intel_lrc.c 84.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "intel_lrc_reg.h"
141
#include "intel_mocs.h"
142
#include "intel_workarounds.h"
143

144 145 146 147 148 149 150 151 152 153 154 155 156
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
157

158
#define GEN8_CTX_STATUS_COMPLETED_MASK \
159
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
160

161 162
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
163
#define WA_TAIL_DWORDS 2
164
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
165

166
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
167
					    struct intel_engine_cs *engine);
168 169 170 171
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
172

173 174 175 176 177 178 179
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
180
	return rq->sched.attr.priority;
181 182 183 184 185 186
}

static inline bool need_preempt(const struct intel_engine_cs *engine,
				const struct i915_request *last,
				int prio)
{
187
	return (intel_engine_has_preemption(engine) &&
188 189
		__execlists_need_preempt(prio, rq_prio(last)) &&
		!i915_request_completed(last));
190 191
}

192
/**
193 194 195
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
196
 * @engine: Engine the descriptor will be used with
197
 *
198 199 200 201 202
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
203 204
 * This is what a descriptor looks like, from LSB to MSB::
 *
205
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
206 207 208 209
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
210 211 212 213 214 215 216 217 218 219 220 221
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
222
 */
223
static void
224
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
225
				   struct intel_engine_cs *engine)
226
{
227
	struct intel_context *ce = to_intel_context(ctx, engine);
228
	u64 desc;
229

230 231
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
232

233
	desc = ctx->desc_template;				/* bits  0-11 */
234 235
	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));

236
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
237
								/* bits 12-31 */
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));

	if (INTEL_GEN(ctx->i915) >= 11) {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
256

257
	ce->lrc_desc = desc;
258 259
}

260
static struct i915_priolist *
261
lookup_priolist(struct intel_engine_cs *engine, int prio)
262
{
263
	struct intel_engine_execlists * const execlists = &engine->execlists;
264 265 266 267
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

268
	if (unlikely(execlists->no_priolist))
269 270 271 272 273
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
274
	parent = &execlists->queue.rb_node;
275 276
	while (*parent) {
		rb = *parent;
277
		p = to_priolist(rb);
278 279 280 281 282 283
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
284
			return p;
285 286 287 288
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
289
		p = &execlists->default_priolist;
290 291 292 293 294 295 296 297 298 299 300 301 302 303
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
304
			execlists->no_priolist = true;
305 306 307 308 309
			goto find_priolist;
		}
	}

	p->priority = prio;
310
	INIT_LIST_HEAD(&p->requests);
311
	rb_link_node(&p->node, rb, parent);
312
	rb_insert_color(&p->node, &execlists->queue);
313 314

	if (first)
315
		execlists->first = &p->node;
316

317
	return p;
318 319
}

320
static void unwind_wa_tail(struct i915_request *rq)
321 322 323 324 325
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

326
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
327
{
328
	struct i915_request *rq, *rn;
329 330
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
331

332
	lockdep_assert_held(&engine->timeline.lock);
333 334

	list_for_each_entry_safe_reverse(rq, rn,
335
					 &engine->timeline.requests,
336
					 link) {
337
		if (i915_request_completed(rq))
338 339
			return;

340
		__i915_request_unsubmit(rq);
341 342
		unwind_wa_tail(rq);

343 344 345
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
		if (rq_prio(rq) != last_prio) {
			last_prio = rq_prio(rq);
346
			p = lookup_priolist(engine, last_prio);
347 348
		}

349
		GEM_BUG_ON(p->priority != rq_prio(rq));
350
		list_add(&rq->sched.link, &p->requests);
351 352 353
	}
}

354
void
355 356 357 358
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);
359 360 361
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline.lock, flags);
362 363

	__unwind_incomplete_requests(engine);
364 365

	spin_unlock_irqrestore(&engine->timeline.lock, flags);
366 367
}

368
static inline void
369
execlists_context_status_change(struct i915_request *rq, unsigned long status)
370
{
371 372 373 374 375 376
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
377

378 379
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
380 381
}

382 383 384 385 386 387 388 389 390 391 392 393 394
inline void
execlists_user_begin(struct intel_engine_execlists *execlists,
		     const struct execlist_port *port)
{
	execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
}

inline void
execlists_user_end(struct intel_engine_execlists *execlists)
{
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
}

395
static inline void
396
execlists_context_schedule_in(struct i915_request *rq)
397 398
{
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
399
	intel_engine_context_in(rq->engine);
400 401 402
}

static inline void
403
execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
404
{
405
	intel_engine_context_out(rq->engine);
406 407
	execlists_context_status_change(rq, status);
	trace_i915_request_out(rq);
408 409
}

410 411 412 413 414 415 416 417 418
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

419
static u64 execlists_update_context(struct i915_request *rq)
420
{
421
	struct intel_context *ce = to_intel_context(rq->ctx, rq->engine);
422 423
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
424
	u32 *reg_state = ce->lrc_reg_state;
425

426
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
427

428 429 430 431 432
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
433
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
434
		execlists_update_context_pdps(ppgtt, reg_state);
435 436

	return ce->lrc_desc;
437 438
}

439
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
440
{
441 442 443 444 445 446 447
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
448 449
}

450
static void execlists_submit_ports(struct intel_engine_cs *engine)
451
{
452 453
	struct intel_engine_execlists *execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
454
	unsigned int n;
455

456 457 458 459 460 461 462
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
463
		struct i915_request *rq;
464 465 466 467 468 469 470
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
471
				execlists_context_schedule_in(rq);
472 473 474
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
475

476
			GEM_TRACE("%s in[%d]:  ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
477
				  engine->name, n,
478
				  port[n].context_id, count,
479
				  rq->global_seqno,
480
				  rq->fence.context, rq->fence.seqno,
481
				  intel_engine_get_seqno(engine),
482
				  rq_prio(rq));
483 484 485 486
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
487

488
		write_desc(execlists, desc, n);
489
	}
490 491 492 493 494 495

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
496 497
}

498
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
499
{
500
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
501
		i915_gem_context_force_single_submission(ctx));
502
}
503

504 505 506 507 508
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
509

510 511
	if (ctx_single_port_submission(prev))
		return false;
512

513
	return true;
514 515
}

516
static void port_assign(struct execlist_port *port, struct i915_request *rq)
517 518 519 520
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
521
		i915_request_put(port_request(port));
522

