intel_lrc.c 85.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "i915_vgpu.h"
141
#include "intel_lrc_reg.h"
142
#include "intel_mocs.h"
143
#include "intel_workarounds.h"
144

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159
#define GEN8_CTX_STATUS_COMPLETED_MASK \
160
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
161

162 163
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
164
#define WA_TAIL_DWORDS 2
165
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
166

167
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
168 169
					    struct intel_engine_cs *engine,
					    struct intel_context *ce);
170 171 172 173
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
174

175 176 177 178 179 180 181
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
182
	return rq->sched.attr.priority;
183 184 185 186 187 188
}

static inline bool need_preempt(const struct intel_engine_cs *engine,
				const struct i915_request *last,
				int prio)
{
189
	return (intel_engine_has_preemption(engine) &&
190 191
		__execlists_need_preempt(prio, rq_prio(last)) &&
		!i915_request_completed(last));
192 193
}

194
/*
195 196 197 198 199
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
200 201
 * This is what a descriptor looks like, from LSB to MSB::
 *
202
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
203
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
204
 *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
205 206
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
207 208 209 210 211 212 213 214 215 216 217 218
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
219
 */
220
static void
221
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
222 223
				   struct intel_engine_cs *engine,
				   struct intel_context *ce)
224
{
225
	u64 desc;
226

227 228
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
229

230
	desc = ctx->desc_template;				/* bits  0-11 */
231 232
	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));

233
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
234
								/* bits 12-31 */
235 236
	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));

237 238 239 240 241
	/*
	 * The following 32bits are copied into the OA reports (dword 2).
	 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
	 * anything below.
	 */
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	if (INTEL_GEN(ctx->i915) >= 11) {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
258

259
	ce->lrc_desc = desc;
260 261
}

262
static struct i915_priolist *
263
lookup_priolist(struct intel_engine_cs *engine, int prio)
264
{
265
	struct intel_engine_execlists * const execlists = &engine->execlists;
266 267 268 269
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

270
	if (unlikely(execlists->no_priolist))
271 272 273 274 275
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
276
	parent = &execlists->queue.rb_root.rb_node;
277 278
	while (*parent) {
		rb = *parent;
279
		p = to_priolist(rb);
280 281 282 283 284 285
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
286
			return p;
287 288 289 290
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
291
		p = &execlists->default_priolist;
292 293 294 295 296 297 298 299 300 301 302 303 304 305
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
306
			execlists->no_priolist = true;
307 308 309 310 311
			goto find_priolist;
		}
	}

	p->priority = prio;
312
	INIT_LIST_HEAD(&p->requests);
313
	rb_link_node(&p->node, rb, parent);
314
	rb_insert_color_cached(&p->node, &execlists->queue, first);
315

316
	return p;
317 318
}

319
static void unwind_wa_tail(struct i915_request *rq)
320 321 322 323 324
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

325
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
326
{
327
	struct i915_request *rq, *rn;
328 329
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
330

331
	lockdep_assert_held(&engine->timeline.lock);
332 333

	list_for_each_entry_safe_reverse(rq, rn,
334
					 &engine->timeline.requests,
335
					 link) {
336
		if (i915_request_completed(rq))
337 338
			return;

339
		__i915_request_unsubmit(rq);
340 341
		unwind_wa_tail(rq);

342 343 344
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
		if (rq_prio(rq) != last_prio) {
			last_prio = rq_prio(rq);
345
			p = lookup_priolist(engine, last_prio);
346 347
		}

348
		GEM_BUG_ON(p->priority != rq_prio(rq));
349
		list_add(&rq->sched.link, &p->requests);
350 351 352
	}
}

353
void
354 355 356 357
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);
358 359 360
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline.lock, flags);
361 362

	__unwind_incomplete_requests(engine);
363 364

	spin_unlock_irqrestore(&engine->timeline.lock, flags);
365 366
}

367
static inline void
368
execlists_context_status_change(struct i915_request *rq, unsigned long status)
369
{
370 371 372 373 374 375
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
376

377 378
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
379 380
}

381 382 383 384 385 386 387 388 389 390 391 392 393
inline void
execlists_user_begin(struct intel_engine_execlists *execlists,
		     const struct execlist_port *port)
{
	execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
}

inline void
execlists_user_end(struct intel_engine_execlists *execlists)
{
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
}

394
static inline void
395
execlists_context_schedule_in(struct i915_request *rq)
396 397
{
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
398
	intel_engine_context_in(rq->engine);
399 400 401
}

static inline void
402
execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
403
{
404
	intel_engine_context_out(rq->engine);
405 406
	execlists_context_status_change(rq, status);
	trace_i915_request_out(rq);
407 408
}

409 410 411 412 413 414 415 416 417
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

418
static u64 execlists_update_context(struct i915_request *rq)
419
{
420
	struct intel_context *ce = rq->hw_context;
421
	struct i915_hw_ppgtt *ppgtt =
C
Chris Wilson 已提交
422
		rq->gem_context->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
423
	u32 *reg_state = ce->lrc_reg_state;
424

425
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
426

427 428 429 430 431
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
432
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->vm))
433
		execlists_update_context_pdps(ppgtt, reg_state);
434 435

	return ce->lrc_desc;
436 437
}

438
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
439
{
440 441 442 443 444 445 446
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
447 448
}

449
static void execlists_submit_ports(struct intel_engine_cs *engine)
450
{
451 452
	struct intel_engine_execlists *execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
453
	unsigned int n;
454

455 456 457 458 459 460 461 462 463 464
	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!engine->i915->gt.awake);

465 466 467 468 469 470 471
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
472
		struct i915_request *rq;
473 474 475 476 477 478 479
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
480
				execlists_context_schedule_in(rq);
481 482 483
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
484

485
			GEM_TRACE("%s in[%d]:  ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
486
				  engine->name, n,
487
				  port[n].context_id, count,
488
				  rq->global_seqno,
489
				  rq->fence.context, rq->fence.seqno,
490
				  intel_engine_get_seqno(engine),
491
				  rq_prio(rq));
492 493 494 495
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
496

497
		write_desc(execlists, desc, n);
498
	}
499 500 501 502 503 504

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
505 506
}

507
static bool ctx_single_port_submission(const struct intel_context *ce)
508
{
509
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
510
		i915_gem_context_force_single_submission(ce->gem_context));
511
}
512

513 514
static bool can_merge_ctx(const struct intel_context *prev,
			  const struct intel_context *next)
515 516 517
{
	if (prev != next)
		return false;
518

519 520
	if (ctx_single_port_submission(prev))
		return false;
521

522
	return true;
523 524
}

525
static void port_assign(struct execlist_port *port, struct i915_request *rq)
526 527 528 529
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
530
		i915_request_put(port_request(port));
531

532
	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
533 534
}

C
Chris Wilson 已提交
535 536
static void inject_preempt_context(struct intel_engine_cs *engine)
{
537
	struct intel_engine_execlists *execlists = &engine->execlists;
C
Chris Wilson 已提交
538
	struct intel_context *ce =
539
		to_intel_context(engine->i915->preempt_context, engine);
C
Chris Wilson 已提交
540 541
	unsigned int n;

