intel_lrc.c 77.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "intel_lrc_reg.h"
141
#include "intel_mocs.h"
142

143 144 145 146 147 148 149 150 151 152 153 154 155
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
156

157
#define GEN8_CTX_STATUS_COMPLETED_MASK \
158
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
159

160 161
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
162
#define WA_TAIL_DWORDS 2
163
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
164

165
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
166
					    struct intel_engine_cs *engine);
167 168 169 170
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
	return rq->priotree.priority;
}

static inline bool need_preempt(const struct intel_engine_cs *engine,
				const struct i915_request *last,
				int prio)
{
	return engine->i915->preempt_context && prio > max(rq_prio(last), 0);
}

189
/**
190 191 192
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
193
 * @engine: Engine the descriptor will be used with
194
 *
195 196 197 198 199
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
200 201
 * This is what a descriptor looks like, from LSB to MSB::
 *
202
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
203 204 205 206
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
207 208 209 210 211 212 213 214 215 216 217 218
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
219
 */
220
static void
221
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
222
				   struct intel_engine_cs *engine)
223
{
224
	struct intel_context *ce = &ctx->engine[engine->id];
225
	u64 desc;
226

227 228
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
229

230
	desc = ctx->desc_template;				/* bits  0-11 */
231 232
	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));

233
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
234
								/* bits 12-31 */
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));

	if (INTEL_GEN(ctx->i915) >= 11) {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
253

254
	ce->lrc_desc = desc;
255 256
}

257 258 259 260
static struct i915_priolist *
lookup_priolist(struct intel_engine_cs *engine,
		struct i915_priotree *pt,
		int prio)
261
{
262
	struct intel_engine_execlists * const execlists = &engine->execlists;
263 264 265 266
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

267
	if (unlikely(execlists->no_priolist))
268 269 270 271 272
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
273
	parent = &execlists->queue.rb_node;
274 275
	while (*parent) {
		rb = *parent;
276
		p = to_priolist(rb);
277 278 279 280 281 282
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
283
			return p;
284 285 286 287
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
288
		p = &execlists->default_priolist;
289 290 291 292 293 294 295 296 297 298 299 300 301 302
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
303
			execlists->no_priolist = true;
304 305 306 307 308
			goto find_priolist;
		}
	}

	p->priority = prio;
309
	INIT_LIST_HEAD(&p->requests);
310
	rb_link_node(&p->node, rb, parent);
311
	rb_insert_color(&p->node, &execlists->queue);
312 313

	if (first)
314
		execlists->first = &p->node;
315

316
	return p;
317 318
}

319
static void unwind_wa_tail(struct i915_request *rq)
320 321 322 323 324
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

325
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
326
{
327
	struct i915_request *rq, *rn;
328 329
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
330 331 332 333 334 335

	lockdep_assert_held(&engine->timeline->lock);

	list_for_each_entry_safe_reverse(rq, rn,
					 &engine->timeline->requests,
					 link) {
336
		if (i915_request_completed(rq))
337 338
			return;

339
		__i915_request_unsubmit(rq);
340 341
		unwind_wa_tail(rq);

342 343 344 345
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
		if (rq_prio(rq) != last_prio) {
			last_prio = rq_prio(rq);
			p = lookup_priolist(engine, &rq->priotree, last_prio);
346 347 348
		}

		list_add(&rq->priotree.link, &p->requests);
349 350 351
	}
}

352
void
353 354 355 356 357 358 359 360 361 362
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

	spin_lock_irq(&engine->timeline->lock);
	__unwind_incomplete_requests(engine);
	spin_unlock_irq(&engine->timeline->lock);
}

363
static inline void
364
execlists_context_status_change(struct i915_request *rq, unsigned long status)
365
{
366 367 368 369 370 371
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
372

373 374
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
375 376
}

377
static inline void
378
execlists_context_schedule_in(struct i915_request *rq)
379 380
{
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
381
	intel_engine_context_in(rq->engine);
382 383 384
}

static inline void
385
execlists_context_schedule_out(struct i915_request *rq)
386
{
387
	intel_engine_context_out(rq->engine);
388 389 390
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
}

391 392 393 394 395 396 397 398 399
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

400
static u64 execlists_update_context(struct i915_request *rq)
401
{
402
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
403 404
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
405
	u32 *reg_state = ce->lrc_reg_state;
406

407
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
408

409 410 411 412 413
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
414
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
415
		execlists_update_context_pdps(ppgtt, reg_state);
416 417

	return ce->lrc_desc;
418 419
}

420
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
421
{
422 423 424 425 426 427 428
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
429 430
}

431
static void execlists_submit_ports(struct intel_engine_cs *engine)
432
{
433 434
	struct intel_engine_execlists *execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
435
	unsigned int n;
436

437 438 439 440 441 442 443
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
444
		struct i915_request *rq;
445 446 447 448 449 450 451
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
452
				execlists_context_schedule_in(rq);
453 454 455
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
456

457
			GEM_TRACE("%s in[%d]:  ctx=%d.%d, seqno=%x, prio=%d\n",
458
				  engine->name, n,
459
				  port[n].context_id, count,
460 461
				  rq->global_seqno,
				  rq_prio(rq));
462 463 464 465
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
466