523
	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
524 525
}

C
Chris Wilson 已提交
526 527
static void inject_preempt_context(struct intel_engine_cs *engine)
{
528
	struct intel_engine_execlists *execlists = &engine->execlists;
C
Chris Wilson 已提交
529
	struct intel_context *ce =
530
		to_intel_context(engine->i915->preempt_context, engine);
C
Chris Wilson 已提交
531 532
	unsigned int n;

533
	GEM_BUG_ON(execlists->preempt_complete_status !=
534
		   upper_32_bits(ce->lrc_desc));
535 536 537 538 539 540
	GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
		    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
		   _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				      CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));

541 542 543 544
	/*
	 * Switch to our empty preempt context so
	 * the state of the GPU is known (idle).
	 */
545
	GEM_TRACE("%s\n", engine->name);
546 547 548 549 550 551 552 553
	for (n = execlists_num_ports(execlists); --n; )
		write_desc(execlists, 0, n);

	write_desc(execlists, ce->lrc_desc, n);

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
C
Chris Wilson 已提交
554

555 556 557 558 559 560 561 562 563 564 565 566
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
	execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
}

static void complete_preempt_context(struct intel_engine_execlists *execlists)
{
	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));

	execlists_cancel_port_requests(execlists);
	execlists_unwind_incomplete_requests(execlists);

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
567 568
}

569
static bool __execlists_dequeue(struct intel_engine_cs *engine)
570
{
571 572
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
573 574
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
575
	struct i915_request *last = port_request(port);
576
	struct rb_node *rb;
577 578
	bool submit = false;

579 580
	lockdep_assert_held(&engine->timeline.lock);

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
600
	 */
601

602 603
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
C
Chris Wilson 已提交
604 605 606 607 608 609 610 611

	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
612 613
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
614
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
615
		if (port_count(&port[0]) > 1)
616
			return false;
C
Chris Wilson 已提交
617

618 619 620 621 622 623 624 625
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
626
			return false;
627

628
		if (need_preempt(engine, last, execlists->queue_priority)) {
C
Chris Wilson 已提交
629
			inject_preempt_context(engine);
630
			return false;
C
Chris Wilson 已提交
631
		}
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654

		/*
		 * In theory, we could coalesce more requests onto
		 * the second port (the first port is active, with
		 * no preemptions pending). However, that means we
		 * then have to deal with the possible lite-restore
		 * of the second port (as we submit the ELSP, there
		 * may be a context-switch) but also we may complete
		 * the resubmission before the context-switch. Ergo,
		 * coalescing onto the second port will cause a
		 * preemption event, but we cannot predict whether
		 * that will affect port[0] or port[1].
		 *
		 * If the second port is already active, we can wait
		 * until the next context-switch before contemplating
		 * new requests. The GPU will be busy and we should be
		 * able to resubmit the new ELSP before it idles,
		 * avoiding pipeline bubbles (momentary pauses where
		 * the driver is unable to keep up the supply of new
		 * work). However, we have to double check that the
		 * priorities of the ports haven't been switch.
		 */
		if (port_count(&port[1]))
655
			return false;
656 657 658 659 660 661 662 663 664 665

		/*
		 * WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent
		 * ring:HEAD == rq:TAIL as we resubmit the
		 * request. See gen8_emit_breadcrumb() for
		 * where we prepare the padding after the
		 * end of the request.
		 */
		last->tail = last->wa_tail;
C
Chris Wilson 已提交
666 667
	}

668 669
	while (rb) {
		struct i915_priolist *p = to_priolist(rb);
670
		struct i915_request *rq, *rn;
671

672
		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
673 674 675 676 677 678 679 680 681 682
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
683
			 */
684 685 686 687 688 689
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
690
				if (port == last_port) {
691
					__list_del_many(&p->requests,
692
							&rq->sched.link);
693 694 695 696 697 698 699 700 701 702 703 704 705
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
706
							&rq->sched.link);
707 708 709 710 711 712 713 714
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
715 716

				GEM_BUG_ON(port_isset(port));
717
			}
718

719
			INIT_LIST_HEAD(&rq->sched.link);
720 721
			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
722 723
			last = rq;
			submit = true;
724
		}
725

726
		rb = rb_next(rb);
727
		rb_erase(&p->node, &execlists->queue);
728 729
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
730
			kmem_cache_free(engine->i915->priorities, p);
731
	}
732

733
done:
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
	/*
	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
	 *
	 * We choose queue_priority such that if we add a request of greater
	 * priority than this, we kick the submission tasklet to decide on
	 * the right order of submitting the requests to hardware. We must
	 * also be prepared to reorder requests as they are in-flight on the
	 * HW. We derive the queue_priority then as the first "hole" in
	 * the HW submission ports and if there are no available slots,
	 * the priority of the lowest executing request, i.e. last.
	 *
	 * When we do receive a higher priority request ready to run from the
	 * user, see queue_request(), the queue_priority is bumped to that
	 * request triggering preemption on the next dequeue (or subsequent
	 * interrupt for secondary ports).
	 */
	execlists->queue_priority =
		port != execlists->port ? rq_prio(last) : INT_MIN;

753
	execlists->first = rb;
754
	if (submit)
755
		port_assign(port, last);
756 757 758 759

	/* We must always keep the beast fed if we have work piled up */
	GEM_BUG_ON(execlists->first && !port_isset(execlists->port));

760 761
	/* Re-evaluate the executing context setup after each preemptive kick */
	if (last)
762
		execlists_user_begin(execlists, execlists->port);
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777

	return submit;
}

static void execlists_dequeue(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	unsigned long flags;
	bool submit;

	spin_lock_irqsave(&engine->timeline.lock, flags);
	submit = __execlists_dequeue(engine);
	spin_unlock_irqrestore(&engine->timeline.lock, flags);

	if (submit)
778
		execlists_submit_ports(engine);
779 780 781

	GEM_BUG_ON(port_isset(execlists->port) &&
		   !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
782 783
}

784
void
785
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
786
{
787
	struct execlist_port *port = execlists->port;
788
	unsigned int num_ports = execlists_num_ports(execlists);
789

790
	while (num_ports-- && port_isset(port)) {
791
		struct i915_request *rq = port_request(port);
792

793 794 795 796 797 798 799
		GEM_TRACE("%s:port%u global=%d (fence %llx:%d), (current %d)\n",
			  rq->engine->name,
			  (unsigned int)(port - execlists->port),
			  rq->global_seqno,
			  rq->fence.context, rq->fence.seqno,
			  intel_engine_get_seqno(rq->engine));

