intel_lrc.c 77.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "intel_lrc_reg.h"
141
#include "intel_mocs.h"
142

143 144 145 146 147 148 149 150 151 152 153 154 155
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
156

157
#define GEN8_CTX_STATUS_COMPLETED_MASK \
158
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
159

160 161
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
162
#define WA_TAIL_DWORDS 2
163
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
164

165
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
166
					    struct intel_engine_cs *engine);
167 168 169 170
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
	return rq->priotree.priority;
}

static inline bool need_preempt(const struct intel_engine_cs *engine,
				const struct i915_request *last,
				int prio)
{
	return engine->i915->preempt_context && prio > max(rq_prio(last), 0);
}

189
/**
190 191 192
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
193
 * @engine: Engine the descriptor will be used with
194
 *
195 196 197 198 199
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
200 201
 * This is what a descriptor looks like, from LSB to MSB::
 *
202
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
203 204 205 206
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
207 208 209 210 211 212 213 214 215 216 217 218
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
219
 */
220
static void
221
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
222
				   struct intel_engine_cs *engine)
223
{
224
	struct intel_context *ce = &ctx->engine[engine->id];
225
	u64 desc;
226

227 228
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
229

230
	desc = ctx->desc_template;				/* bits  0-11 */
231 232
	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));

233
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
234
								/* bits 12-31 */
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));

	if (INTEL_GEN(ctx->i915) >= 11) {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
253

254
	ce->lrc_desc = desc;
255 256
}

257 258 259 260
static struct i915_priolist *
lookup_priolist(struct intel_engine_cs *engine,
		struct i915_priotree *pt,
		int prio)
261
{
262
	struct intel_engine_execlists * const execlists = &engine->execlists;
263 264 265 266
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

267
	if (unlikely(execlists->no_priolist))
268 269 270 271 272
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
273
	parent = &execlists->queue.rb_node;
274 275
	while (*parent) {
		rb = *parent;
276
		p = to_priolist(rb);
277 278 279 280 281 282
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
283
			return p;
284 285 286 287
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
288
		p = &execlists->default_priolist;
289 290 291 292 293 294 295 296 297 298 299 300 301 302
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
303
			execlists->no_priolist = true;
304 305 306 307 308
			goto find_priolist;
		}
	}

	p->priority = prio;
309
	INIT_LIST_HEAD(&p->requests);
310
	rb_link_node(&p->node, rb, parent);
311
	rb_insert_color(&p->node, &execlists->queue);
312 313

	if (first)
314
		execlists->first = &p->node;
315

316
	return p;
317 318
}

319
static void unwind_wa_tail(struct i915_request *rq)
320 321 322 323 324
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

325
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
326
{
327
	struct i915_request *rq, *rn;
328 329
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
330 331 332 333 334 335

	lockdep_assert_held(&engine->timeline->lock);

	list_for_each_entry_safe_reverse(rq, rn,
					 &engine->timeline->requests,
					 link) {
336
		if (i915_request_completed(rq))
337 338
			return;

339
		__i915_request_unsubmit(rq);
340 341
		unwind_wa_tail(rq);

342 343 344 345
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
		if (rq_prio(rq) != last_prio) {
			last_prio = rq_prio(rq);
			p = lookup_priolist(engine, &rq->priotree, last_prio);
346 347 348
		}

		list_add(&rq->priotree.link, &p->requests);
349 350 351
	}
}

352
void
353 354 355 356 357 358 359 360 361 362
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

	spin_lock_irq(&engine->timeline->lock);
	__unwind_incomplete_requests(engine);
	spin_unlock_irq(&engine->timeline->lock);
}

363
static inline void
364
execlists_context_status_change(struct i915_request *rq, unsigned long status)
365
{
366 367 368 369 370 371
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
372

373 374
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
375 376
}

377
static inline void
378
execlists_context_schedule_in(struct i915_request *rq)
379 380
{
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
381
	intel_engine_context_in(rq->engine);
382 383 384
}

static inline void
385
execlists_context_schedule_out(struct i915_request *rq)
386
{
387
	intel_engine_context_out(rq->engine);
388 389 390
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
}