542
	GEM_BUG_ON(execlists->preempt_complete_status !=
543
		   upper_32_bits(ce->lrc_desc));
544 545 546 547 548 549
	GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
		    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
		   _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				      CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));

550 551 552 553
	/*
	 * Switch to our empty preempt context so
	 * the state of the GPU is known (idle).
	 */
554
	GEM_TRACE("%s\n", engine->name);
555 556 557 558 559 560 561 562
	for (n = execlists_num_ports(execlists); --n; )
		write_desc(execlists, 0, n);

	write_desc(execlists, ce->lrc_desc, n);

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
C
Chris Wilson 已提交
563

564 565 566 567 568 569 570 571
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
	execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
}

static void complete_preempt_context(struct intel_engine_execlists *execlists)
{
	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));

572 573 574
	if (inject_preempt_hang(execlists))
		return;

575
	execlists_cancel_port_requests(execlists);
576 577 578
	__unwind_incomplete_requests(container_of(execlists,
						  struct intel_engine_cs,
						  execlists));
C
Chris Wilson 已提交
579 580
}

581
static void execlists_dequeue(struct intel_engine_cs *engine)
582
{
583 584
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
585 586
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
587
	struct i915_request *last = port_request(port);
588
	struct rb_node *rb;
589 590
	bool submit = false;

591 592
	/*
	 * Hardware submission is through 2 ports. Conceptually each port
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
611
	 */
612

C
Chris Wilson 已提交
613 614 615 616 617 618 619
	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
620 621
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
622
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
623

624 625 626 627 628 629 630 631
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
632
			return;
633

634
		if (need_preempt(engine, last, execlists->queue_priority)) {
C
Chris Wilson 已提交
635
			inject_preempt_context(engine);
636
			return;
C
Chris Wilson 已提交
637
		}
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660

		/*
		 * In theory, we could coalesce more requests onto
		 * the second port (the first port is active, with
		 * no preemptions pending). However, that means we
		 * then have to deal with the possible lite-restore
		 * of the second port (as we submit the ELSP, there
		 * may be a context-switch) but also we may complete
		 * the resubmission before the context-switch. Ergo,
		 * coalescing onto the second port will cause a
		 * preemption event, but we cannot predict whether
		 * that will affect port[0] or port[1].
		 *
		 * If the second port is already active, we can wait
		 * until the next context-switch before contemplating
		 * new requests. The GPU will be busy and we should be
		 * able to resubmit the new ELSP before it idles,
		 * avoiding pipeline bubbles (momentary pauses where
		 * the driver is unable to keep up the supply of new
		 * work). However, we have to double check that the
		 * priorities of the ports haven't been switch.
		 */
		if (port_count(&port[1]))
661
			return;
662 663 664 665 666 667 668 669 670 671

		/*
		 * WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent
		 * ring:HEAD == rq:TAIL as we resubmit the
		 * request. See gen8_emit_breadcrumb() for
		 * where we prepare the padding after the
		 * end of the request.
		 */
		last->tail = last->wa_tail;
C
Chris Wilson 已提交
672 673
	}

674
	while ((rb = rb_first_cached(&execlists->queue))) {
675
		struct i915_priolist *p = to_priolist(rb);
676
		struct i915_request *rq, *rn;
677

678
		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
679 680 681 682 683 684 685 686 687 688
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
689
			 */
690 691
			if (last &&
			    !can_merge_ctx(rq->hw_context, last->hw_context)) {
692 693 694 695 696
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
697
				if (port == last_port) {
698
					__list_del_many(&p->requests,
699
							&rq->sched.link);
700 701 702 703 704 705 706 707 708 709
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
710 711
				if (ctx_single_port_submission(last->hw_context) ||
				    ctx_single_port_submission(rq->hw_context)) {
712
					__list_del_many(&p->requests,
713
							&rq->sched.link);
714 715 716
					goto done;
				}

717
				GEM_BUG_ON(last->hw_context == rq->hw_context);
718 719 720 721

				if (submit)
					port_assign(port, last);
				port++;
722 723

				GEM_BUG_ON(port_isset(port));
724
			}
725

726
			INIT_LIST_HEAD(&rq->sched.link);
727 728
			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
729 730
			last = rq;
			submit = true;
731
		}
732

733
		rb_erase_cached(&p->node, &execlists->queue);
734 735
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
736
			kmem_cache_free(engine->i915->priorities, p);
737
	}
738

739
done:
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
	/*
	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
	 *
	 * We choose queue_priority such that if we add a request of greater
	 * priority than this, we kick the submission tasklet to decide on
	 * the right order of submitting the requests to hardware. We must
	 * also be prepared to reorder requests as they are in-flight on the
	 * HW. We derive the queue_priority then as the first "hole" in
	 * the HW submission ports and if there are no available slots,
	 * the priority of the lowest executing request, i.e. last.
	 *
	 * When we do receive a higher priority request ready to run from the
	 * user, see queue_request(), the queue_priority is bumped to that
	 * request triggering preemption on the next dequeue (or subsequent
	 * interrupt for secondary ports).
	 */
	execlists->queue_priority =
		port != execlists->port ? rq_prio(last) : INT_MIN;

759
	if (submit) {
760
		port_assign(port, last);
761 762
		execlists_submit_ports(engine);
	}
763 764

	/* We must always keep the beast fed if we have work piled up */
765 766
	GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
		   !port_isset(execlists->port));
767

768 769
	/* Re-evaluate the executing context setup after each preemptive kick */
	if (last)
770
		execlists_user_begin(execlists, execlists->port);
771

772 773 774 775
	/* If the engine is now idle, so should be the flag; and vice versa. */
	GEM_BUG_ON(execlists_is_active(&engine->execlists,
				       EXECLISTS_ACTIVE_USER) ==
		   !port_isset(engine->execlists.port));
776 777
}

778
void
779
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
780
{
781
	struct execlist_port *port = execlists->port;
782
	unsigned int num_ports = execlists_num_ports(execlists);
783

784
	while (num_ports-- && port_isset(port)) {
785
		struct i915_request *rq = port_request(port);
786

787 788 789 790 791 792 793
		GEM_TRACE("%s:port%u global=%d (fence %llx:%d), (current %d)\n",
			  rq->engine->name,
			  (unsigned int)(port - execlists->port),
			  rq->global_seqno,
			  rq->fence.context, rq->fence.seqno,
			  intel_engine_get_seqno(rq->engine));

794
		GEM_BUG_ON(!execlists->active);
795 796 797 798
		execlists_context_schedule_out(rq,
					       i915_request_completed(rq) ?
					       INTEL_CONTEXT_SCHEDULE_OUT :
					       INTEL_CONTEXT_SCHEDULE_PREEMPTED);
799