800
		GEM_BUG_ON(!execlists->active);
801 802 803 804
		execlists_context_schedule_out(rq,
					       i915_request_completed(rq) ?
					       INTEL_CONTEXT_SCHEDULE_OUT :
					       INTEL_CONTEXT_SCHEDULE_PREEMPTED);
805

806
		i915_request_put(rq);
807

808 809 810
		memset(port, 0, sizeof(*port));
		port++;
	}
811

812
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
813
	execlists_user_end(execlists);
814 815
}

816 817 818 819 820 821 822 823 824 825 826 827
static void clear_gtiir(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int i;

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are
	 * double buffered, and so if we only reset it once there may
	 * still be an interrupt pending.
	 */
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
	if (INTEL_GEN(dev_priv) >= 11) {
		static const struct {
			u8 bank;
			u8 bit;
		} gen11_gtiir[] = {
			[RCS] = {0, GEN11_RCS0},
			[BCS] = {0, GEN11_BCS},
			[_VCS(0)] = {1, GEN11_VCS(0)},
			[_VCS(1)] = {1, GEN11_VCS(1)},
			[_VCS(2)] = {1, GEN11_VCS(2)},
			[_VCS(3)] = {1, GEN11_VCS(3)},
			[_VECS(0)] = {1, GEN11_VECS(0)},
			[_VECS(1)] = {1, GEN11_VECS(1)},
		};
		unsigned long irqflags;

		GEM_BUG_ON(engine->id >= ARRAY_SIZE(gen11_gtiir));

		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
		for (i = 0; i < 2; i++) {
			gen11_reset_one_iir(dev_priv,
					    gen11_gtiir[engine->id].bank,
					    gen11_gtiir[engine->id].bit);
		}
		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
	} else {
		static const u8 gtiir[] = {
			[RCS]  = 0,
			[BCS]  = 0,
			[VCS]  = 1,
			[VCS2] = 1,
			[VECS] = 3,
		};

		GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

		for (i = 0; i < 2; i++) {
			I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
				   engine->irq_keep_mask);
			POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
		}
		GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
			   engine->irq_keep_mask);
	}
}

static void reset_irq(struct intel_engine_cs *engine)
{
	/* Mark all CS interrupts as complete */
	smp_store_mb(engine->execlists.active, 0);
	synchronize_hardirq(engine->i915->drm.irq);

	clear_gtiir(engine);

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
}

891 892
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
893
	struct intel_engine_execlists * const execlists = &engine->execlists;
894
	struct i915_request *rq, *rn;
895 896 897
	struct rb_node *rb;
	unsigned long flags;

898 899
	GEM_TRACE("%s current %d\n",
		  engine->name, intel_engine_get_seqno(engine));
900

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
	local_irq_save(flags);
916 917

	/* Cancel the requests on the HW and clear the ELSP tracker. */
918
	execlists_cancel_port_requests(execlists);
919
	reset_irq(engine);
920

921
	spin_lock(&engine->timeline.lock);
922

923
	/* Mark all executing requests as skipped. */
924
	list_for_each_entry(rq, &engine->timeline.requests, link) {
925
		GEM_BUG_ON(!rq->global_seqno);
926
		if (!i915_request_completed(rq))
927 928 929 930
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
931
	rb = execlists->first;
932
	while (rb) {
933
		struct i915_priolist *p = to_priolist(rb);
934

935 936
		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
			INIT_LIST_HEAD(&rq->sched.link);
937 938

			dma_fence_set_error(&rq->fence, -EIO);
939
			__i915_request_submit(rq);
940 941 942
		}

		rb = rb_next(rb);
943
		rb_erase(&p->node, &execlists->queue);
944 945 946 947 948 949 950
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

951
	execlists->queue_priority = INT_MIN;
952 953
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
954
	GEM_BUG_ON(port_isset(execlists->port));
955

956
	spin_unlock(&engine->timeline.lock);
957 958

	local_irq_restore(flags);
959 960
}

961
static void process_csb(struct intel_engine_cs *engine)
962
{
963
	struct intel_engine_execlists * const execlists = &engine->execlists;
964
	struct execlist_port *port = execlists->port;
965
	struct drm_i915_private *i915 = engine->i915;
966
	bool fw = false;
967

968
	do {
969 970 971
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
972
		unsigned int head, tail;
973

974
		if (unlikely(execlists->csb_use_mmio)) {
975
			buf = (u32 * __force)
976 977
				(i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
			execlists->csb_head = -1; /* force mmio read of CSB */
978 979
		}

980 981 982 983
		/* Clear before reading to catch new interrupts */
		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
		smp_mb__after_atomic();

984
		if (unlikely(execlists->csb_head == -1)) { /* after a reset */
985
			if (!fw) {
986
				intel_uncore_forcewake_get(i915, execlists->fw_domains);
987 988 989
				fw = true;
			}

990
			head = readl(i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
991 992
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
993
			execlists->csb_head = head;
994 995
		} else {
			const int write_idx =
996
				intel_hws_csb_write_index(i915) -
997 998
				I915_HWS_CSB_BUF0_INDEX;

999
			head = execlists->csb_head;
1000
			tail = READ_ONCE(buf[write_idx]);
1001
			rmb(); /* Hopefully paired with a wmb() in HW */
1002
		}
1003
		GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
1004
			  engine->name,
1005 1006
			  head, GEN8_CSB_READ_PTR(readl(i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
			  tail, GEN8_CSB_WRITE_PTR(readl(i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
1007

1008
		while (head != tail) {
1009
			struct i915_request *rq;
1010
			unsigned int status;
1011
			unsigned int count;
1012 1013 1014

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
1015

1016 1017
			/*
			 * We are flying near dragons again.
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

1034
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
1035
			GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
1036
				  engine->name, head,
1037 1038
				  status, buf[2*head + 1],
				  execlists->active);
1039 1040 1041 1042 1043 1044 1045 1046 1047

			if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
				      GEN8_CTX_STATUS_PREEMPTED))
				execlists_set_active(execlists,
						     EXECLISTS_ACTIVE_HWACK);
			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_HWACK);

1048 1049 1050
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

1051 1052 1053
			/* We should never get a COMPLETED | IDLE_ACTIVE! */
			GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

1054
			if (status & GEN8_CTX_STATUS_COMPLETE &&
1055
			    buf[2*head + 1] == execlists->preempt_complete_status) {
1056
				GEM_TRACE("%s preempt-idle\n", engine->name);
1057
				complete_preempt_context(execlists);
C
Chris Wilson 已提交
1058 1059 1060 1061
				continue;
			}

			if (status & GEN8_CTX_STATUS_PREEMPTED &&
1062 1063
			    execlists_is_active(execlists,
						EXECLISTS_ACTIVE_PREEMPT))
C
Chris Wilson 已提交
1064 1065
				continue;