467
		write_desc(execlists, desc, n);
468
	}
469 470 471 472 473 474

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
475 476
}

477
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
478
{
479
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
480
		i915_gem_context_force_single_submission(ctx));
481
}
482

483 484 485 486 487
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
488

489 490
	if (ctx_single_port_submission(prev))
		return false;
491

492
	return true;
493 494
}

495
static void port_assign(struct execlist_port *port, struct i915_request *rq)
496 497 498 499
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
500
		i915_request_put(port_request(port));
501

502
	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
503 504
}

C
Chris Wilson 已提交
505 506
static void inject_preempt_context(struct intel_engine_cs *engine)
{
507
	struct intel_engine_execlists *execlists = &engine->execlists;
C
Chris Wilson 已提交
508 509 510 511
	struct intel_context *ce =
		&engine->i915->preempt_context->engine[engine->id];
	unsigned int n;

512
	GEM_BUG_ON(execlists->preempt_complete_status !=
513
		   upper_32_bits(ce->lrc_desc));
514 515 516 517 518 519
	GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
		    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
		   _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				      CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));

520 521 522 523
	/*
	 * Switch to our empty preempt context so
	 * the state of the GPU is known (idle).
	 */
524
	GEM_TRACE("%s\n", engine->name);
525 526 527 528 529 530 531 532
	for (n = execlists_num_ports(execlists); --n; )
		write_desc(execlists, 0, n);

	write_desc(execlists, ce->lrc_desc, n);

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
C
Chris Wilson 已提交
533

534
	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
535
	execlists_set_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
536 537
}

538
static void execlists_dequeue(struct intel_engine_cs *engine)
539
{
540 541
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
542 543
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
544
	struct i915_request *last = port_request(port);
545
	struct rb_node *rb;
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
	bool submit = false;

	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
567
	 */
568

569
	spin_lock_irq(&engine->timeline->lock);
570 571
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
C
Chris Wilson 已提交
572 573 574 575 576 577 578 579

	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
580 581
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
582
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
583 584 585
		if (port_count(&port[0]) > 1)
			goto unlock;

586 587 588 589 590 591 592 593 594 595
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
			goto unlock;

596
		if (need_preempt(engine, last, execlists->queue_priority)) {
C
Chris Wilson 已提交
597 598 599
			inject_preempt_context(engine);
			goto unlock;
		}
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633

		/*
		 * In theory, we could coalesce more requests onto
		 * the second port (the first port is active, with
		 * no preemptions pending). However, that means we
		 * then have to deal with the possible lite-restore
		 * of the second port (as we submit the ELSP, there
		 * may be a context-switch) but also we may complete
		 * the resubmission before the context-switch. Ergo,
		 * coalescing onto the second port will cause a
		 * preemption event, but we cannot predict whether
		 * that will affect port[0] or port[1].
		 *
		 * If the second port is already active, we can wait
		 * until the next context-switch before contemplating
		 * new requests. The GPU will be busy and we should be
		 * able to resubmit the new ELSP before it idles,
		 * avoiding pipeline bubbles (momentary pauses where
		 * the driver is unable to keep up the supply of new
		 * work). However, we have to double check that the
		 * priorities of the ports haven't been switch.
		 */
		if (port_count(&port[1]))
			goto unlock;

		/*
		 * WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent
		 * ring:HEAD == rq:TAIL as we resubmit the
		 * request. See gen8_emit_breadcrumb() for
		 * where we prepare the padding after the
		 * end of the request.
		 */
		last->tail = last->wa_tail;
C
Chris Wilson 已提交
634 635
	}

636 637
	while (rb) {
		struct i915_priolist *p = to_priolist(rb);
638
		struct i915_request *rq, *rn;
639 640 641 642 643 644 645 646 647 648 649 650

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
651
			 */
652 653 654 655 656 657
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
658
				if (port == last_port) {
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
683 684

				GEM_BUG_ON(port_isset(port));
685
			}
686

687
			INIT_LIST_HEAD(&rq->priotree.link);
688 689
			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
690 691
			last = rq;
			submit = true;
692
		}
693

694
		rb = rb_next(rb);
695
		rb_erase(&p->node, &execlists->queue);
696 697
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
698
			kmem_cache_free(engine->i915->priorities, p);
699
	}
700
done:
701
	execlists->queue_priority = rb ? to_priolist(rb)->priority : INT_MIN;
702
	execlists->first = rb;
703
	if (submit)
704
		port_assign(port, last);
705 706 707 708

	/* We must always keep the beast fed if we have work piled up */
	GEM_BUG_ON(execlists->first && !port_isset(execlists->port));

C
Chris Wilson 已提交
709
unlock:
710
	spin_unlock_irq(&engine->timeline->lock);
711

712 713
	if (submit) {
		execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
714
		execlists_submit_ports(engine);
715
	}
716 717 718

	GEM_BUG_ON(port_isset(execlists->port) &&
		   !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
719 720
}

721
void
722
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
723
{
724
	struct execlist_port *port = execlists->port;
725
	unsigned int num_ports = execlists_num_ports(execlists);
726

727
	while (num_ports-- && port_isset(port)) {
728
		struct i915_request *rq = port_request(port);
729