391 392 393 394 395 396 397 398 399
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

400
static u64 execlists_update_context(struct i915_request *rq)
401
{
402
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
403 404
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
405
	u32 *reg_state = ce->lrc_reg_state;
406

407
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
408

409 410 411 412 413
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
414
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
415
		execlists_update_context_pdps(ppgtt, reg_state);
416 417

	return ce->lrc_desc;
418 419
}

420
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
421
{
422 423 424 425 426 427 428
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
429 430
}

431
static void execlists_submit_ports(struct intel_engine_cs *engine)
432
{
433 434
	struct intel_engine_execlists *execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
435
	unsigned int n;
436

437 438 439 440 441 442 443
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
444
		struct i915_request *rq;
445 446 447 448 449 450 451
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
452
				execlists_context_schedule_in(rq);
453 454 455
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
456

457
			GEM_TRACE("%s in[%d]:  ctx=%d.%d, seqno=%x, prio=%d\n",
458
				  engine->name, n,
459
				  port[n].context_id, count,
460 461
				  rq->global_seqno,
				  rq_prio(rq));
462 463 464 465
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
466

467
		write_desc(execlists, desc, n);
468
	}
469 470 471 472 473 474

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
475 476
}

477
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
478
{
479
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
480
		i915_gem_context_force_single_submission(ctx));
481
}
482

483 484 485 486 487
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
488

489 490
	if (ctx_single_port_submission(prev))
		return false;
491

492
	return true;
493 494
}

495
static void port_assign(struct execlist_port *port, struct i915_request *rq)
496 497 498 499
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
500
		i915_request_put(port_request(port));
501

502
	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
503 504
}

C
Chris Wilson 已提交
505 506
static void inject_preempt_context(struct intel_engine_cs *engine)
{
507
	struct intel_engine_execlists *execlists = &engine->execlists;
C
Chris Wilson 已提交
508 509 510 511
	struct intel_context *ce =
		&engine->i915->preempt_context->engine[engine->id];
	unsigned int n;

512
	GEM_BUG_ON(execlists->preempt_complete_status !=
513
		   upper_32_bits(ce->lrc_desc));
514 515 516 517 518 519
	GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
		    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
		   _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				      CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));

520 521 522 523
	/*
	 * Switch to our empty preempt context so
	 * the state of the GPU is known (idle).
	 */
524
	GEM_TRACE("%s\n", engine->name);
525 526 527 528 529 530 531 532
	for (n = execlists_num_ports(execlists); --n; )
		write_desc(execlists, 0, n);

	write_desc(execlists, ce->lrc_desc, n);

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
C
Chris Wilson 已提交
533

534
	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
535
	execlists_set_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
536 537
}

538
static void execlists_dequeue(struct intel_engine_cs *engine)
539
{
540 541
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
542 543
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
544
	struct i915_request *last = port_request(port);
545
	struct rb_node *rb;
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
	bool submit = false;

	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
567
	 */
568

569
	spin_lock_irq(&engine->timeline->lock);
570 571
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
C
Chris Wilson 已提交
572 573 574 575 576 577 578 579

	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
580
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
581 582 583
		if (port_count(&port[0]) > 1)
			goto unlock;

584 585 586 587 588 589 590 591 592 593
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
			goto unlock;

594
		if (need_preempt(engine, last, execlists->queue_priority)) {
C
Chris Wilson 已提交
595 596 597
			inject_preempt_context(engine);
			goto unlock;
		}
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631

		/*
		 * In theory, we could coalesce more requests onto
		 * the second port (the first port is active, with
		 * no preemptions pending). However, that means we
		 * then have to deal with the possible lite-restore
		 * of the second port (as we submit the ELSP, there
		 * may be a context-switch) but also we may complete
		 * the resubmission before the context-switch. Ergo,
		 * coalescing onto the second port will cause a
		 * preemption event, but we cannot predict whether
		 * that will affect port[0] or port[1].
		 *
		 * If the second port is already active, we can wait
		 * until the next context-switch before contemplating
		 * new requests. The GPU will be busy and we should be
		 * able to resubmit the new ELSP before it idles,
		 * avoiding pipeline bubbles (momentary pauses where
		 * the driver is unable to keep up the supply of new
		 * work). However, we have to double check that the
		 * priorities of the ports haven't been switch.
		 */
		if (port_count(&port[1]))
			goto unlock;