1066 1067 1068
			GEM_BUG_ON(!execlists_is_active(execlists,
							EXECLISTS_ACTIVE_USER));

1069
			rq = port_unpack(port, &count);
1070
			GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
1071
				  engine->name,
1072
				  port->context_id, count,
1073
				  rq ? rq->global_seqno : 0,
1074 1075
				  rq ? rq->fence.context : 0,
				  rq ? rq->fence.seqno : 0,
1076
				  intel_engine_get_seqno(engine),
1077
				  rq ? rq_prio(rq) : 0);
1078 1079 1080 1081

			/* Check the context/desc id for this event matches */
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);

1082 1083
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
1084 1085 1086 1087 1088 1089 1090 1091
				/*
				 * On the final event corresponding to the
				 * submission of this context, we expect either
				 * an element-switch event or a completion
				 * event (and on completion, the active-idle
				 * marker). No more preemptions, lite-restore
				 * or otherwise.
				 */
1092
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1093 1094
				GEM_BUG_ON(port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1095 1096 1097 1098 1099 1100 1101 1102 1103
				GEM_BUG_ON(!port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));

				/*
				 * We rely on the hardware being strongly
				 * ordered, that the breadcrumb write is
				 * coherent (visible from the CPU) before the
				 * user interrupt and CSB is processed.
				 */
1104
				GEM_BUG_ON(!i915_request_completed(rq));
1105

1106 1107
				execlists_context_schedule_out(rq,
							       INTEL_CONTEXT_SCHEDULE_OUT);
1108
				i915_request_put(rq);
1109

1110 1111 1112
				GEM_TRACE("%s completed ctx=%d\n",
					  engine->name, port->context_id);

1113 1114 1115 1116 1117
				port = execlists_port_complete(execlists, port);
				if (port_isset(port))
					execlists_user_begin(execlists, port);
				else
					execlists_user_end(execlists);
1118 1119
			} else {
				port_set(port, port_pack(rq, count));
1120
			}
1121
		}
1122

1123 1124
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
1125
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
1126
			       i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
1127
		}
1128
	} while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted));
1129

1130 1131 1132
	if (unlikely(fw))
		intel_uncore_forcewake_put(i915, execlists->fw_domains);
}
1133

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
/*
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
static void execlists_submission_tasklet(unsigned long data)
{
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;

	GEM_TRACE("%s awake?=%d, active=%x, irq-posted?=%d\n",
		  engine->name,
		  engine->i915->gt.awake,
		  engine->execlists.active,
		  test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted));

	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!engine->i915->gt.awake);

	/*
	 * Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	if (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted))
		process_csb(engine);

	if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
		execlists_dequeue(engine);
1168 1169 1170 1171 1172

	/* If the engine is now idle, so should be the flag; and vice versa. */
	GEM_BUG_ON(execlists_is_active(&engine->execlists,
				       EXECLISTS_ACTIVE_USER) ==
		   !port_isset(engine->execlists.port));
1173 1174
}

1175
static void queue_request(struct intel_engine_cs *engine,
1176
			  struct i915_sched_node *node,
1177
			  int prio)
1178
{
1179
	list_add_tail(&node->link,
1180
		      &lookup_priolist(engine, prio)->requests);
1181
}
1182

1183 1184 1185 1186 1187 1188
static void __submit_queue(struct intel_engine_cs *engine, int prio)
{
	engine->execlists.queue_priority = prio;
	tasklet_hi_schedule(&engine->execlists.tasklet);
}

1189 1190
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
1191 1192
	if (prio > engine->execlists.queue_priority)
		__submit_queue(engine, prio);
1193 1194
}

1195
static void execlists_submit_request(struct i915_request *request)
1196
{
1197
	struct intel_engine_cs *engine = request->engine;
1198
	unsigned long flags;
1199

1200
	/* Will be called from irq-context when using foreign fences. */
1201
	spin_lock_irqsave(&engine->timeline.lock, flags);
1202

1203
	queue_request(engine, &request->sched, rq_prio(request));
1204
	submit_queue(engine, rq_prio(request));
1205

1206
	GEM_BUG_ON(!engine->execlists.first);
1207
	GEM_BUG_ON(list_empty(&request->sched.link));
1208

1209
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1210 1211
}

1212
static struct i915_request *sched_to_request(struct i915_sched_node *node)
1213
{
1214
	return container_of(node, struct i915_request, sched);
1215 1216
}

1217
static struct intel_engine_cs *
1218
sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
1219
{
1220
	struct intel_engine_cs *engine = sched_to_request(node)->engine;
1221 1222

	GEM_BUG_ON(!locked);
1223 1224

	if (engine != locked) {
1225 1226
		spin_unlock(&locked->timeline.lock);
		spin_lock(&engine->timeline.lock);
1227 1228 1229 1230 1231
	}

	return engine;
}

1232 1233
static void execlists_schedule(struct i915_request *request,
			       const struct i915_sched_attr *attr)
1234
{
1235 1236
	struct i915_priolist *uninitialized_var(pl);
	struct intel_engine_cs *engine, *last;
1237 1238
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
1239
	const int prio = attr->priority;
1240 1241
	LIST_HEAD(dfs);

1242 1243
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

1244
	if (i915_request_completed(request))
1245 1246
		return;

1247
	if (prio <= READ_ONCE(request->sched.attr.priority))
1248 1249
		return;

1250 1251
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
1252

1253
	stack.signaler = &request->sched;
1254 1255
	list_add(&stack.dfs_link, &dfs);

1256 1257
	/*
	 * Recursively bump all dependent priorities to match the new request.
1258 1259
	 *
	 * A naive approach would be to use recursion:
1260 1261
	 * static void update_priorities(struct i915_sched_node *node, prio) {
	 *	list_for_each_entry(dep, &node->signalers_list, signal_link)
1262
	 *		update_priorities(dep->signal, prio)
1263
	 *	queue_request(node);
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
1274
	list_for_each_entry(dep, &dfs, dfs_link) {
1275
		struct i915_sched_node *node = dep->signaler;
1276

1277 1278
		/*
		 * Within an engine, there can be no cycle, but we may
1279 1280 1281 1282
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
1283
		list_for_each_entry(p, &node->signalers_list, signal_link) {
1284 1285
			GEM_BUG_ON(p == dep); /* no cycles! */