730
		GEM_BUG_ON(!execlists->active);
731
		intel_engine_context_out(rq->engine);
732 733 734 735 736 737

		execlists_context_status_change(rq,
						i915_request_completed(rq) ?
						INTEL_CONTEXT_SCHEDULE_OUT :
						INTEL_CONTEXT_SCHEDULE_PREEMPTED);

738
		i915_request_put(rq);
739

740 741 742
		memset(port, 0, sizeof(*port));
		port++;
	}
743 744

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
745 746
}

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
static void clear_gtiir(struct intel_engine_cs *engine)
{
	static const u8 gtiir[] = {
		[RCS]  = 0,
		[BCS]  = 0,
		[VCS]  = 1,
		[VCS2] = 1,
		[VECS] = 3,
	};
	struct drm_i915_private *dev_priv = engine->i915;
	int i;

	/* TODO: correctly reset irqs for gen11 */
	if (WARN_ON_ONCE(INTEL_GEN(engine->i915) >= 11))
		return;

	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are
	 * double buffered, and so if we only reset it once there may
	 * still be an interrupt pending.
	 */
	for (i = 0; i < 2; i++) {
		I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
			   engine->irq_keep_mask);
		POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
	}
	GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
		   engine->irq_keep_mask);
}

static void reset_irq(struct intel_engine_cs *engine)
{
	/* Mark all CS interrupts as complete */
	smp_store_mb(engine->execlists.active, 0);
	synchronize_hardirq(engine->i915->drm.irq);

	clear_gtiir(engine);

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
}

798 799
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
800
	struct intel_engine_execlists * const execlists = &engine->execlists;
801
	struct i915_request *rq, *rn;
802 803 804
	struct rb_node *rb;
	unsigned long flags;

805 806
	GEM_TRACE("%s\n", engine->name);

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
	local_irq_save(flags);
822 823

	/* Cancel the requests on the HW and clear the ELSP tracker. */
824
	execlists_cancel_port_requests(execlists);
825
	reset_irq(engine);
826

827 828
	spin_lock(&engine->timeline->lock);

829 830 831
	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline->requests, link) {
		GEM_BUG_ON(!rq->global_seqno);
832
		if (!i915_request_completed(rq))
833 834 835 836
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
837
	rb = execlists->first;
838
	while (rb) {
839
		struct i915_priolist *p = to_priolist(rb);
840 841 842 843 844

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			INIT_LIST_HEAD(&rq->priotree.link);

			dma_fence_set_error(&rq->fence, -EIO);
845
			__i915_request_submit(rq);
846 847 848
		}

		rb = rb_next(rb);
849
		rb_erase(&p->node, &execlists->queue);
850 851 852 853 854 855 856
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

857
	execlists->queue_priority = INT_MIN;
858 859
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
860
	GEM_BUG_ON(port_isset(execlists->port));
861

862 863 864
	spin_unlock(&engine->timeline->lock);

	local_irq_restore(flags);
865 866
}

867
/*
868 869 870
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
871
static void execlists_submission_tasklet(unsigned long data)
872
{
873 874
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	struct intel_engine_execlists * const execlists = &engine->execlists;
C
Chris Wilson 已提交
875
	struct execlist_port * const port = execlists->port;
876
	struct drm_i915_private *dev_priv = engine->i915;
877
	bool fw = false;
878

879 880
	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
881 882 883 884 885 886 887 888
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

889 890
	/*
	 * Prefer doing test_and_clear_bit() as a two stage operation to avoid
891 892 893 894
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
895 896 897
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
898
		unsigned int head, tail;
899

900
		if (unlikely(execlists->csb_use_mmio)) {
901 902
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
903
			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
904 905
		}

906 907 908 909
		/* Clear before reading to catch new interrupts */
		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
		smp_mb__after_atomic();

910
		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
911 912 913 914 915 916
			if (!fw) {
				intel_uncore_forcewake_get(dev_priv,
							   execlists->fw_domains);
				fw = true;
			}

917 918 919
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
920
			execlists->csb_head = head;
921 922 923 924 925
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

926
			head = execlists->csb_head;
927 928
			tail = READ_ONCE(buf[write_idx]);
		}
929
		GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
930
			  engine->name,
931 932
			  head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
			  tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
933

934
		while (head != tail) {
935
			struct i915_request *rq;
936
			unsigned int status;
937
			unsigned int count;
938 939 940

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
941

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

959
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
960
			GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
961
				  engine->name, head,
962 963
				  status, buf[2*head + 1],
				  execlists->active);
964 965 966 967 968 969 970 971 972

			if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
				      GEN8_CTX_STATUS_PREEMPTED))
				execlists_set_active(execlists,
						     EXECLISTS_ACTIVE_HWACK);
			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_HWACK);

973 974 975
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

976 977 978
			/* We should never get a COMPLETED | IDLE_ACTIVE! */
			GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

979
			if (status & GEN8_CTX_STATUS_COMPLETE &&
980
			    buf[2*head + 1] == execlists->preempt_complete_status) {
981 982
				GEM_TRACE("%s preempt-idle\n", engine->name);

983 984
				execlists_cancel_port_requests(execlists);
				execlists_unwind_incomplete_requests(execlists);
C
Chris Wilson 已提交
985