800
		i915_request_put(rq);
801

802 803 804
		memset(port, 0, sizeof(*port));
		port++;
	}
805

806
	execlists_clear_all_active(execlists);
807 808
}

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
static void reset_csb_pointers(struct intel_engine_execlists *execlists)
{
	/*
	 * After a reset, the HW starts writing into CSB entry [0]. We
	 * therefore have to set our HEAD pointer back one entry so that
	 * the *first* entry we check is entry 0. To complicate this further,
	 * as we don't wait for the first interrupt after reset, we have to
	 * fake the HW write to point back to the last entry so that our
	 * inline comparison of our cached head position against the last HW
	 * write works even before the first interrupt.
	 */
	execlists->csb_head = execlists->csb_write_reset;
	WRITE_ONCE(*execlists->csb_write, execlists->csb_write_reset);
}

824 825 826 827 828
static void nop_submission_tasklet(unsigned long data)
{
	/* The driver is wedged; don't process any more events. */
}

829 830
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
831
	struct intel_engine_execlists * const execlists = &engine->execlists;
832
	struct i915_request *rq, *rn;
833 834 835
	struct rb_node *rb;
	unsigned long flags;

836 837
	GEM_TRACE("%s current %d\n",
		  engine->name, intel_engine_get_seqno(engine));
838

839 840 841 842 843 844 845 846 847 848 849 850 851 852
	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
853
	spin_lock_irqsave(&engine->timeline.lock, flags);
854 855

	/* Cancel the requests on the HW and clear the ELSP tracker. */
856
	execlists_cancel_port_requests(execlists);
857
	execlists_user_end(execlists);
858 859

	/* Mark all executing requests as skipped. */
860
	list_for_each_entry(rq, &engine->timeline.requests, link) {
861
		GEM_BUG_ON(!rq->global_seqno);
862
		if (!i915_request_completed(rq))
863 864 865 866
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
867
	while ((rb = rb_first_cached(&execlists->queue))) {
868
		struct i915_priolist *p = to_priolist(rb);
869

870 871
		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
			INIT_LIST_HEAD(&rq->sched.link);
872 873

			dma_fence_set_error(&rq->fence, -EIO);
874
			__i915_request_submit(rq);
875 876
		}

877
		rb_erase_cached(&p->node, &execlists->queue);
878 879 880 881 882 883 884
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

885
	execlists->queue_priority = INT_MIN;
886
	execlists->queue = RB_ROOT_CACHED;
887
	GEM_BUG_ON(port_isset(execlists->port));
888

889 890 891
	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
	execlists->tasklet.func = nop_submission_tasklet;

892
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
893 894
}

895 896 897 898 899 900
static inline bool
reset_in_progress(const struct intel_engine_execlists *execlists)
{
	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
}

901
static void process_csb(struct intel_engine_cs *engine)
902
{
903
	struct intel_engine_execlists * const execlists = &engine->execlists;
904
	struct execlist_port *port = execlists->port;
905 906
	const u32 * const buf = execlists->csb_status;
	u8 head, tail;
907

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
	/*
	 * Note that csb_write, csb_status may be either in HWSP or mmio.
	 * When reading from the csb_write mmio register, we have to be
	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
	 * the low 4bits. As it happens we know the next 4bits are always
	 * zero and so we can simply masked off the low u8 of the register
	 * and treat it identically to reading from the HWSP (without having
	 * to use explicit shifting and masking, and probably bifurcating
	 * the code to handle the legacy mmio read).
	 */
	head = execlists->csb_head;
	tail = READ_ONCE(*execlists->csb_write);
	GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
	if (unlikely(head == tail))
		return;
923

924 925 926 927 928 929 930 931 932
	/*
	 * Hopefully paired with a wmb() in HW!
	 *
	 * We must complete the read of the write pointer before any reads
	 * from the CSB, so that we do not see stale values. Without an rmb
	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
	 * we perform the READ_ONCE(*csb_write).
	 */
	rmb();
933

934
	do {
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
		struct i915_request *rq;
		unsigned int status;
		unsigned int count;

		if (++head == GEN8_CSB_ENTRIES)
			head = 0;

		/*
		 * We are flying near dragons again.
		 *
		 * We hold a reference to the request in execlist_port[]
		 * but no more than that. We are operating in softirq
		 * context and so cannot hold any mutex or sleep. That
		 * prevents us stopping the requests we are processing
		 * in port[] from being retired simultaneously (the
		 * breadcrumb will be complete before we see the
		 * context-switch). As we only hold the reference to the
		 * request, any pointer chasing underneath the request
		 * is subject to a potential use-after-free. Thus we
		 * store all of the bookkeeping within port[] as
		 * required, and avoid using unguarded pointers beneath
		 * request itself. The same applies to the atomic
		 * status notifier.
		 */

		GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
			  engine->name, head,
962
			  buf[2 * head + 0], buf[2 * head + 1],
963 964
			  execlists->active);

965
		status = buf[2 * head];
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
		if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
			      GEN8_CTX_STATUS_PREEMPTED))
			execlists_set_active(execlists,
					     EXECLISTS_ACTIVE_HWACK);
		if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
			execlists_clear_active(execlists,
					       EXECLISTS_ACTIVE_HWACK);

		if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
			continue;

		/* We should never get a COMPLETED | IDLE_ACTIVE! */
		GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

		if (status & GEN8_CTX_STATUS_COMPLETE &&
		    buf[2*head + 1] == execlists->preempt_complete_status) {
			GEM_TRACE("%s preempt-idle\n", engine->name);
			complete_preempt_context(execlists);
			continue;
985
		}
986

987 988 989 990
		if (status & GEN8_CTX_STATUS_PREEMPTED &&
		    execlists_is_active(execlists,
					EXECLISTS_ACTIVE_PREEMPT))
			continue;
991

992 993
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
994

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
		rq = port_unpack(port, &count);
		GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
			  engine->name,
			  port->context_id, count,
			  rq ? rq->global_seqno : 0,
			  rq ? rq->fence.context : 0,
			  rq ? rq->fence.seqno : 0,
			  intel_engine_get_seqno(engine),
			  rq ? rq_prio(rq) : 0);

		/* Check the context/desc id for this event matches */
		GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);

		GEM_BUG_ON(count == 0);
		if (--count == 0) {
1010
			/*
1011 1012 1013 1014 1015 1016
			 * On the final event corresponding to the
			 * submission of this context, we expect either
			 * an element-switch event or a completion
			 * event (and on completion, the active-idle
			 * marker). No more preemptions, lite-restore
			 * or otherwise.
1017
			 */
1018 1019 1020 1021 1022
			GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
			GEM_BUG_ON(port_isset(&port[1]) &&
				   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
			GEM_BUG_ON(!port_isset(&port[1]) &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1023

1024 1025 1026 1027 1028 1029 1030
			/*
			 * We rely on the hardware being strongly
			 * ordered, that the breadcrumb write is
			 * coherent (visible from the CPU) before the
			 * user interrupt and CSB is processed.
			 */
			GEM_BUG_ON(!i915_request_completed(rq));
C
Chris Wilson 已提交
1031