1286
			if (i915_sched_node_signaled(p->signaler))
1287 1288
				continue;

1289 1290
			GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
			if (prio > READ_ONCE(p->signaler->attr.priority))
1291
				list_move_tail(&p->dfs_link, &dfs);
1292
		}
1293 1294
	}

1295 1296
	/*
	 * If we didn't need to bump any existing priorities, and we haven't
1297 1298 1299 1300
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1301
	if (request->sched.attr.priority == I915_PRIORITY_INVALID) {
1302
		GEM_BUG_ON(!list_empty(&request->sched.link));
1303
		request->sched.attr = *attr;
1304 1305 1306 1307 1308
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1309
	last = NULL;
1310
	engine = request->engine;
1311
	spin_lock_irq(&engine->timeline.lock);
1312

1313 1314
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1315
		struct i915_sched_node *node = dep->signaler;
1316 1317 1318

		INIT_LIST_HEAD(&dep->dfs_link);

1319
		engine = sched_lock_engine(node, engine);
1320

1321
		if (prio <= node->attr.priority)
1322 1323
			continue;

1324
		node->attr.priority = prio;
1325
		if (!list_empty(&node->link)) {
1326 1327 1328 1329 1330 1331
			if (last != engine) {
				pl = lookup_priolist(engine, prio);
				last = engine;
			}
			GEM_BUG_ON(pl->priority != prio);
			list_move_tail(&node->link, &pl->requests);
1332
		}
1333 1334

		if (prio > engine->execlists.queue_priority &&
1335
		    i915_sw_fence_done(&sched_to_request(node)->submit))
1336
			__submit_queue(engine, prio);
1337 1338
	}

1339
	spin_unlock_irq(&engine->timeline.lock);
1340 1341
}

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;

	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
}

1365 1366 1367
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1368
{
1369
	struct intel_context *ce = to_intel_context(ctx, engine);
1370
	void *vaddr;
1371
	int ret;
1372

1373
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1374

1375 1376
	if (likely(ce->pin_count++))
		goto out;
1377
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1378

1379 1380 1381
	ret = execlists_context_deferred_alloc(ctx, engine);
	if (ret)
		goto err;
1382
	GEM_BUG_ON(!ce->state);
1383

1384
	ret = __context_pin(ctx, ce->state);
1385
	if (ret)
1386
		goto err;
1387

1388
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1389 1390
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1391
		goto unpin_vma;
1392 1393
	}

1394
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1395
	if (ret)
1396
		goto unpin_map;
1397

1398
	intel_lr_context_descriptor_update(ctx, engine);
1399

1400 1401
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1402
		i915_ggtt_offset(ce->ring->vma);
1403
	ce->lrc_reg_state[CTX_RING_HEAD+1] = ce->ring->head;
1404

1405
	ce->state->obj->pin_global++;
1406
	i915_gem_context_get(ctx);
1407 1408
out:
	return ce->ring;
1409

1410
unpin_map:
1411 1412 1413
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1414
err:
1415
	ce->pin_count = 0;
1416
	return ERR_PTR(ret);
1417 1418
}

1419 1420
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1421
{
1422
	struct intel_context *ce = to_intel_context(ctx, engine);
1423

1424
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1425
	GEM_BUG_ON(ce->pin_count == 0);
1426

1427
	if (--ce->pin_count)
1428
		return;
1429

1430
	intel_ring_unpin(ce->ring);
1431

1432
	ce->state->obj->pin_global--;
1433 1434
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1435

1436
	i915_gem_context_put(ctx);
1437 1438
}

1439
static int execlists_request_alloc(struct i915_request *request)
1440
{
1441 1442
	struct intel_context *ce =
		to_intel_context(request->ctx, request->engine);
1443
	int ret;
1444

1445 1446
	GEM_BUG_ON(!ce->pin_count);

1447 1448 1449 1450 1451 1452
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1453 1454 1455
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1484 1485
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1486
{
1487 1488 1489 1490 1491 1492 1493 1494 1495
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1496 1497 1498 1499
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1500 1501 1502 1503 1504 1505 1506

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1507 1508
}

1509 1510 1511 1512 1513 1514
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1515
 *
1516 1517
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1518
 *
1519 1520 1521 1522
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1523
 */
1524
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1525
{
1526
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1527
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1528

1529
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1530 1531
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1532

1533 1534
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1535 1536 1537 1538 1539 1540 1541
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1542

C
Chris Wilson 已提交
1543 1544
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1545
	/* Pad to end of cacheline */
1546 1547
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1548 1549 1550 1551 1552 1553 1554

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1555
	return batch;
1556 1557
}

1558
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1559
{
C
Chris Wilson 已提交
1560 1561
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

1562
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1563
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1564

1565
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1566 1567 1568 1569 1570
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1571

1572 1573
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1574
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1575 1576 1577 1578 1579 1580 1581
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1582
	}
1583

1584
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1599 1600 1601 1602 1603 1604
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1605 1606
	}

C
Chris Wilson 已提交
1607 1608
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1609
	/* Pad to end of cacheline */
1610 1611
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1612

1613
	return batch;
1614 1615
}

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1650 1651 1652
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1653
{
1654 1655 1656
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1657

1658
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1659 1660
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1661

1662
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1663 1664 1665
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1666 1667
	}

1668 1669 1670 1671 1672
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1673
	return 0;
1674 1675 1676 1677

err:
	i915_gem_object_put(obj);
	return err;
1678 1679
}

1680
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1681
{
1682
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1683 1684
}

1685 1686
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1687
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1688
{
1689
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1690 1691 1692
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1693
	struct page *page;
1694 1695
	void *batch, *batch_ptr;
	unsigned int i;
1696
	int ret;
1697

1698
	if (GEM_WARN_ON(engine->id != RCS))
1699
		return -EINVAL;
1700

1701
	switch (INTEL_GEN(engine->i915)) {
1702 1703
	case 11:
		return 0;
1704
	case 10:
1705 1706 1707
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
1708 1709
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1710
		wa_bb_fn[1] = NULL;
1711 1712 1713
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1714
		wa_bb_fn[1] = NULL;
1715 1716 1717
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1718
		return 0;
1719
	}
1720

1721
	ret = lrc_setup_wa_ctx(engine);
1722 1723 1724 1725 1726
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1727
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1728
	batch = batch_ptr = kmap_atomic(page);
1729