986 987 988 989
				GEM_BUG_ON(!execlists_is_active(execlists,
								EXECLISTS_ACTIVE_PREEMPT));
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
990 991 992 993
				continue;
			}

			if (status & GEN8_CTX_STATUS_PREEMPTED &&
994 995
			    execlists_is_active(execlists,
						EXECLISTS_ACTIVE_PREEMPT))
C
Chris Wilson 已提交
996 997
				continue;

998 999 1000
			GEM_BUG_ON(!execlists_is_active(execlists,
							EXECLISTS_ACTIVE_USER));

1001
			rq = port_unpack(port, &count);
1002
			GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x, prio=%d\n",
1003
				  engine->name,
1004
				  port->context_id, count,
1005 1006
				  rq ? rq->global_seqno : 0,
				  rq ? rq_prio(rq) : 0);
1007 1008 1009 1010

			/* Check the context/desc id for this event matches */
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);

1011 1012
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
1013
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1014 1015
				GEM_BUG_ON(port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1016
				GEM_BUG_ON(!i915_request_completed(rq));
1017
				execlists_context_schedule_out(rq);
1018 1019
				trace_i915_request_out(rq);
				i915_request_put(rq);
1020

1021 1022 1023
				GEM_TRACE("%s completed ctx=%d\n",
					  engine->name, port->context_id);

1024
				execlists_port_complete(execlists, port);
1025 1026
			} else {
				port_set(port, port_pack(rq, count));
1027
			}
1028

1029 1030
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
1031
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1032 1033 1034
			if (port_count(port) == 0)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_USER);
1035
		}
1036

1037 1038
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
1039 1040 1041
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
1042 1043
	}

1044
	if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
1045
		execlists_dequeue(engine);
1046

1047 1048
	if (fw)
		intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
1049 1050 1051 1052 1053

	/* If the engine is now idle, so should be the flag; and vice versa. */
	GEM_BUG_ON(execlists_is_active(&engine->execlists,
				       EXECLISTS_ACTIVE_USER) ==
		   !port_isset(engine->execlists.port));
1054 1055
}

1056 1057 1058
static void queue_request(struct intel_engine_cs *engine,
			  struct i915_priotree *pt,
			  int prio)
1059
{
1060 1061
	list_add_tail(&pt->link, &lookup_priolist(engine, pt, prio)->requests);
}
1062

1063 1064 1065 1066 1067 1068
static void __submit_queue(struct intel_engine_cs *engine, int prio)
{
	engine->execlists.queue_priority = prio;
	tasklet_hi_schedule(&engine->execlists.tasklet);
}

1069 1070
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
1071 1072
	if (prio > engine->execlists.queue_priority)
		__submit_queue(engine, prio);
1073 1074
}

1075
static void execlists_submit_request(struct i915_request *request)
1076
{
1077
	struct intel_engine_cs *engine = request->engine;
1078
	unsigned long flags;
1079

1080 1081
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
1082

1083 1084
	queue_request(engine, &request->priotree, rq_prio(request));
	submit_queue(engine, rq_prio(request));
1085

1086
	GEM_BUG_ON(!engine->execlists.first);
1087 1088
	GEM_BUG_ON(list_empty(&request->priotree.link));

1089
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
1090 1091
}

1092
static struct i915_request *pt_to_request(struct i915_priotree *pt)
1093
{
1094
	return container_of(pt, struct i915_request, priotree);
1095 1096
}

1097 1098 1099
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
1100
	struct intel_engine_cs *engine = pt_to_request(pt)->engine;
1101 1102

	GEM_BUG_ON(!locked);
1103 1104

	if (engine != locked) {
1105 1106
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
1107 1108 1109 1110 1111
	}

	return engine;
}

1112
static void execlists_schedule(struct i915_request *request, int prio)
1113
{
1114
	struct intel_engine_cs *engine;
1115 1116 1117 1118
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

1119 1120
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

1121
	if (i915_request_completed(request))
1122 1123
		return;

1124 1125 1126
	if (prio <= READ_ONCE(request->priotree.priority))
		return;

1127 1128
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
1129 1130 1131 1132

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

1133 1134
	/*
	 * Recursively bump all dependent priorities to match the new request.
1135 1136 1137 1138 1139
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
1140
	 *	queue_request(pt);
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
1151
	list_for_each_entry(dep, &dfs, dfs_link) {
1152 1153
		struct i915_priotree *pt = dep->signaler;

1154 1155
		/*
		 * Within an engine, there can be no cycle, but we may
1156 1157 1158 1159 1160
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
1161 1162
			GEM_BUG_ON(p == dep); /* no cycles! */

1163
			if (i915_priotree_signaled(p->signaler))
1164 1165
				continue;

1166
			GEM_BUG_ON(p->signaler->priority < pt->priority);
1167 1168
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
1169
		}
1170 1171
	}

1172 1173
	/*
	 * If we didn't need to bump any existing priorities, and we haven't
1174 1175 1176 1177
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1178
	if (request->priotree.priority == I915_PRIORITY_INVALID) {
1179 1180 1181 1182 1183 1184 1185
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1186 1187 1188
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
1201 1202
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
1203
			queue_request(engine, pt, prio);
1204
		}
1205 1206 1207 1208

		if (prio > engine->execlists.queue_priority &&
		    i915_sw_fence_done(&pt_to_request(pt)->submit))
			__submit_queue(engine, prio);
1209 1210
	}