1032 1033 1034
			execlists_context_schedule_out(rq,
						       INTEL_CONTEXT_SCHEDULE_OUT);
			i915_request_put(rq);
1035

1036 1037
			GEM_TRACE("%s completed ctx=%d\n",
				  engine->name, port->context_id);
1038

1039 1040 1041 1042 1043 1044 1045
			port = execlists_port_complete(execlists, port);
			if (port_isset(port))
				execlists_user_begin(execlists, port);
			else
				execlists_user_end(execlists);
		} else {
			port_set(port, port_pack(rq, count));
1046
		}
1047
	} while (head != tail);
1048

1049
	execlists->csb_head = head;
1050
}
1051

1052
static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1053
{
1054
	lockdep_assert_held(&engine->timeline.lock);
1055

C
Chris Wilson 已提交
1056
	process_csb(engine);
1057 1058
	if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
		execlists_dequeue(engine);
1059 1060
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
/*
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
static void execlists_submission_tasklet(unsigned long data)
{
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	unsigned long flags;

	GEM_TRACE("%s awake?=%d, active=%x\n",
		  engine->name,
		  engine->i915->gt.awake,
		  engine->execlists.active);

	spin_lock_irqsave(&engine->timeline.lock, flags);
1076
	__execlists_submission_tasklet(engine);
1077 1078 1079
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
}

1080
static void queue_request(struct intel_engine_cs *engine,
1081
			  struct i915_sched_node *node,
1082
			  int prio)
1083
{
1084
	list_add_tail(&node->link,
1085
		      &lookup_priolist(engine, prio)->requests);
1086
}
1087

1088
static void __update_queue(struct intel_engine_cs *engine, int prio)
1089 1090
{
	engine->execlists.queue_priority = prio;
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
}

static void __submit_queue_imm(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	if (reset_in_progress(execlists))
		return; /* defer until we restart the engine following reset */

	if (execlists->tasklet.func == execlists_submission_tasklet)
		__execlists_submission_tasklet(engine);
	else
		tasklet_hi_schedule(&execlists->tasklet);
1104 1105
}

1106 1107
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
1108 1109 1110 1111
	if (prio > engine->execlists.queue_priority) {
		__update_queue(engine, prio);
		__submit_queue_imm(engine);
	}
1112 1113
}

1114
static void execlists_submit_request(struct i915_request *request)
1115
{
1116
	struct intel_engine_cs *engine = request->engine;
1117
	unsigned long flags;
1118

1119
	/* Will be called from irq-context when using foreign fences. */
1120
	spin_lock_irqsave(&engine->timeline.lock, flags);
1121

1122
	queue_request(engine, &request->sched, rq_prio(request));
1123

1124
	GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1125
	GEM_BUG_ON(list_empty(&request->sched.link));
1126

1127 1128
	submit_queue(engine, rq_prio(request));

1129
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1130 1131
}

1132
static struct i915_request *sched_to_request(struct i915_sched_node *node)
1133
{
1134
	return container_of(node, struct i915_request, sched);
1135 1136
}

1137
static struct intel_engine_cs *
1138
sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
1139
{
1140
	struct intel_engine_cs *engine = sched_to_request(node)->engine;
1141 1142

	GEM_BUG_ON(!locked);
1143 1144

	if (engine != locked) {
1145 1146
		spin_unlock(&locked->timeline.lock);
		spin_lock(&engine->timeline.lock);
1147 1148 1149 1150 1151
	}

	return engine;
}

1152 1153
static void execlists_schedule(struct i915_request *request,
			       const struct i915_sched_attr *attr)
1154
{
1155 1156
	struct i915_priolist *uninitialized_var(pl);
	struct intel_engine_cs *engine, *last;
1157 1158
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
1159
	const int prio = attr->priority;
1160 1161
	LIST_HEAD(dfs);

1162 1163
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

1164
	if (i915_request_completed(request))
1165 1166
		return;

1167
	if (prio <= READ_ONCE(request->sched.attr.priority))
1168 1169
		return;

1170 1171
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
1172

1173
	stack.signaler = &request->sched;
1174 1175
	list_add(&stack.dfs_link, &dfs);

1176 1177
	/*
	 * Recursively bump all dependent priorities to match the new request.
1178 1179
	 *
	 * A naive approach would be to use recursion:
1180 1181
	 * static void update_priorities(struct i915_sched_node *node, prio) {
	 *	list_for_each_entry(dep, &node->signalers_list, signal_link)
1182
	 *		update_priorities(dep->signal, prio)
1183
	 *	queue_request(node);
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
1194
	list_for_each_entry(dep, &dfs, dfs_link) {
1195
		struct i915_sched_node *node = dep->signaler;
1196

1197 1198
		/*
		 * Within an engine, there can be no cycle, but we may
1199 1200 1201 1202
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
1203
		list_for_each_entry(p, &node->signalers_list, signal_link) {
1204 1205
			GEM_BUG_ON(p == dep); /* no cycles! */

1206
			if (i915_sched_node_signaled(p->signaler))
1207 1208
				continue;

1209 1210
			GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
			if (prio > READ_ONCE(p->signaler->attr.priority))
1211
				list_move_tail(&p->dfs_link, &dfs);
1212
		}
1213 1214
	}

1215 1216
	/*
	 * If we didn't need to bump any existing priorities, and we haven't
1217 1218 1219 1220
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1221
	if (request->sched.attr.priority == I915_PRIORITY_INVALID) {
1222
		GEM_BUG_ON(!list_empty(&request->sched.link));
1223
		request->sched.attr = *attr;
1224 1225 1226 1227 1228
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1229
	last = NULL;
1230
	engine = request->engine;
1231
	spin_lock_irq(&engine->timeline.lock);
1232

1233 1234
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1235
		struct i915_sched_node *node = dep->signaler;
1236 1237 1238

		INIT_LIST_HEAD(&dep->dfs_link);

1239
		engine = sched_lock_engine(node, engine);
1240

1241
		if (prio <= node->attr.priority)
1242 1243
			continue;

1244
		node->attr.priority = prio;
1245
		if (!list_empty(&node->link)) {
1246 1247 1248 1249 1250 1251
			if (last != engine) {
				pl = lookup_priolist(engine, prio);
				last = engine;
			}
			GEM_BUG_ON(pl->priority != prio);
			list_move_tail(&node->link, &pl->requests);
1252
		}
1253 1254

		if (prio > engine->execlists.queue_priority &&
1255 1256 1257 1258 1259
		    i915_sw_fence_done(&sched_to_request(node)->submit)) {
			/* defer submission until after all of our updates */
			__update_queue(engine, prio);
			tasklet_hi_schedule(&engine->execlists.tasklet);
		}
1260 1261
	}

1262
	spin_unlock_irq(&engine->timeline.lock);
1263 1264
}

1265 1266 1267 1268
static void execlists_context_destroy(struct intel_context *ce)
{
	GEM_BUG_ON(ce->pin_count);

1269 1270 1271
	if (!ce->state)
		return;

1272
	intel_ring_free(ce->ring);
1273 1274 1275

	GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
	i915_gem_object_put(ce->state->obj);
1276 1277
}