1730 1731 1732 1733 1734 1735 1736
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
1737 1738
		if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
					    CACHELINE_BYTES))) {
1739 1740 1741
			ret = -EINVAL;
			break;
		}
1742 1743
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1744
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1745 1746
	}

1747 1748
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1749 1750
	kunmap_atomic(batch);
	if (ret)
1751
		lrc_destroy_wa_ctx(engine);
1752 1753 1754 1755

	return ret;
}

1756
static void enable_execlists(struct intel_engine_cs *engine)
1757
{
1758
	struct drm_i915_private *dev_priv = engine->i915;
1759 1760

	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776

	/*
	 * Make sure we're not enabling the new 12-deep CSB
	 * FIFO as that requires a slightly updated handling
	 * in the ctx switch irq. Since we're currently only
	 * using only 2 elements of the enhanced execlists the
	 * deeper FIFO it's not needed and it's not worth adding
	 * more statements to the irq handler to support it.
	 */
	if (INTEL_GEN(dev_priv) >= 11)
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
	else
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));

1777 1778 1779
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1780 1781 1782

	/* Following the reset, we need to reload the CSB read/write pointers */
	engine->execlists.csb_head = -1;
1783 1784 1785 1786
}

static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
1787
	struct intel_engine_execlists * const execlists = &engine->execlists;
1788 1789 1790 1791 1792
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1793

1794
	intel_engine_reset_breadcrumbs(engine);
1795
	intel_engine_init_hangcheck(engine);
1796

1797
	enable_execlists(engine);
1798

1799
	/* After a GPU reset, we may have requests to replay */
1800
	if (execlists->first)
1801
		tasklet_schedule(&execlists->tasklet);
1802

1803
	return 0;
1804 1805
}

1806
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1807
{
1808
	struct drm_i915_private *dev_priv = engine->i915;
1809 1810
	int ret;

1811
	ret = gen8_init_common_ring(engine);
1812 1813 1814
	if (ret)
		return ret;

1815
	intel_whitelist_workarounds_apply(engine);
1816

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1827
	return 0;
1828 1829
}

1830
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1831 1832 1833
{
	int ret;

1834
	ret = gen8_init_common_ring(engine);
1835 1836 1837
	if (ret)
		return ret;

1838
	intel_whitelist_workarounds_apply(engine);
1839 1840

	return 0;
1841 1842
}

1843 1844 1845 1846
static struct i915_request *
execlists_reset_prepare(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
1847
	struct i915_request *request, *active;
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861

	GEM_TRACE("%s\n", engine->name);

	/*
	 * Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its execlists->tasklet *just* as we are
	 * calling engine->init_hw() and also writing the ELSP.
	 * Turning off the execlists->tasklet until the reset is over
	 * prevents the race.
	 */
	__tasklet_disable_sync_once(&execlists->tasklet);

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
	/*
	 * We want to flush the pending context switches, having disabled
	 * the tasklet above, we can assume exclusive access to the execlists.
	 * For this allows us to catch up with an inflight preemption event,
	 * and avoid blaming an innocent request if the stall was due to the
	 * preemption itself.
	 */
	if (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted))
		process_csb(engine);

	/*
	 * The last active request can then be no later than the last request
	 * now in ELSP[0]. So search backwards from there, so that if the GPU
	 * has advanced beyond the last CSB update, it will be pardoned.
	 */
	active = NULL;
	request = port_request(execlists->port);
	if (request) {
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline.lock, flags);
		list_for_each_entry_from_reverse(request,
						 &engine->timeline.requests,
						 link) {
			if (__i915_request_completed(request,
						     request->global_seqno))
				break;

			active = request;
		}
		spin_unlock_irqrestore(&engine->timeline.lock, flags);
	}

	return active;
1896 1897 1898 1899
}

static void execlists_reset(struct intel_engine_cs *engine,
			    struct i915_request *request)
1900
{
1901
	struct intel_engine_execlists * const execlists = &engine->execlists;
1902
	unsigned long flags;
1903
	u32 *regs;
1904

1905 1906 1907
	GEM_TRACE("%s request global=%x, current=%d\n",
		  engine->name, request ? request->global_seqno : 0,
		  intel_engine_get_seqno(engine));
1908

1909 1910
	/* See execlists_cancel_requests() for the irq/spinlock split. */
	local_irq_save(flags);
1911

1912 1913 1914 1915 1916 1917 1918 1919 1920
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1921
	execlists_cancel_port_requests(execlists);
1922
	reset_irq(engine);
1923

1924
	/* Push back any incomplete requests for replay after the reset. */
1925
	spin_lock(&engine->timeline.lock);
1926
	__unwind_incomplete_requests(engine);
1927
	spin_unlock(&engine->timeline.lock);
1928

1929
	local_irq_restore(flags);
1930

1931 1932
	/*
	 * If the request was innocent, we leave the request in the ELSP
1933 1934 1935 1936 1937 1938 1939 1940 1941
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1942
	if (!request || request->fence.error != -EIO)
1943
		return;
1944

1945 1946
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
1947 1948 1949 1950 1951 1952
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1953
	regs = to_intel_context(request->ctx, engine)->lrc_reg_state;
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
	if (engine->default_state) {
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (!IS_ERR(defaults)) {
			memcpy(regs, /* skip restoring the vanilla PPHWSP */
			       defaults + LRC_STATE_PN * PAGE_SIZE,
			       engine->context_size - PAGE_SIZE);
			i915_gem_object_unpin_map(engine->default_state);
		}
	}
	execlists_init_reg_state(regs, request->ctx, engine, request->ring);
1967

1968
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1969 1970
	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
	regs[CTX_RING_HEAD + 1] = request->postfix;
1971

1972 1973 1974
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1975
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1976
	unwind_wa_tail(request);
1977 1978
}

1979 1980 1981 1982 1983 1984 1985
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
	tasklet_enable(&engine->execlists.tasklet);

	GEM_TRACE("%s\n", engine->name);
}

1986
static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1987
{
1988 1989
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
	struct intel_engine_cs *engine = rq->engine;
1990
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1991 1992
	u32 *cs;
	int i;
1993

1994
	cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
1995 1996
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1997

1998
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1999
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
2000 2001
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

2002 2003 2004 2005
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
2006 2007
	}

2008
	*cs++ = MI_NOOP;
2009
	intel_ring_advance(rq, cs);
2010 2011 2012 2013

	return 0;
}

2014
static int gen8_emit_bb_start(struct i915_request *rq,
2015
			      u64 offset, u32 len,
2016
			      const unsigned int flags)
2017
{
2018
	u32 *cs;
2019 2020
	int ret;