		/*
		 * WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent
		 * ring:HEAD == rq:TAIL as we resubmit the
		 * request. See gen8_emit_breadcrumb() for
		 * where we prepare the padding after the
		 * end of the request.
		 */
		last->tail = last->wa_tail;
C
Chris Wilson 已提交
632 633
	}

634 635
	while (rb) {
		struct i915_priolist *p = to_priolist(rb);
636
		struct i915_request *rq, *rn;
637 638 639 640 641 642 643 644 645 646 647 648

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
649
			 */
650 651 652 653 654 655
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
656
				if (port == last_port) {
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
681 682

				GEM_BUG_ON(port_isset(port));
683
			}
684

685
			INIT_LIST_HEAD(&rq->priotree.link);
686 687
			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
688 689
			last = rq;
			submit = true;
690
		}
691

692
		rb = rb_next(rb);
693
		rb_erase(&p->node, &execlists->queue);
694 695
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
696
			kmem_cache_free(engine->i915->priorities, p);
697
	}
698
done:
699
	execlists->queue_priority = rb ? to_priolist(rb)->priority : INT_MIN;
700
	execlists->first = rb;
701
	if (submit)
702
		port_assign(port, last);
703 704 705 706

	/* We must always keep the beast fed if we have work piled up */
	GEM_BUG_ON(execlists->first && !port_isset(execlists->port));

C
Chris Wilson 已提交
707
unlock:
708
	spin_unlock_irq(&engine->timeline->lock);
709

710 711
	if (submit) {
		execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
712
		execlists_submit_ports(engine);
713
	}
714 715 716

	GEM_BUG_ON(port_isset(execlists->port) &&
		   !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
717 718
}

719
void
720
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
721
{
722
	struct execlist_port *port = execlists->port;
723
	unsigned int num_ports = execlists_num_ports(execlists);
724

725
	while (num_ports-- && port_isset(port)) {
726
		struct i915_request *rq = port_request(port);
727

728
		GEM_BUG_ON(!execlists->active);
729
		intel_engine_context_out(rq->engine);
730 731 732 733 734 735

		execlists_context_status_change(rq,
						i915_request_completed(rq) ?
						INTEL_CONTEXT_SCHEDULE_OUT :
						INTEL_CONTEXT_SCHEDULE_PREEMPTED);

736
		i915_request_put(rq);
737

738 739 740
		memset(port, 0, sizeof(*port));
		port++;
	}
741 742
}

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
static void clear_gtiir(struct intel_engine_cs *engine)
{
	static const u8 gtiir[] = {
		[RCS]  = 0,
		[BCS]  = 0,
		[VCS]  = 1,
		[VCS2] = 1,
		[VECS] = 3,
	};
	struct drm_i915_private *dev_priv = engine->i915;
	int i;

	/* TODO: correctly reset irqs for gen11 */
	if (WARN_ON_ONCE(INTEL_GEN(engine->i915) >= 11))
		return;

	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are
	 * double buffered, and so if we only reset it once there may
	 * still be an interrupt pending.
	 */
	for (i = 0; i < 2; i++) {
		I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
			   engine->irq_keep_mask);
		POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
	}
	GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
		   engine->irq_keep_mask);
}

static void reset_irq(struct intel_engine_cs *engine)
{
	/* Mark all CS interrupts as complete */
	smp_store_mb(engine->execlists.active, 0);
	synchronize_hardirq(engine->i915->drm.irq);

	clear_gtiir(engine);

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
}

794 795
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
796
	struct intel_engine_execlists * const execlists = &engine->execlists;
797
	struct i915_request *rq, *rn;
798 799 800
	struct rb_node *rb;
	unsigned long flags;

801 802
	GEM_TRACE("%s\n", engine->name);

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
	local_irq_save(flags);
818 819

	/* Cancel the requests on the HW and clear the ELSP tracker. */
820
	execlists_cancel_port_requests(execlists);
821
	reset_irq(engine);
822