1278
static void execlists_context_unpin(struct intel_context *ce)
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
{
	intel_ring_unpin(ce->ring);

	ce->state->obj->pin_global--;
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);

	i915_gem_context_put(ce->gem_context);
}

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;

	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
}

1312 1313 1314 1315
static struct intel_context *
__execlists_context_pin(struct intel_engine_cs *engine,
			struct i915_gem_context *ctx,
			struct intel_context *ce)
1316
{
1317
	void *vaddr;
1318
	int ret;
1319

1320
	ret = execlists_context_deferred_alloc(ctx, engine, ce);
1321 1322
	if (ret)
		goto err;
1323
	GEM_BUG_ON(!ce->state);
1324

1325
	ret = __context_pin(ctx, ce->state);
1326
	if (ret)
1327
		goto err;
1328

1329
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1330 1331
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1332
		goto unpin_vma;
1333 1334
	}

1335
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1336
	if (ret)
1337
		goto unpin_map;
1338

1339
	intel_lr_context_descriptor_update(ctx, engine, ce);
1340

1341 1342
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1343
		i915_ggtt_offset(ce->ring->vma);
1344
	GEM_BUG_ON(!intel_ring_offset_valid(ce->ring, ce->ring->head));
1345
	ce->lrc_reg_state[CTX_RING_HEAD+1] = ce->ring->head;
1346

1347
	ce->state->obj->pin_global++;
1348
	i915_gem_context_get(ctx);
1349
	return ce;
1350

1351
unpin_map:
1352 1353 1354
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1355
err:
1356
	ce->pin_count = 0;
1357
	return ERR_PTR(ret);
1358 1359
}

1360 1361 1362 1363 1364 1365 1366 1367
static const struct intel_context_ops execlists_context_ops = {
	.unpin = execlists_context_unpin,
	.destroy = execlists_context_destroy,
};

static struct intel_context *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1368
{
1369
	struct intel_context *ce = to_intel_context(ctx, engine);
1370

1371
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1372

1373 1374 1375
	if (likely(ce->pin_count++))
		return ce;
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1376

1377
	ce->ops = &execlists_context_ops;
1378

1379
	return __execlists_context_pin(engine, ctx, ce);
1380 1381
}

1382
static int execlists_request_alloc(struct i915_request *request)
1383
{
1384
	int ret;
1385

1386
	GEM_BUG_ON(!request->hw_context->pin_count);
1387

1388 1389 1390 1391 1392 1393
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1394 1395 1396
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1425 1426
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1427
{
1428 1429 1430 1431 1432 1433 1434 1435 1436
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1437 1438 1439 1440
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1441 1442 1443 1444 1445 1446 1447

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1448 1449
}

1450 1451 1452 1453 1454 1455
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1456
 *
1457 1458
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1459
 *
1460 1461 1462 1463
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1464
 */
1465
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1466
{
1467
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1468
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1469

1470
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1471 1472
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1473

1474 1475
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1476 1477 1478 1479 1480 1481 1482
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1483

C
Chris Wilson 已提交
1484 1485
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1486
	/* Pad to end of cacheline */
1487 1488
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1489 1490 1491 1492 1493 1494 1495

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1496
	return batch;
1497 1498
}

1499 1500 1501 1502 1503 1504
struct lri {
	i915_reg_t reg;
	u32 value;
};

static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1505
{
1506
	GEM_BUG_ON(!count || count > 63);
C
Chris Wilson 已提交
1507

1508 1509 1510 1511 1512 1513
	*batch++ = MI_LOAD_REGISTER_IMM(count);
	do {
		*batch++ = i915_mmio_reg_offset(lri->reg);
		*batch++ = lri->value;
	} while (lri++, --count);
	*batch++ = MI_NOOP;
1514

1515 1516
	return batch;
}
1517

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	static const struct lri lri[] = {
		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
		{
			COMMON_SLICE_CHICKEN2,
			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
				       0),
		},

		/* BSpec: 11391 */
		{
			FF_SLICE_CHICKEN,
			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
		},

		/* BSpec: 11299 */
		{
			_3D_CHICKEN3,
			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
		}
	};
1542

1543
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1544

1545 1546
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1547

1548
	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1549

1550 1551
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1552
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1553 1554 1555 1556 1557 1558 1559
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1560
	}
1561

1562
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1577 1578 1579 1580 1581 1582
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1583 1584
	}

C
Chris Wilson 已提交
1585 1586
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1587
	/* Pad to end of cacheline */
1588 1589
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1590

1591
	return batch;
1592 1593
}

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1628 1629 1630
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1631
{
1632 1633 1634
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1635

1636
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1637 1638
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1639

1640
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1641 1642 1643
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1644 1645
	}

1646 1647 1648 1649 1650
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1651
	return 0;
1652 1653 1654 1655

err:
	i915_gem_object_put(obj);
	return err;
1656 1657
}

1658
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1659
{
1660
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1661 1662
}

1663 1664
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1665
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1666
{
1667
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1668 1669 1670
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1671
	struct page *page;
1672 1673
	void *batch, *batch_ptr;
	unsigned int i;
1674
	int ret;
1675

1676
	if (GEM_WARN_ON(engine->id != RCS))
1677
		return -EINVAL;
1678

1679
	switch (INTEL_GEN(engine->i915)) {
1680 1681
	case 11:
		return 0;
1682
	case 10:
1683 1684 1685
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
1686 1687
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1688
		wa_bb_fn[1] = NULL;
1689 1690 1691
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1692
		wa_bb_fn[1] = NULL;
1693 1694 1695
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1696
		return 0;
1697
	}
1698

1699
	ret = lrc_setup_wa_ctx(engine);
1700 1701 1702 1703 1704
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1705
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1706
	batch = batch_ptr = kmap_atomic(page);
1707

1708 1709 1710 1711 1712 1713 1714
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
1715 1716
		if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
					    CACHELINE_BYTES))) {
1717 1718 1719
			ret = -EINVAL;
			break;
		}
1720 1721
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1722
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1723 1724
	}

1725 1726
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1727 1728
	kunmap_atomic(batch);
	if (ret)
1729
		lrc_destroy_wa_ctx(engine);
1730 1731 1732 1733

	return ret;
}

1734
static void enable_execlists(struct intel_engine_cs *engine)
1735
{
1736
	struct drm_i915_private *dev_priv = engine->i915;
1737 1738

	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754

	/*
	 * Make sure we're not enabling the new 12-deep CSB
	 * FIFO as that requires a slightly updated handling
	 * in the ctx switch irq. Since we're currently only
	 * using only 2 elements of the enhanced execlists the
	 * deeper FIFO it's not needed and it's not worth adding
	 * more statements to the irq handler to support it.
	 */
	if (INTEL_GEN(dev_priv) >= 11)
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
	else
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));

1755 1756 1757
	I915_WRITE(RING_MI_MODE(engine->mmio_base),
		   _MASKED_BIT_DISABLE(STOP_RING));