2021 2022 2023 2024
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
2025 2026
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
2027 2028 2029 2030 2031
	if (rq->ctx->ppgtt &&
	    (intel_engine_flag(rq->engine) & rq->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&rq->ctx->ppgtt->base) &&
	    !intel_vgpu_active(rq->i915)) {
		ret = intel_logical_ring_emit_pdps(rq);
2032 2033
		if (ret)
			return ret;
2034

2035
		rq->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
2036 2037
	}

2038
	cs = intel_ring_begin(rq, 6);
2039 2040
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2041

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
2059 2060
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

2061
	/* FIXME(BDW): Address space and security selectors. */
2062 2063 2064
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
2065 2066
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
2067 2068 2069

	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;
2070
	intel_ring_advance(rq, cs);
2071 2072 2073 2074

	return 0;
}

2075
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2076
{
2077
	struct drm_i915_private *dev_priv = engine->i915;
2078 2079 2080
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
2081 2082
}

2083
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2084
{
2085
	struct drm_i915_private *dev_priv = engine->i915;
2086
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
2087 2088
}

2089
static int gen8_emit_flush(struct i915_request *request, u32 mode)
2090
{
2091
	u32 cmd, *cs;
2092

2093 2094 2095
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2096 2097 2098

	cmd = MI_FLUSH_DW + 1;

2099 2100 2101 2102 2103 2104 2105
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2106
	if (mode & EMIT_INVALIDATE) {
2107
		cmd |= MI_INVALIDATE_TLB;
2108
		if (request->engine->id == VCS)
2109
			cmd |= MI_INVALIDATE_BSD;
2110 2111
	}

2112 2113 2114 2115 2116
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
2117 2118 2119 2120

	return 0;
}

2121
static int gen8_emit_flush_render(struct i915_request *request,
2122
				  u32 mode)
2123
{
2124
	struct intel_engine_cs *engine = request->engine;
2125 2126
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
2127
	bool vf_flush_wa = false, dc_flush_wa = false;
2128
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
2129
	int len;
2130 2131 2132

	flags |= PIPE_CONTROL_CS_STALL;

2133
	if (mode & EMIT_FLUSH) {
2134 2135
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2136
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2137
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2138 2139
	}

2140
	if (mode & EMIT_INVALIDATE) {
2141 2142 2143 2144 2145 2146 2147 2148 2149
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

2150 2151 2152 2153
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
2154
		if (IS_GEN9(request->i915))
2155
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
2156 2157 2158 2159

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
2160
	}
2161

M
Mika Kuoppala 已提交
2162 2163 2164 2165 2166 2167 2168 2169
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

2170 2171 2172
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2173

2174 2175
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
2176

2177 2178 2179
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
2180

2181
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
2182

2183 2184
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
2185

2186
	intel_ring_advance(request, cs);
2187 2188 2189 2190

	return 0;
}

2191 2192 2193 2194 2195
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
2196
static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2197
{
C
Chris Wilson 已提交
2198 2199
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
2200 2201
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
2202
}
2203

2204
static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
2205
{
2206 2207
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2208

2209 2210
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
2211
	*cs++ = MI_USER_INTERRUPT;
2212
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2213
	request->tail = intel_ring_offset(request, cs);
2214
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2215

2216
	gen8_emit_wa_tail(request, cs);
2217
}
2218 2219
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

2220
static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2221
{
2222 2223 2224
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

2225 2226
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
2227
	*cs++ = MI_USER_INTERRUPT;
2228
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2229
	request->tail = intel_ring_offset(request, cs);
2230
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2231

2232
	gen8_emit_wa_tail(request, cs);
2233
}
2234
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2235

2236
static int gen8_init_rcs_context(struct i915_request *rq)
2237 2238 2239
{
	int ret;

2240
	ret = intel_ctx_workarounds_emit(rq);
2241 2242 2243
	if (ret)
		return ret;

2244
	ret = intel_rcs_context_init_mocs(rq);
2245 2246 2247 2248 2249 2250 2251
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2252
	return i915_gem_render_state_emit(rq);
2253 2254
}

2255 2256
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2257
 * @engine: Engine Command Streamer.
2258
 */
2259
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2260
{
2261
	struct drm_i915_private *dev_priv;
2262

2263 2264 2265 2266
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
2267 2268 2269
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
2270

2271
	dev_priv = engine->i915;
2272

2273 2274
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2275
	}
2276

2277 2278
	if (engine->cleanup)
		engine->cleanup(engine);
2279

2280
	intel_engine_cleanup_common(engine);
2281

2282
	lrc_destroy_wa_ctx(engine);
2283

2284
	engine->i915 = NULL;
2285 2286
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
2287 2288
}

2289
static void execlists_set_default_submission(struct intel_engine_cs *engine)
2290
{
2291
	engine->submit_request = execlists_submit_request;
2292
	engine->cancel_requests = execlists_cancel_requests;
2293
	engine->schedule = execlists_schedule;
2294
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2295

2296 2297
	engine->reset.prepare = execlists_reset_prepare;

2298 2299
	engine->park = NULL;
	engine->unpark = NULL;
2300 2301

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2302 2303
	if (engine->i915->preempt_context)
		engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2304 2305 2306 2307

	engine->i915->caps.scheduler =
		I915_SCHEDULER_CAP_ENABLED |
		I915_SCHEDULER_CAP_PRIORITY;
2308
	if (intel_engine_has_preemption(engine))
2309
		engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2310 2311
}

2312
static void
2313
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2314 2315
{
	/* Default vfuncs which can be overriden by each engine. */
2316
	engine->init_hw = gen8_init_common_ring;
2317 2318 2319 2320

	engine->reset.prepare = execlists_reset_prepare;
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2321 2322 2323 2324

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

2325 2326
	engine->request_alloc = execlists_request_alloc;

2327
	engine->emit_flush = gen8_emit_flush;
2328
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
2329
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2330 2331

	engine->set_default_submission = execlists_set_default_submission;
2332

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
2344
	engine->emit_bb_start = gen8_emit_bb_start;
2345 2346
}

2347
static inline void
2348
logical_ring_default_irqs(struct intel_engine_cs *engine)
2349
{
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
			[RCS]  = GEN8_RCS_IRQ_SHIFT,
			[BCS]  = GEN8_BCS_IRQ_SHIFT,
			[VCS]  = GEN8_VCS1_IRQ_SHIFT,
			[VCS2] = GEN8_VCS2_IRQ_SHIFT,
			[VECS] = GEN8_VECS_IRQ_SHIFT,
		};

		shift = irq_shifts[engine->id];
	}

2364 2365
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2366 2367
}

2368 2369 2370 2371 2372 2373
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