1211
	spin_unlock_irq(&engine->timeline->lock);
1212 1213
}

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;

	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
}

1237 1238 1239
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1240
{
1241
	struct intel_context *ce = &ctx->engine[engine->id];
1242
	void *vaddr;
1243
	int ret;
1244

1245
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1246

1247 1248
	if (likely(ce->pin_count++))
		goto out;
1249
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1250

1251 1252 1253
	ret = execlists_context_deferred_alloc(ctx, engine);
	if (ret)
		goto err;
1254
	GEM_BUG_ON(!ce->state);
1255

1256
	ret = __context_pin(ctx, ce->state);
1257
	if (ret)
1258
		goto err;
1259

1260
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1261 1262
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1263
		goto unpin_vma;
1264 1265
	}

1266
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1267
	if (ret)
1268
		goto unpin_map;
1269

1270
	intel_lr_context_descriptor_update(ctx, engine);
1271

1272 1273
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1274
		i915_ggtt_offset(ce->ring->vma);
1275
	ce->lrc_reg_state[CTX_RING_HEAD+1] = ce->ring->head;
1276

1277
	ce->state->obj->pin_global++;
1278
	i915_gem_context_get(ctx);
1279 1280
out:
	return ce->ring;
1281

1282
unpin_map:
1283 1284 1285
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1286
err:
1287
	ce->pin_count = 0;
1288
	return ERR_PTR(ret);
1289 1290
}

1291 1292
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1293
{
1294
	struct intel_context *ce = &ctx->engine[engine->id];
1295

1296
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1297
	GEM_BUG_ON(ce->pin_count == 0);
1298

1299
	if (--ce->pin_count)
1300
		return;
1301

1302
	intel_ring_unpin(ce->ring);
1303

1304
	ce->state->obj->pin_global--;
1305 1306
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1307

1308
	i915_gem_context_put(ctx);
1309 1310
}

1311
static int execlists_request_alloc(struct i915_request *request)
1312 1313 1314
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
1315
	int ret;
1316

1317 1318
	GEM_BUG_ON(!ce->pin_count);

1319 1320 1321 1322 1323 1324
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1325 1326 1327
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1356 1357
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1358
{
1359 1360 1361 1362 1363 1364 1365 1366 1367
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1368 1369 1370 1371
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1372 1373 1374 1375 1376 1377 1378

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1379 1380
}

1381 1382 1383 1384 1385 1386
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1387
 *
1388 1389
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1390
 *
1391 1392 1393 1394
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1395
 */
1396
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1397
{
1398
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1399
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1400

1401
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1402 1403
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1404

1405 1406
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1407 1408 1409 1410 1411 1412 1413
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1414

C
Chris Wilson 已提交
1415 1416
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1417
	/* Pad to end of cacheline */
1418 1419
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1420 1421 1422 1423 1424 1425 1426

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1427
	return batch;
1428 1429
}

1430
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1431
{
C
Chris Wilson 已提交
1432 1433
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

1434
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1435
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1436

1437
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1438 1439 1440 1441 1442
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1443

1444 1445
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1446
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1447 1448 1449 1450 1451 1452 1453
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1454
	}
1455

1456
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1471 1472 1473 1474 1475 1476
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1477 1478
	}

C
Chris Wilson 已提交
1479 1480
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1481
	/* Pad to end of cacheline */
1482 1483
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1484

1485
	return batch;
1486 1487
}

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1522 1523 1524
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1525
{
1526 1527 1528
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1529

1530
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1531 1532
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1533

1534
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1535 1536 1537
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1538 1539
	}

1540 1541 1542 1543 1544
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1545
	return 0;
1546 1547 1548 1549

err:
	i915_gem_object_put(obj);
	return err;
1550 1551
}

1552
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1553
{
1554
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1555 1556
}

1557 1558
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1559
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1560
{
1561
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1562 1563 1564
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1565
	struct page *page;
1566 1567
	void *batch, *batch_ptr;
	unsigned int i;
1568
	int ret;
1569

1570
	if (GEM_WARN_ON(engine->id != RCS))
1571
		return -EINVAL;
1572

1573
	switch (INTEL_GEN(engine->i915)) {
1574
	case 10:
1575 1576 1577
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
1578 1579
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1580
		wa_bb_fn[1] = NULL;
1581 1582 1583
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1584
		wa_bb_fn[1] = NULL;
1585 1586 1587
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1588
		return 0;
1589
	}
1590

1591
	ret = lrc_setup_wa_ctx(engine);
1592 1593 1594 1595 1596
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1597
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1598
	batch = batch_ptr = kmap_atomic(page);
1599

1600 1601 1602 1603 1604 1605 1606
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
1607 1608
		if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
					    CACHELINE_BYTES))) {
1609 1610 1611
			ret = -EINVAL;
			break;
		}
1612 1613
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1614
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1615 1616
	}

1617 1618
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1619 1620
	kunmap_atomic(batch);
	if (ret)
1621
		lrc_destroy_wa_ctx(engine);
1622 1623 1624 1625

	return ret;
}

1626
static void enable_execlists(struct intel_engine_cs *engine)
1627
{
1628
	struct drm_i915_private *dev_priv = engine->i915;
1629 1630