1758 1759 1760 1761 1762
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
static bool unexpected_starting_state(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	bool unexpected = false;

	if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
		DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
		unexpected = true;
	}

	return unexpected;
}

1776 1777
static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
1778 1779 1780 1781 1782
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1783

1784
	intel_engine_reset_breadcrumbs(engine);
1785

1786 1787 1788 1789 1790 1791
	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
		struct drm_printer p = drm_debug_printer(__func__);

		intel_engine_dump(engine, &p, NULL);
	}

1792
	enable_execlists(engine);
1793

1794
	return 0;
1795 1796
}

1797
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1798
{
1799
	struct drm_i915_private *dev_priv = engine->i915;
1800 1801
	int ret;

1802
	ret = gen8_init_common_ring(engine);
1803 1804 1805
	if (ret)
		return ret;

1806
	intel_whitelist_workarounds_apply(engine);
1807

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1818
	return 0;
1819 1820
}

1821
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1822 1823 1824
{
	int ret;

1825
	ret = gen8_init_common_ring(engine);
1826 1827 1828
	if (ret)
		return ret;

1829
	intel_whitelist_workarounds_apply(engine);
1830 1831

	return 0;
1832 1833
}

1834 1835 1836 1837
static struct i915_request *
execlists_reset_prepare(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
1838
	struct i915_request *request, *active;
1839
	unsigned long flags;
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853

	GEM_TRACE("%s\n", engine->name);

	/*
	 * Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its execlists->tasklet *just* as we are
	 * calling engine->init_hw() and also writing the ELSP.
	 * Turning off the execlists->tasklet until the reset is over
	 * prevents the race.
	 */
	__tasklet_disable_sync_once(&execlists->tasklet);

1854 1855
	spin_lock_irqsave(&engine->timeline.lock, flags);

1856 1857 1858 1859 1860 1861 1862
	/*
	 * We want to flush the pending context switches, having disabled
	 * the tasklet above, we can assume exclusive access to the execlists.
	 * For this allows us to catch up with an inflight preemption event,
	 * and avoid blaming an innocent request if the stall was due to the
	 * preemption itself.
	 */
C
Chris Wilson 已提交
1863
	process_csb(engine);
1864 1865 1866 1867 1868 1869 1870 1871 1872

	/*
	 * The last active request can then be no later than the last request
	 * now in ELSP[0]. So search backwards from there, so that if the GPU
	 * has advanced beyond the last CSB update, it will be pardoned.
	 */
	active = NULL;
	request = port_request(execlists->port);
	if (request) {
1873 1874 1875 1876 1877 1878
		/*
		 * Prevent the breadcrumb from advancing before we decide
		 * which request is currently active.
		 */
		intel_engine_stop_cs(engine);

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
		list_for_each_entry_from_reverse(request,
						 &engine->timeline.requests,
						 link) {
			if (__i915_request_completed(request,
						     request->global_seqno))
				break;

			active = request;
		}
	}

1890 1891
	spin_unlock_irqrestore(&engine->timeline.lock, flags);

1892
	return active;
1893 1894 1895 1896
}

static void execlists_reset(struct intel_engine_cs *engine,
			    struct i915_request *request)
1897
{
1898
	struct intel_engine_execlists * const execlists = &engine->execlists;
1899
	unsigned long flags;
1900
	u32 *regs;
1901

1902 1903 1904
	GEM_TRACE("%s request global=%x, current=%d\n",
		  engine->name, request ? request->global_seqno : 0,
		  intel_engine_get_seqno(engine));
1905

1906
	spin_lock_irqsave(&engine->timeline.lock, flags);
1907

1908 1909 1910 1911 1912 1913 1914 1915 1916
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1917
	execlists_cancel_port_requests(execlists);
1918

1919
	/* Push back any incomplete requests for replay after the reset. */
1920
	__unwind_incomplete_requests(engine);
1921

1922
	/* Following the reset, we need to reload the CSB read/write pointers */
1923
	reset_csb_pointers(&engine->execlists);
1924

1925
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1926

1927 1928
	/*
	 * If the request was innocent, we leave the request in the ELSP
1929 1930 1931 1932 1933 1934 1935 1936 1937
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1938
	if (!request || request->fence.error != -EIO)
1939
		return;
1940

1941 1942
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
1943 1944 1945 1946 1947 1948
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1949
	regs = request->hw_context->lrc_reg_state;
1950 1951 1952 1953
	if (engine->pinned_default_state) {
		memcpy(regs, /* skip restoring the vanilla PPHWSP */
		       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
		       engine->context_size - PAGE_SIZE);
1954
	}
C
Chris Wilson 已提交
1955 1956
	execlists_init_reg_state(regs,
				 request->gem_context, engine, request->ring);
1957

1958
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1959
	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
1960

1961 1962 1963
	request->ring->head = intel_ring_wrap(request->ring, request->postfix);
	regs[CTX_RING_HEAD + 1] = request->ring->head;

1964 1965
	intel_ring_update_space(request->ring);

1966
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1967
	unwind_wa_tail(request);
1968 1969
}

1970 1971
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
1972 1973 1974
	struct intel_engine_execlists * const execlists = &engine->execlists;

	/* After a GPU reset, we may have requests to replay */
1975
	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
1976 1977
		tasklet_schedule(&execlists->tasklet);

1978 1979 1980 1981 1982 1983 1984 1985 1986
	/*
	 * Flush the tasklet while we still have the forcewake to be sure
	 * that it is not allowed to sleep before we restart and reload a
	 * context.
	 *
	 * As before (with execlists_reset_prepare) we rely on the caller
	 * serialising multiple attempts to reset so that we know that we
	 * are the only one manipulating tasklet state.
	 */
1987
	__tasklet_enable_sync_once(&execlists->tasklet);
1988 1989 1990 1991

	GEM_TRACE("%s\n", engine->name);
}

1992
static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1993
{
C
Chris Wilson 已提交
1994
	struct i915_hw_ppgtt *ppgtt = rq->gem_context->ppgtt;
1995
	struct intel_engine_cs *engine = rq->engine;
1996
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1997 1998
	u32 *cs;
	int i;
1999

2000
	cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
2001 2002
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2003

2004
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
2005
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
2006 2007
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

2008 2009 2010 2011
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
2012 2013
	}

2014
	*cs++ = MI_NOOP;
2015
	intel_ring_advance(rq, cs);
2016 2017 2018 2019

	return 0;
}

2020
static int gen8_emit_bb_start(struct i915_request *rq,
2021
			      u64 offset, u32 len,
2022
			      const unsigned int flags)
2023
{
2024
	u32 *cs;
2025 2026
	int ret;

2027 2028 2029 2030
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
2031 2032
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
C
Chris Wilson 已提交
2033 2034
	if (rq->gem_context->ppgtt &&
	    (intel_engine_flag(rq->engine) & rq->gem_context->ppgtt->pd_dirty_rings) &&
2035
	    !i915_vm_is_48bit(&rq->gem_context->ppgtt->vm) &&
2036 2037
	    !intel_vgpu_active(rq->i915)) {
		ret = intel_logical_ring_emit_pdps(rq);
2038 2039
		if (ret)
			return ret;
2040