823 824
	spin_lock(&engine->timeline->lock);

825 826 827
	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline->requests, link) {
		GEM_BUG_ON(!rq->global_seqno);
828
		if (!i915_request_completed(rq))
829 830 831 832
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
833
	rb = execlists->first;
834
	while (rb) {
835
		struct i915_priolist *p = to_priolist(rb);
836 837 838 839 840

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			INIT_LIST_HEAD(&rq->priotree.link);

			dma_fence_set_error(&rq->fence, -EIO);
841
			__i915_request_submit(rq);
842 843 844
		}

		rb = rb_next(rb);
845
		rb_erase(&p->node, &execlists->queue);
846 847 848 849 850 851 852
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

853
	execlists->queue_priority = INT_MIN;
854 855
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
856
	GEM_BUG_ON(port_isset(execlists->port));
857

858 859 860
	spin_unlock(&engine->timeline->lock);

	local_irq_restore(flags);
861 862
}

863
/*
864 865 866
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
867
static void execlists_submission_tasklet(unsigned long data)
868
{
869 870
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	struct intel_engine_execlists * const execlists = &engine->execlists;
C
Chris Wilson 已提交
871
	struct execlist_port * const port = execlists->port;
872
	struct drm_i915_private *dev_priv = engine->i915;
873
	bool fw = false;
874

875 876
	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
877 878 879 880 881 882 883 884
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

885 886
	/*
	 * Prefer doing test_and_clear_bit() as a two stage operation to avoid
887 888 889 890
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
891 892 893
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
894
		unsigned int head, tail;
895

896
		if (unlikely(execlists->csb_use_mmio)) {
897 898
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
899
			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
900 901
		}

902 903 904 905
		/* Clear before reading to catch new interrupts */
		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
		smp_mb__after_atomic();

906
		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
907 908 909 910 911 912
			if (!fw) {
				intel_uncore_forcewake_get(dev_priv,
							   execlists->fw_domains);
				fw = true;
			}

913 914 915
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
916
			execlists->csb_head = head;
917 918 919 920 921
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

922
			head = execlists->csb_head;
923 924
			tail = READ_ONCE(buf[write_idx]);
		}
925
		GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
926
			  engine->name,
927 928
			  head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
			  tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
929

930
		while (head != tail) {
931
			struct i915_request *rq;
932
			unsigned int status;
933
			unsigned int count;
934 935 936

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
937

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

955
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
956
			GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
957
				  engine->name, head,
958 959
				  status, buf[2*head + 1],
				  execlists->active);
960 961 962 963 964 965 966 967 968

			if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
				      GEN8_CTX_STATUS_PREEMPTED))
				execlists_set_active(execlists,
						     EXECLISTS_ACTIVE_HWACK);
			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_HWACK);

969 970 971
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

972 973 974
			/* We should never get a COMPLETED | IDLE_ACTIVE! */
			GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

975
			if (status & GEN8_CTX_STATUS_COMPLETE &&
976
			    buf[2*head + 1] == execlists->preempt_complete_status) {
977 978
				GEM_TRACE("%s preempt-idle\n", engine->name);

979 980
				execlists_cancel_port_requests(execlists);
				execlists_unwind_incomplete_requests(execlists);
C
Chris Wilson 已提交
981

982 983 984 985
				GEM_BUG_ON(!execlists_is_active(execlists,
								EXECLISTS_ACTIVE_PREEMPT));
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
986 987 988 989
				continue;
			}

			if (status & GEN8_CTX_STATUS_PREEMPTED &&
990 991
			    execlists_is_active(execlists,
						EXECLISTS_ACTIVE_PREEMPT))
C
Chris Wilson 已提交
992 993
				continue;

994 995 996
			GEM_BUG_ON(!execlists_is_active(execlists,
							EXECLISTS_ACTIVE_USER));

997
			rq = port_unpack(port, &count);
998
			GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x, prio=%d\n",
999
				  engine->name,
1000
				  port->context_id, count,
1001 1002
				  rq ? rq->global_seqno : 0,
				  rq ? rq_prio(rq) : 0);
1003 1004 1005 1006

