642
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2643 2644

		i915_oa_init_reg_state(engine, ctx, regs);
2645
	}
2646 2647 2648 2649 2650 2651 2652 2653 2654
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2655
	u32 *regs;
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2670
	ctx_obj->mm.dirty = true;
2671

2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
2683 2684 2685 2686
		if (IS_ERR(defaults)) {
			ret = PTR_ERR(defaults);
			goto err_unpin_ctx;
		}
2687 2688 2689 2690 2691

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2692 2693
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2694 2695 2696 2697 2698
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2699
	if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2700 2701 2702
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2703

2704
err_unpin_ctx:
2705
	i915_gem_object_unpin_map(ctx_obj);
2706
	return ret;
2707 2708
}

2709
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2710
					    struct intel_engine_cs *engine)
2711
{
2712
	struct drm_i915_gem_object *ctx_obj;
2713
	struct intel_context *ce = to_intel_context(ctx, engine);
2714
	struct i915_vma *vma;
2715
	uint32_t context_size;
2716
	struct intel_ring *ring;
2717
	struct i915_timeline *timeline;
2718 2719
	int ret;

2720 2721
	if (ce->state)
		return 0;
2722

2723
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2724

2725 2726 2727 2728 2729
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2730

2731
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2732
	if (IS_ERR(ctx_obj)) {
2733 2734
		ret = PTR_ERR(ctx_obj);
		goto error_deref_obj;
2735 2736
	}

2737
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2738 2739 2740 2741 2742
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2743 2744 2745 2746 2747 2748 2749 2750
	timeline = i915_timeline_create(ctx->i915, ctx->name);
	if (IS_ERR(timeline)) {
		ret = PTR_ERR(timeline);
		goto error_deref_obj;
	}

	ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
	i915_timeline_put(timeline);
2751 2752
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2753
		goto error_deref_obj;
2754 2755
	}

2756
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2757 2758
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2759
		goto error_ring_free;
2760 2761
	}

2762
	ce->ring = ring;
2763
	ce->state = vma;
2764 2765

	return 0;
2766

2767
error_ring_free:
2768
	intel_ring_free(ring);
2769
error_deref_obj:
2770
	i915_gem_object_put(ctx_obj);
2771
	return ret;
2772
}
2773

2774
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2775
{
2776
	struct intel_engine_cs *engine;
2777
	struct i915_gem_context *ctx;
2778
	enum intel_engine_id id;
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2790
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2791
		for_each_engine(engine, dev_priv, id) {
2792 2793
			struct intel_context *ce =
				to_intel_context(ctx, engine);
2794
			u32 *reg;
2795

2796 2797
			if (!ce->state)
				continue;
2798

2799 2800 2801 2802
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2803

2804 2805 2806
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2807

C
Chris Wilson 已提交
2808
			ce->state->obj->mm.dirty = true;
2809
			i915_gem_object_unpin_map(ce->state->obj);
2810

2811
			intel_ring_reset(ce->ring, 0);
2812
		}
2813 2814
	}
}
2815 2816 2817 2818

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_lrc.c"
#endif