C
Chris Wilson 已提交
2041
		rq->gem_context->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
2042 2043
	}

2044
	cs = intel_ring_begin(rq, 6);
2045 2046
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2047

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
2065 2066
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

2067
	/* FIXME(BDW): Address space and security selectors. */
2068 2069 2070
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
2071 2072
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
2073 2074 2075

	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;
2076
	intel_ring_advance(rq, cs);
2077 2078 2079 2080

	return 0;
}

2081
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2082
{
2083
	struct drm_i915_private *dev_priv = engine->i915;
2084 2085 2086
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
2087 2088
}

2089
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2090
{
2091
	struct drm_i915_private *dev_priv = engine->i915;
2092
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
2093 2094
}

2095
static int gen8_emit_flush(struct i915_request *request, u32 mode)
2096
{
2097
	u32 cmd, *cs;
2098

2099 2100 2101
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2102 2103 2104

	cmd = MI_FLUSH_DW + 1;

2105 2106 2107 2108 2109 2110 2111
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2112
	if (mode & EMIT_INVALIDATE) {
2113
		cmd |= MI_INVALIDATE_TLB;
2114
		if (request->engine->id == VCS)
2115
			cmd |= MI_INVALIDATE_BSD;
2116 2117
	}

2118 2119 2120 2121 2122
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
2123 2124 2125 2126

	return 0;
}

2127
static int gen8_emit_flush_render(struct i915_request *request,
2128
				  u32 mode)
2129
{
2130
	struct intel_engine_cs *engine = request->engine;
2131 2132
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
2133
	bool vf_flush_wa = false, dc_flush_wa = false;
2134
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
2135
	int len;
2136 2137 2138

	flags |= PIPE_CONTROL_CS_STALL;

2139
	if (mode & EMIT_FLUSH) {
2140 2141
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2142
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2143
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2144 2145
	}

2146
	if (mode & EMIT_INVALIDATE) {
2147 2148 2149 2150 2151 2152 2153 2154 2155
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

2156 2157 2158 2159
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
2160
		if (IS_GEN9(request->i915))
2161
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
2162 2163 2164 2165

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
2166
	}
2167

M
Mika Kuoppala 已提交
2168 2169 2170 2171 2172 2173 2174 2175
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

2176 2177 2178
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2179

2180 2181
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
2182

2183 2184 2185
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
2186

2187
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
2188

2189 2190
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
2191

2192
	intel_ring_advance(request, cs);
2193 2194 2195 2196

	return 0;
}

2197 2198 2199 2200 2201
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
2202
static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2203
{
C
Chris Wilson 已提交
2204 2205
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
2206 2207
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
2208
}
2209

2210
static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
2211
{
2212 2213
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2214

2215 2216
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
2217
	*cs++ = MI_USER_INTERRUPT;
2218
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2219
	request->tail = intel_ring_offset(request, cs);
2220
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2221

2222
	gen8_emit_wa_tail(request, cs);
2223
}
2224 2225
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

2226
static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2227
{
2228 2229 2230
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

2231 2232
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
2233
	*cs++ = MI_USER_INTERRUPT;
2234
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2235
	request->tail = intel_ring_offset(request, cs);
2236
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2237

2238
	gen8_emit_wa_tail(request, cs);
2239
}
2240
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2241

2242
static int gen8_init_rcs_context(struct i915_request *rq)
2243 2244 2245
{
	int ret;

2246
	ret = intel_ctx_workarounds_emit(rq);
2247 2248 2249
	if (ret)
		return ret;

2250
	ret = intel_rcs_context_init_mocs(rq);
2251 2252 2253 2254 2255 2256 2257
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2258
	return i915_gem_render_state_emit(rq);
2259 2260
}

2261 2262
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2263
 * @engine: Engine Command Streamer.
2264
 */
2265
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2266
{
2267
	struct drm_i915_private *dev_priv;
2268

2269 2270 2271 2272
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
2273 2274 2275
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
2276

2277
	dev_priv = engine->i915;
2278

2279 2280
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2281
	}
2282

2283 2284
	if (engine->cleanup)
		engine->cleanup(engine);
2285

2286
	intel_engine_cleanup_common(engine);
2287

2288
	lrc_destroy_wa_ctx(engine);
2289

2290
	engine->i915 = NULL;
2291 2292
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
2293 2294
}

2295
void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2296
{
2297
	engine->submit_request = execlists_submit_request;
2298
	engine->cancel_requests = execlists_cancel_requests;
2299
	engine->schedule = execlists_schedule;
2300
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2301

2302 2303
	engine->reset.prepare = execlists_reset_prepare;

2304 2305
	engine->park = NULL;
	engine->unpark = NULL;
2306 2307

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2308 2309
	if (engine->i915->preempt_context)
		engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2310 2311 2312 2313

	engine->i915->caps.scheduler =
		I915_SCHEDULER_CAP_ENABLED |
		I915_SCHEDULER_CAP_PRIORITY;
2314
	if (intel_engine_has_preemption(engine))
2315
		engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2316 2317
}

2318
static void
2319
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2320 2321
{
	/* Default vfuncs which can be overriden by each engine. */
2322
	engine->init_hw = gen8_init_common_ring;
2323 2324 2325 2326

	engine->reset.prepare = execlists_reset_prepare;
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2327 2328

	engine->context_pin = execlists_context_pin;
2329 2330
	engine->request_alloc = execlists_request_alloc;

2331
	engine->emit_flush = gen8_emit_flush;
2332
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
2333
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2334

2335
	engine->set_default_submission = intel_execlists_set_default_submission;
2336

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
2348
	engine->emit_bb_start = gen8_emit_bb_start;
2349 2350
}

2351
static inline void
2352
logical_ring_default_irqs(struct intel_engine_cs *engine)
2353
{
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
			[RCS]  = GEN8_RCS_IRQ_SHIFT,
			[BCS]  = GEN8_BCS_IRQ_SHIFT,
			[VCS]  = GEN8_VCS1_IRQ_SHIFT,
			[VCS2] = GEN8_VCS2_IRQ_SHIFT,
			[VECS] = GEN8_VECS_IRQ_SHIFT,
		};

		shift = irq_shifts[engine->id];
	}

2368 2369
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2370 2371
}

2372 2373 2374
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
2375 2376
	intel_engine_setup_common(engine);

2377 2378 2379
	/* Intentionally left blank. */
	engine->buffer = NULL;

2380 2381
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2382 2383 2384 2385 2386

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

2387 2388 2389 2390 2391 2392
static bool csb_force_mmio(struct drm_i915_private *i915)
{
	/* Older GVT emulation depends upon intercepting CSB mmio */
	return intel_vgpu_active(i915) && !intel_vgpu_has_hwsp_emulation(i915);
}

2393
static int logical_ring_init(struct intel_engine_cs *engine)
2394
{
2395 2396
	struct drm_i915_private *i915 = engine->i915;
	struct intel_engine_execlists * const execlists = &engine->execlists;
2397 2398
	int ret;