			/* Check the context/desc id for this event matches */
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);

1007 1008
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
1009
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1010 1011
				GEM_BUG_ON(port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1012
				GEM_BUG_ON(!i915_request_completed(rq));
1013
				execlists_context_schedule_out(rq);
1014 1015
				trace_i915_request_out(rq);
				i915_request_put(rq);
1016

1017 1018 1019
				GEM_TRACE("%s completed ctx=%d\n",
					  engine->name, port->context_id);

1020
				execlists_port_complete(execlists, port);
1021 1022
			} else {
				port_set(port, port_pack(rq, count));
1023
			}
1024

1025 1026
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
1027
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1028 1029 1030
			if (port_count(port) == 0)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_USER);
1031
		}
1032

1033 1034
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
1035 1036 1037
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
1038 1039
	}

1040
	if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
1041
		execlists_dequeue(engine);
1042

1043 1044
	if (fw)
		intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
1045 1046
}

1047 1048 1049
static void queue_request(struct intel_engine_cs *engine,
			  struct i915_priotree *pt,
			  int prio)
1050
{
1051 1052
	list_add_tail(&pt->link, &lookup_priolist(engine, pt, prio)->requests);
}
1053

1054 1055 1056 1057
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
	if (prio > engine->execlists.queue_priority) {
		engine->execlists.queue_priority = prio;
1058
		tasklet_hi_schedule(&engine->execlists.tasklet);
1059
	}
1060 1061
}

1062
static void execlists_submit_request(struct i915_request *request)
1063
{
1064
	struct intel_engine_cs *engine = request->engine;
1065
	unsigned long flags;
1066

1067 1068
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
1069

1070 1071
	queue_request(engine, &request->priotree, rq_prio(request));
	submit_queue(engine, rq_prio(request));
1072

1073
	GEM_BUG_ON(!engine->execlists.first);
1074 1075
	GEM_BUG_ON(list_empty(&request->priotree.link));

1076
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
1077 1078
}

1079
static struct i915_request *pt_to_request(struct i915_priotree *pt)
1080
{
1081
	return container_of(pt, struct i915_request, priotree);
1082 1083
}

1084 1085 1086
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
1087
	struct intel_engine_cs *engine = pt_to_request(pt)->engine;
1088 1089

	GEM_BUG_ON(!locked);
1090 1091

	if (engine != locked) {
1092 1093
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
1094 1095 1096 1097 1098
	}

	return engine;
}

1099
static void execlists_schedule(struct i915_request *request, int prio)
1100
{
1101
	struct intel_engine_cs *engine;
1102 1103 1104 1105
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

1106 1107
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

1108
	if (i915_request_completed(request))
1109 1110
		return;

1111 1112 1113
	if (prio <= READ_ONCE(request->priotree.priority))
		return;

1114 1115
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
1116 1117 1118 1119

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

1120 1121
	/*
	 * Recursively bump all dependent priorities to match the new request.
1122 1123 1124 1125 1126
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
1127
	 *	queue_request(pt);
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
1138
	list_for_each_entry(dep, &dfs, dfs_link) {
1139 1140
		struct i915_priotree *pt = dep->signaler;

1141 1142
		/*
		 * Within an engine, there can be no cycle, but we may
1143 1144 1145 1146 1147
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
1148 1149
			GEM_BUG_ON(p == dep); /* no cycles! */

1150
			if (i915_priotree_signaled(p->signaler))
1151 1152
				continue;

1153
			GEM_BUG_ON(p->signaler->priority < pt->priority);
1154 1155
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
1156
		}
1157 1158
	}

1159 1160
	/*
	 * If we didn't need to bump any existing priorities, and we haven't
1161 1162 1163 1164
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1165
	if (request->priotree.priority == I915_PRIORITY_INVALID) {
1166 1167 1168 1169 1170 1171 1172
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1173 1174 1175
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
1188 1189
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
1190
			queue_request(engine, pt, prio);
1191
		}
1192
		submit_queue(engine, prio);
1193 1194
	}

1195
	spin_unlock_irq(&engine->timeline->lock);
1196 1197
}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;