2374 2375
	intel_engine_setup_common(engine);

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

2391
	engine->execlists.fw_domains = fw_domains;
2392

2393 2394
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2395 2396 2397 2398 2399

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

2400
static int logical_ring_init(struct intel_engine_cs *engine)
2401 2402 2403
{
	int ret;

2404
	ret = intel_engine_init_common(engine);
2405 2406 2407
	if (ret)
		goto error;

2408 2409 2410 2411 2412 2413 2414 2415 2416
	if (HAS_LOGICAL_RING_ELSQ(engine->i915)) {
		engine->execlists.submit_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
		engine->execlists.ctrl_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
	} else {
		engine->execlists.submit_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_ELSP(engine));
	}
2417

2418
	engine->execlists.preempt_complete_status = ~0u;
2419 2420 2421 2422
	if (engine->i915->preempt_context) {
		struct intel_context *ce =
			to_intel_context(engine->i915->preempt_context, engine);

2423
		engine->execlists.preempt_complete_status =
2424 2425
			upper_32_bits(ce->lrc_desc);
	}
2426

2427 2428 2429 2430 2431 2432 2433
	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2434
int logical_render_ring_init(struct intel_engine_cs *engine)
2435 2436 2437 2438
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2439 2440
	logical_ring_setup(engine);

2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2451 2452
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2453

2454
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2469
	return logical_ring_init(engine);
2470 2471
}

2472
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2473 2474 2475 2476
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2477 2478
}

2479
static u32
2480
make_rpcs(struct drm_i915_private *dev_priv)
2481 2482 2483 2484 2485 2486 2487
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2488
	if (INTEL_GEN(dev_priv) < 9)
2489 2490 2491 2492 2493 2494 2495 2496
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2497
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2498
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2499
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2500 2501 2502 2503
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2504
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2505
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2506
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2507 2508 2509 2510
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2511 2512
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2513
			GEN8_RPCS_EU_MIN_SHIFT;
2514
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2515 2516 2517 2518 2519 2520 2521
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2522
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2523 2524 2525
{
	u32 indirect_ctx_offset;

2526
	switch (INTEL_GEN(engine->i915)) {
2527
	default:
2528
		MISSING_CASE(INTEL_GEN(engine->i915));
2529
		/* fall through */
2530 2531 2532 2533
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2534 2535 2536 2537
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2551
static void execlists_init_reg_state(u32 *regs,
2552 2553 2554
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2555
{
2556 2557
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2572 2573
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				    CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2589 2590
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2591 2592 2593
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2594
		if (wa_ctx->indirect_ctx.size) {
2595
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2596

2597
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2598 2599
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2600

2601
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2602
				intel_lr_indirect_ctx_offset(engine) << 6;
2603 2604 2605 2606 2607
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2608

2609
			regs[CTX_BB_PER_CTX_PTR + 1] =
2610
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2611
		}
2612
	}
2613 2614 2615 2616

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2617
	/* PDP values well be assigned later if needed */
2618 2619 2620 2621 2622 2623 2624 2625
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2626

2627
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2628 2629 2630 2631
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2632
		ASSIGN_CTX_PML4(ppgtt, regs);
2633 2634
	}

2635 2636 2637 2638
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2639 2640

		i915_oa_init_reg_state(engine, ctx, regs);
2641
	}
2642 2643 2644 2645 2646 2647 2648 2649 2650
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2651
	u32 *regs;
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2666
	ctx_obj->mm.dirty = true;
2667

2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
2679 2680 2681 2682
		if (IS_ERR(defaults)) {
			ret = PTR_ERR(defaults);
			goto err_unpin_ctx;
		}
2683 2684 2685 2686 2687

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2688 2689
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2690 2691 2692 2693 2694
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2695
	if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2696 2697 2698
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2699

2700
err_unpin_ctx:
2701
	i915_gem_object_unpin_map(ctx_obj);
2702
	return ret;
2703 2704
}

2705
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2706
					    struct intel_engine_cs *engine)
2707
{
2708
	struct drm_i915_gem_object *ctx_obj;
2709
	struct intel_context *ce = to_intel_context(ctx, engine);
2710
	struct i915_vma *vma;
2711
	uint32_t context_size;
2712
	struct intel_ring *ring;
2713
	struct i915_timeline *timeline;
2714 2715
	int ret;

2716 2717
	if (ce->state)
		return 0;
2718

2719
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2720

2721 2722 2723 2724 2725
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2726

2727
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2728
	if (IS_ERR(ctx_obj)) {
2729 2730
		ret = PTR_ERR(ctx_obj);
		goto error_deref_obj;
2731 2732
	}

2733
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2734 2735 2736 2737 2738
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2739 2740 2741 2742 2743 2744 2745 2746
	timeline = i915_timeline_create(ctx->i915, ctx->name);
	if (IS_ERR(timeline)) {
		ret = PTR_ERR(timeline);
		goto error_deref_obj;
	}

	ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
	i915_timeline_put(timeline);
2747 2748
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2749
		goto error_deref_obj;
2750 2751
	}

2752
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2753 2754
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2755
		goto error_ring_free;
2756 2757
	}

2758
	ce->ring = ring;
2759
	ce->state = vma;
2760 2761

	return 0;
2762

2763
error_ring_free:
2764
	intel_ring_free(ring);
2765
error_deref_obj:
2766
	i915_gem_object_put(ctx_obj);
2767
	return ret;
2768
}
2769

2770
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2771
{
2772
	struct intel_engine_cs *engine;
2773
	struct i915_gem_context *ctx;
2774
	enum intel_engine_id id;
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2786
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2787
		for_each_engine(engine, dev_priv, id) {
2788 2789
			struct intel_context *ce =
				to_intel_context(ctx, engine);
2790
			u32 *reg;
2791

2792 2793
			if (!ce->state)
				continue;
2794

2795 2796 2797 2798
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2799

2800 2801 2802
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2803

C
Chris Wilson 已提交
2804
			ce->state->obj->mm.dirty = true;
2805
			i915_gem_object_unpin_map(ce->state->obj);
2806

2807
			intel_ring_reset(ce->ring, 0);
2808
		}
2809 2810
	}
}
2811 2812 2813 2814

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_lrc.c"
#endif