	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646

	/*
	 * Make sure we're not enabling the new 12-deep CSB
	 * FIFO as that requires a slightly updated handling
	 * in the ctx switch irq. Since we're currently only
	 * using only 2 elements of the enhanced execlists the
	 * deeper FIFO it's not needed and it's not worth adding
	 * more statements to the irq handler to support it.
	 */
	if (INTEL_GEN(dev_priv) >= 11)
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
	else
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));

1647 1648 1649
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1650 1651 1652

	/* Following the reset, we need to reload the CSB read/write pointers */
	engine->execlists.csb_head = -1;
1653 1654 1655 1656
}

static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
1657
	struct intel_engine_execlists * const execlists = &engine->execlists;
1658 1659 1660 1661 1662
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1663

1664
	intel_engine_reset_breadcrumbs(engine);
1665
	intel_engine_init_hangcheck(engine);
1666

1667
	enable_execlists(engine);
1668

1669
	/* After a GPU reset, we may have requests to replay */
1670
	if (execlists->first)
1671
		tasklet_schedule(&execlists->tasklet);
1672

1673
	return 0;
1674 1675
}

1676
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1677
{
1678
	struct drm_i915_private *dev_priv = engine->i915;
1679 1680
	int ret;

1681
	ret = gen8_init_common_ring(engine);
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1695
	return init_workarounds_ring(engine);
1696 1697
}

1698
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1699 1700 1701
{
	int ret;

1702
	ret = gen8_init_common_ring(engine);
1703 1704 1705
	if (ret)
		return ret;

1706
	return init_workarounds_ring(engine);
1707 1708
}

1709
static void reset_common_ring(struct intel_engine_cs *engine,
1710
			      struct i915_request *request)
1711
{
1712
	struct intel_engine_execlists * const execlists = &engine->execlists;
1713
	struct intel_context *ce;
1714
	unsigned long flags;
1715

1716 1717
	GEM_TRACE("%s seqno=%x\n",
		  engine->name, request ? request->global_seqno : 0);
1718

1719 1720
	/* See execlists_cancel_requests() for the irq/spinlock split. */
	local_irq_save(flags);
1721

1722 1723 1724 1725 1726 1727 1728 1729 1730
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1731
	execlists_cancel_port_requests(execlists);
1732
	reset_irq(engine);
1733

1734
	/* Push back any incomplete requests for replay after the reset. */
1735
	spin_lock(&engine->timeline->lock);
1736
	__unwind_incomplete_requests(engine);
1737
	spin_unlock(&engine->timeline->lock);
1738

1739
	local_irq_restore(flags);
1740

1741 1742
	/*
	 * If the request was innocent, we leave the request in the ELSP
1743 1744 1745 1746 1747 1748 1749 1750 1751
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1752
	if (!request || request->fence.error != -EIO)
1753
		return;
1754

1755 1756
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
1757 1758 1759 1760 1761 1762
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1763
	ce = &request->ctx->engine[engine->id];
1764 1765 1766
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1767
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1768 1769
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1770
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1771

1772 1773 1774
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1775
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1776
	unwind_wa_tail(request);
1777 1778
}

1779
static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1780
{
1781 1782
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
	struct intel_engine_cs *engine = rq->engine;
1783
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1784 1785
	u32 *cs;
	int i;
1786

1787
	cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
1788 1789
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1790

1791
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1792
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1793 1794
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1795 1796 1797 1798
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1799 1800
	}

1801
	*cs++ = MI_NOOP;
1802
	intel_ring_advance(rq, cs);
1803 1804 1805 1806

	return 0;
}

1807
static int gen8_emit_bb_start(struct i915_request *rq,
1808
			      u64 offset, u32 len,
1809
			      const unsigned int flags)
1810
{
1811
	u32 *cs;
1812 1813
	int ret;

1814 1815 1816 1817
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1818 1819
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1820 1821 1822 1823 1824
	if (rq->ctx->ppgtt &&
	    (intel_engine_flag(rq->engine) & rq->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&rq->ctx->ppgtt->base) &&
	    !intel_vgpu_active(rq->i915)) {
		ret = intel_logical_ring_emit_pdps(rq);
1825 1826
		if (ret)
			return ret;
1827

1828
		rq->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
1829 1830
	}

1831
	cs = intel_ring_begin(rq, 4);
1832 1833
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1834

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
1852 1853
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1854
	/* FIXME(BDW): Address space and security selectors. */
1855 1856 1857
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1858 1859
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
1860
	intel_ring_advance(rq, cs);
1861 1862 1863 1864

	return 0;
}

1865
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1866
{
1867
	struct drm_i915_private *dev_priv = engine->i915;
1868 1869 1870
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1871 1872
}

1873
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1874
{
1875
	struct drm_i915_private *dev_priv = engine->i915;
1876
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1877 1878
}

1879
static int gen8_emit_flush(struct i915_request *request, u32 mode)
1880
{
1881
	u32 cmd, *cs;
1882

1883 1884 1885
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1886 1887 1888

	cmd = MI_FLUSH_DW + 1;