	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
}

1221 1222 1223
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1224
{
1225
	struct intel_context *ce = &ctx->engine[engine->id];
1226
	void *vaddr;
1227
	int ret;
1228

1229
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1230

1231 1232
	if (likely(ce->pin_count++))
		goto out;
1233
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1234

1235 1236 1237
	ret = execlists_context_deferred_alloc(ctx, engine);
	if (ret)
		goto err;
1238
	GEM_BUG_ON(!ce->state);
1239

1240
	ret = __context_pin(ctx, ce->state);
1241
	if (ret)
1242
		goto err;
1243

1244
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1245 1246
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1247
		goto unpin_vma;
1248 1249
	}

1250
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1251
	if (ret)
1252
		goto unpin_map;
1253

1254
	intel_lr_context_descriptor_update(ctx, engine);
1255

1256 1257
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1258
		i915_ggtt_offset(ce->ring->vma);
1259

1260
	ce->state->obj->pin_global++;
1261
	i915_gem_context_get(ctx);
1262 1263
out:
	return ce->ring;
1264

1265
unpin_map:
1266 1267 1268
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1269
err:
1270
	ce->pin_count = 0;
1271
	return ERR_PTR(ret);
1272 1273
}

1274 1275
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1276
{
1277
	struct intel_context *ce = &ctx->engine[engine->id];
1278

1279
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1280
	GEM_BUG_ON(ce->pin_count == 0);
1281

1282
	if (--ce->pin_count)
1283
		return;
1284

1285
	intel_ring_unpin(ce->ring);
1286

1287
	ce->state->obj->pin_global--;
1288 1289
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1290

1291
	i915_gem_context_put(ctx);
1292 1293
}

1294
static int execlists_request_alloc(struct i915_request *request)
1295 1296 1297
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
1298
	int ret;
1299

1300 1301
	GEM_BUG_ON(!ce->pin_count);

1302 1303 1304 1305 1306 1307
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1308 1309 1310
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1339 1340
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1341
{
1342 1343 1344 1345 1346 1347 1348 1349 1350
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1351 1352 1353 1354
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1355 1356 1357 1358 1359 1360 1361

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1362 1363
}

1364 1365 1366 1367 1368 1369
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1370
 *
1371 1372
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1373
 *
1374 1375 1376 1377
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1378
 */
1379
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1380
{
1381
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1382
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1383

1384
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1385 1386
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1387

1388 1389
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1390 1391 1392 1393 1394 1395 1396
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1397

C
Chris Wilson 已提交
1398 1399
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1400
	/* Pad to end of cacheline */
1401 1402
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1403 1404 1405 1406 1407 1408 1409

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1410
	return batch;
1411 1412
}

1413
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1414
{
C
Chris Wilson 已提交
1415 1416
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

1417
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1418
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1419

1420
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1421 1422 1423 1424 1425
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1426

1427 1428
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1429
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1430 1431 1432 1433 1434 1435 1436
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1437
	}
1438

1439
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1454 1455 1456 1457 1458 1459
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1460 1461
	}

C
Chris Wilson 已提交
1462 1463
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1464
	/* Pad to end of cacheline */
1465 1466
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1467

1468
	return batch;
1469 1470
}

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1505 1506 1507
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1508
{
1509 1510 1511
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1512

1513
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1514 1515
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1516

1517
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1518 1519 1520
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1521 1522
	}

1523 1524 1525 1526 1527
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1528
	return 0;
1529 1530 1531 1532

err:
	i915_gem_object_put(obj);
	return err;
1533 1534
}

1535
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1536
{
1537
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1538 1539
}

1540 1541
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1542
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1543
{
1544
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1545 1546 1547
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1548
	struct page *page;
1549 1550
	void *batch, *batch_ptr;
	unsigned int i;
1551
	int ret;
1552

1553
	if (GEM_WARN_ON(engine->id != RCS))
1554
		return -EINVAL;
1555

1556
	switch (INTEL_GEN(engine->i915)) {
1557
	case 10:
1558 1559 1560
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
1561 1562
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1563
		wa_bb_fn[1] = NULL;
1564 1565 1566
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1567
		wa_bb_fn[1] = NULL;
1568 1569 1570
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1571
		return 0;
1572
	}
1573