2399
	ret = intel_engine_init_common(engine);
2400 2401 2402
	if (ret)
		goto error;

2403 2404
	if (HAS_LOGICAL_RING_ELSQ(i915)) {
		execlists->submit_reg = i915->regs +
2405
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2406
		execlists->ctrl_reg = i915->regs +
2407 2408
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
	} else {
2409
		execlists->submit_reg = i915->regs +
2410 2411
			i915_mmio_reg_offset(RING_ELSP(engine));
	}
2412

2413 2414
	execlists->preempt_complete_status = ~0u;
	if (i915->preempt_context) {
2415
		struct intel_context *ce =
2416
			to_intel_context(i915->preempt_context, engine);
2417

2418
		execlists->preempt_complete_status =
2419 2420
			upper_32_bits(ce->lrc_desc);
	}
2421

2422 2423 2424 2425 2426 2427 2428
	execlists->csb_read =
		i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
	if (csb_force_mmio(i915)) {
		execlists->csb_status = (u32 __force *)
			(i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));

		execlists->csb_write = (u32 __force *)execlists->csb_read;
2429 2430 2431
		execlists->csb_write_reset =
			_MASKED_FIELD(GEN8_CSB_WRITE_PTR_MASK,
				      GEN8_CSB_ENTRIES - 1);
2432 2433 2434 2435 2436 2437
	} else {
		execlists->csb_status =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];

		execlists->csb_write =
			&engine->status_page.page_addr[intel_hws_csb_write_index(i915)];
2438
		execlists->csb_write_reset = GEN8_CSB_ENTRIES - 1;
2439
	}
2440
	reset_csb_pointers(execlists);
2441

2442 2443 2444 2445 2446 2447 2448
	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2449
int logical_render_ring_init(struct intel_engine_cs *engine)
2450 2451 2452 2453
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2454 2455
	logical_ring_setup(engine);

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2466 2467
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2468

2469
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2484
	return logical_ring_init(engine);
2485 2486
}

2487
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2488 2489 2490 2491
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2492 2493
}

2494
static u32
2495
make_rpcs(struct drm_i915_private *dev_priv)
2496 2497 2498 2499 2500 2501 2502
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2503
	if (INTEL_GEN(dev_priv) < 9)
2504 2505 2506 2507 2508 2509 2510 2511
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2512
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2513
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2514
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2515 2516 2517 2518
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2519
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2520
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2521
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2522 2523 2524 2525
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2526 2527
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2528
			GEN8_RPCS_EU_MIN_SHIFT;
2529
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2530 2531 2532 2533 2534 2535 2536
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2537
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2538 2539 2540
{
	u32 indirect_ctx_offset;

2541
	switch (INTEL_GEN(engine->i915)) {
2542
	default:
2543
		MISSING_CASE(INTEL_GEN(engine->i915));
2544
		/* fall through */
2545 2546 2547 2548
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2549 2550 2551 2552
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2566
static void execlists_init_reg_state(u32 *regs,
2567 2568 2569
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2570
{
2571 2572
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2573
	u32 base = engine->mmio_base;
2574
	bool rcs = engine->class == RENDER_CLASS;
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2587 2588
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				    CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2604 2605
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2606 2607 2608
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2609
		if (wa_ctx->indirect_ctx.size) {
2610
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2611

2612
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2613 2614
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2615

2616
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2617
				intel_lr_indirect_ctx_offset(engine) << 6;
2618 2619 2620 2621 2622
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2623

2624
			regs[CTX_BB_PER_CTX_PTR + 1] =
2625
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2626
		}
2627
	}
2628 2629 2630 2631

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2632
	/* PDP values well be assigned later if needed */
2633 2634 2635 2636 2637 2638 2639 2640
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2641

2642
	if (ppgtt && i915_vm_is_48bit(&ppgtt->vm)) {
2643 2644 2645 2646
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2647
		ASSIGN_CTX_PML4(ppgtt, regs);
2648 2649
	}

2650 2651 2652 2653
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2654 2655

		i915_oa_init_reg_state(engine, ctx, regs);
2656
	}
2657 2658 2659 2660 2661 2662 2663 2664 2665
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2666
	u32 *regs;
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2681
	ctx_obj->mm.dirty = true;
2682

2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
2694 2695 2696 2697
		if (IS_ERR(defaults)) {
			ret = PTR_ERR(defaults);
			goto err_unpin_ctx;
		}
2698 2699 2700 2701 2702

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2703 2704
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2705 2706 2707 2708 2709
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2710
	if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2711 2712 2713
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2714

2715
err_unpin_ctx:
2716
	i915_gem_object_unpin_map(ctx_obj);
2717
	return ret;
2718 2719
}

2720
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2721 2722
					    struct intel_engine_cs *engine,
					    struct intel_context *ce)
2723
{
2724
	struct drm_i915_gem_object *ctx_obj;
2725
	struct i915_vma *vma;
2726
	uint32_t context_size;
2727
	struct intel_ring *ring;
2728
	struct i915_timeline *timeline;
2729 2730
	int ret;

2731 2732
	if (ce->state)
		return 0;
2733

2734
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2735

2736 2737 2738 2739 2740
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2741

2742
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2743 2744
	if (IS_ERR(ctx_obj))
		return PTR_ERR(ctx_obj);
2745

2746
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.vm, NULL);
2747 2748 2749 2750 2751
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2752 2753 2754 2755 2756 2757 2758 2759
	timeline = i915_timeline_create(ctx->i915, ctx->name);
	if (IS_ERR(timeline)) {
		ret = PTR_ERR(timeline);
		goto error_deref_obj;
	}

	ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
	i915_timeline_put(timeline);
2760 2761
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2762
		goto error_deref_obj;
2763 2764
	}

2765
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2766 2767
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2768
		goto error_ring_free;
2769 2770
	}

2771
	ce->ring = ring;
2772
	ce->state = vma;
2773 2774

	return 0;
2775

2776
error_ring_free:
2777
	intel_ring_free(ring);
2778
error_deref_obj:
2779
	i915_gem_object_put(ctx_obj);
2780
	return ret;
2781
}
2782

2783
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2784
{
2785
	struct intel_engine_cs *engine;
2786
	struct i915_gem_context *ctx;
2787
	enum intel_engine_id id;
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2799
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2800
		for_each_engine(engine, dev_priv, id) {
2801 2802
			struct intel_context *ce =
				to_intel_context(ctx, engine);
2803
			u32 *reg;
2804

2805 2806
			if (!ce->state)
				continue;
2807

2808 2809 2810 2811
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2812

2813 2814 2815
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2816

C
Chris Wilson 已提交
2817
			ce->state->obj->mm.dirty = true;
2818
			i915_gem_object_unpin_map(ce->state->obj);
2819

2820
			intel_ring_reset(ce->ring, 0);
2821
		}
2822 2823
	}
}
2824 2825 2826 2827

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_lrc.c"
#endif