1889 1890 1891 1892 1893 1894 1895
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1896
	if (mode & EMIT_INVALIDATE) {
1897
		cmd |= MI_INVALIDATE_TLB;
1898
		if (request->engine->id == VCS)
1899
			cmd |= MI_INVALIDATE_BSD;
1900 1901
	}

1902 1903 1904 1905 1906
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1907 1908 1909 1910

	return 0;
}

1911
static int gen8_emit_flush_render(struct i915_request *request,
1912
				  u32 mode)
1913
{
1914
	struct intel_engine_cs *engine = request->engine;
1915 1916
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1917
	bool vf_flush_wa = false, dc_flush_wa = false;
1918
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1919
	int len;
1920 1921 1922

	flags |= PIPE_CONTROL_CS_STALL;

1923
	if (mode & EMIT_FLUSH) {
1924 1925
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1926
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1927
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1928 1929
	}

1930
	if (mode & EMIT_INVALIDATE) {
1931 1932 1933 1934 1935 1936 1937 1938 1939
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1940 1941 1942 1943
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1944
		if (IS_GEN9(request->i915))
1945
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1946 1947 1948 1949

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1950
	}
1951

M
Mika Kuoppala 已提交
1952 1953 1954 1955 1956 1957 1958 1959
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1960 1961 1962
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1963

1964 1965
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1966

1967 1968 1969
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1970

1971
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1972

1973 1974
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1975

1976
	intel_ring_advance(request, cs);
1977 1978 1979 1980

	return 0;
}

1981 1982 1983 1984 1985
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1986
static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
1987
{
C
Chris Wilson 已提交
1988 1989
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
1990 1991
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1992
}
1993

1994
static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
1995
{
1996 1997
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1998

1999 2000
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
2001 2002 2003
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
2004
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2005

2006
	gen8_emit_wa_tail(request, cs);
2007
}
2008 2009
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

2010
static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2011
{
2012 2013 2014
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

2015 2016
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
2017 2018 2019
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
2020
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2021

2022
	gen8_emit_wa_tail(request, cs);
2023
}
2024
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2025

2026
static int gen8_init_rcs_context(struct i915_request *rq)
2027 2028 2029
{
	int ret;

2030
	ret = intel_ring_workarounds_emit(rq);
2031 2032 2033
	if (ret)
		return ret;

2034
	ret = intel_rcs_context_init_mocs(rq);
2035 2036 2037 2038 2039 2040 2041
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2042
	return i915_gem_render_state_emit(rq);
2043 2044
}

2045 2046
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2047
 * @engine: Engine Command Streamer.
2048
 */
2049
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2050
{
2051
	struct drm_i915_private *dev_priv;
2052

2053 2054 2055 2056
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
2057 2058 2059
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
2060

2061
	dev_priv = engine->i915;
2062

2063 2064
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2065
	}
2066

2067 2068
	if (engine->cleanup)
		engine->cleanup(engine);
2069

2070
	intel_engine_cleanup_common(engine);
2071

2072
	lrc_destroy_wa_ctx(engine);
2073

2074
	engine->i915 = NULL;
2075 2076
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
2077 2078
}

2079
static void execlists_set_default_submission(struct intel_engine_cs *engine)
2080
{
2081
	engine->submit_request = execlists_submit_request;
2082
	engine->cancel_requests = execlists_cancel_requests;
2083
	engine->schedule = execlists_schedule;
2084
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2085 2086 2087

	engine->park = NULL;
	engine->unpark = NULL;
2088 2089

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2090 2091 2092 2093

	engine->i915->caps.scheduler =
		I915_SCHEDULER_CAP_ENABLED |
		I915_SCHEDULER_CAP_PRIORITY;
2094
	if (engine->i915->preempt_context)
2095
		engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2096 2097
}

2098
static void
2099
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2100 2101
{
	/* Default vfuncs which can be overriden by each engine. */
2102
	engine->init_hw = gen8_init_common_ring;
2103
	engine->reset_hw = reset_common_ring;
2104 2105 2106 2107

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

2108 2109
	engine->request_alloc = execlists_request_alloc;

2110
	engine->emit_flush = gen8_emit_flush;
2111
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
2112
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2113 2114

	engine->set_default_submission = execlists_set_default_submission;
2115

2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
2127
	engine->emit_bb_start = gen8_emit_bb_start;
2128 2129
}

2130
static inline void
2131
logical_ring_default_irqs(struct intel_engine_cs *engine)
2132
{
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
			[RCS]  = GEN8_RCS_IRQ_SHIFT,
			[BCS]  = GEN8_BCS_IRQ_SHIFT,
			[VCS]  = GEN8_VCS1_IRQ_SHIFT,
			[VCS2] = GEN8_VCS2_IRQ_SHIFT,
			[VECS] = GEN8_VECS_IRQ_SHIFT,
		};

		shift = irq_shifts[engine->id];
	}

2147 2148
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2149 2150
}

2151 2152 2153 2154 2155 2156
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

2157 2158
	intel_engine_setup_common(engine);

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

2174
	engine->execlists.fw_domains = fw_domains;
2175

2176 2177
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2178 2179 2180 2181 2182

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

2183
static int logical_ring_init(struct intel_engine_cs *engine)
2184 2185 2186
{
	int ret;

2187
	ret = intel_engine_init_common(engine);
2188 2189 2190
	if (ret)
		goto error;

2191 2192 2193 2194 2195 2196 2197 2198 2199
	if (HAS_LOGICAL_RING_ELSQ(engine->i915)) {
		engine->execlists.submit_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
		engine->execlists.ctrl_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
	} else {
		engine->execlists.submit_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_ELSP(engine));
	}
2200

2201 2202 2203 2204 2205
	engine->execlists.preempt_complete_status = ~0u;
	if (engine->i915->preempt_context)
		engine->execlists.preempt_complete_status =
			upper_32_bits(engine->i915->preempt_context->engine[engine->id].lrc_desc);

2206 2207 2208 2209 2210 2211 2212
	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2213
int logical_render_ring_init(struct intel_engine_cs *engine)
2214 2215 2216 2217
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2218 2219
	logical_ring_setup(engine);

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2230 2231
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2232

2233
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2248
	return logical_ring_init(engine);
2249 2250
}

2251
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2252 2253 2254 2255
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2256 2257
}

2258
static u32
2259
make_rpcs(struct drm_i915_private *dev_priv)
2260 2261 2262 2263 2264 2265 2266
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2267
	if (INTEL_GEN(dev_priv) < 9)
2268 2269 2270 2271 2272 2273 2274 2275
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2276
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2277
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2278
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2279 2280 2281 2282
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2283
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2284
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2285
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2286 2287 2288 2289
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2290 2291
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2292
			GEN8_RPCS_EU_MIN_SHIFT;
2293
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2294 2295 2296 2297 2298 2299 2300
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2301
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2302 2303 2304
{
	u32 indirect_ctx_offset;

2305
	switch (INTEL_GEN(engine->i915)) {
2306
	default:
2307
		MISSING_CASE(INTEL_GEN(engine->i915));
2308
		/* fall through */
2309 2310 2311 2312
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2313 2314 2315 2316
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2330
static void execlists_init_reg_state(u32 *regs,
2331 2332 2333
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2334
{
2335 2336
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2351 2352
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				    CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2368 2369
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2370 2371 2372
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2373
		if (wa_ctx->indirect_ctx.size) {
2374
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2375

2376
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2377 2378
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2379

2380
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2381
				intel_lr_indirect_ctx_offset(engine) << 6;
2382 2383 2384 2385 2386
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2387

2388
			regs[CTX_BB_PER_CTX_PTR + 1] =
2389
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2390
		}
2391
	}
2392 2393 2394 2395

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2396
	/* PDP values well be assigned later if needed */
2397 2398 2399 2400 2401 2402 2403 2404
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2405

2406
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2407 2408 2409 2410
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2411
		ASSIGN_CTX_PML4(ppgtt, regs);
2412 2413
	}

2414 2415 2416 2417
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2418 2419

		i915_oa_init_reg_state(engine, ctx, regs);
2420
	}
2421 2422 2423 2424 2425 2426 2427 2428 2429
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2430
	u32 *regs;
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2445
	ctx_obj->mm.dirty = true;
2446

2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (IS_ERR(defaults))
			return PTR_ERR(defaults);

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2465 2466
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2467 2468 2469 2470 2471
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2472
	if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2473 2474 2475
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2476

2477
	i915_gem_object_unpin_map(ctx_obj);
2478 2479 2480 2481

	return 0;
}

2482
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2483
					    struct intel_engine_cs *engine)
2484
{
2485
	struct drm_i915_gem_object *ctx_obj;
2486
	struct intel_context *ce = &ctx->engine[engine->id];
2487
	struct i915_vma *vma;
2488
	uint32_t context_size;
2489
	struct intel_ring *ring;
2490 2491
	int ret;

2492 2493
	if (ce->state)
		return 0;
2494

2495
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2496

2497 2498 2499 2500 2501
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2502

2503
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2504
	if (IS_ERR(ctx_obj)) {
2505
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2506
		return PTR_ERR(ctx_obj);
2507 2508
	}

2509
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2510 2511 2512 2513 2514
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2515
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2516 2517
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2518
		goto error_deref_obj;
2519 2520
	}

2521
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2522 2523
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2524
		goto error_ring_free;
2525 2526
	}

2527
	ce->ring = ring;
2528
	ce->state = vma;
2529 2530

	return 0;
2531

2532
error_ring_free:
2533
	intel_ring_free(ring);
2534
error_deref_obj:
2535
	i915_gem_object_put(ctx_obj);
2536
	return ret;
2537
}
2538

2539
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2540
{
2541
	struct intel_engine_cs *engine;
2542
	struct i915_gem_context *ctx;
2543
	enum intel_engine_id id;
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2555
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2556
		for_each_engine(engine, dev_priv, id) {
2557 2558
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2559

2560 2561
			if (!ce->state)
				continue;
2562

2563 2564 2565 2566
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2567

2568 2569 2570
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2571

C
Chris Wilson 已提交
2572
			ce->state->obj->mm.dirty = true;
2573
			i915_gem_object_unpin_map(ce->state->obj);
2574

2575
			intel_ring_reset(ce->ring, 0);
2576
		}
2577 2578
	}
}