1574
	ret = lrc_setup_wa_ctx(engine);
1575 1576 1577 1578 1579
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1580
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1581
	batch = batch_ptr = kmap_atomic(page);
1582

1583 1584 1585 1586 1587 1588 1589
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
1590 1591
		if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
					    CACHELINE_BYTES))) {
1592 1593 1594
			ret = -EINVAL;
			break;
		}
1595 1596
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1597
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1598 1599
	}

1600 1601
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1602 1603
	kunmap_atomic(batch);
	if (ret)
1604
		lrc_destroy_wa_ctx(engine);
1605 1606 1607 1608

	return ret;
}

1609
static void enable_execlists(struct intel_engine_cs *engine)
1610
{
1611
	struct drm_i915_private *dev_priv = engine->i915;
1612 1613

	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629

	/*
	 * Make sure we're not enabling the new 12-deep CSB
	 * FIFO as that requires a slightly updated handling
	 * in the ctx switch irq. Since we're currently only
	 * using only 2 elements of the enhanced execlists the
	 * deeper FIFO it's not needed and it's not worth adding
	 * more statements to the irq handler to support it.
	 */
	if (INTEL_GEN(dev_priv) >= 11)
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
	else
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));

1630 1631 1632
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1633 1634 1635

	/* Following the reset, we need to reload the CSB read/write pointers */
	engine->execlists.csb_head = -1;
1636 1637 1638 1639
}

static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
1640
	struct intel_engine_execlists * const execlists = &engine->execlists;
1641 1642 1643 1644 1645
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1646

1647
	intel_engine_reset_breadcrumbs(engine);
1648
	intel_engine_init_hangcheck(engine);
1649

1650
	enable_execlists(engine);
1651

1652
	/* After a GPU reset, we may have requests to replay */
1653
	if (execlists->first)
1654
		tasklet_schedule(&execlists->tasklet);
1655

1656
	return 0;
1657 1658
}

1659
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1660
{
1661
	struct drm_i915_private *dev_priv = engine->i915;
1662 1663
	int ret;

1664
	ret = gen8_init_common_ring(engine);
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1678
	return init_workarounds_ring(engine);
1679 1680
}

1681
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1682 1683 1684
{
	int ret;

1685
	ret = gen8_init_common_ring(engine);
1686 1687 1688
	if (ret)
		return ret;

1689
	return init_workarounds_ring(engine);
1690 1691
}

1692
static void reset_common_ring(struct intel_engine_cs *engine,
1693
			      struct i915_request *request)
1694
{
1695
	struct intel_engine_execlists * const execlists = &engine->execlists;
1696
	struct intel_context *ce;
1697
	unsigned long flags;
1698

1699 1700
	GEM_TRACE("%s seqno=%x\n",
		  engine->name, request ? request->global_seqno : 0);
1701

1702 1703
	/* See execlists_cancel_requests() for the irq/spinlock split. */
	local_irq_save(flags);
1704

1705 1706 1707 1708 1709 1710 1711 1712 1713
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1714
	execlists_cancel_port_requests(execlists);
1715
	reset_irq(engine);
1716

1717
	/* Push back any incomplete requests for replay after the reset. */
1718
	spin_lock(&engine->timeline->lock);
1719
	__unwind_incomplete_requests(engine);
1720
	spin_unlock(&engine->timeline->lock);
1721

1722
	local_irq_restore(flags);
1723

1724 1725
	/*
	 * If the request was innocent, we leave the request in the ELSP
1726 1727 1728 1729 1730 1731 1732 1733 1734
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1735
	if (!request || request->fence.error != -EIO)
1736
		return;
1737

1738 1739
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
1740 1741 1742 1743 1744 1745
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1746
	ce = &request->ctx->engine[engine->id];
1747 1748 1749
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1750
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1751 1752
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1753
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1754

1755 1756 1757
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1758
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1759
	unwind_wa_tail(request);
1760 1761
}

1762
static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1763
{
1764 1765
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
	struct intel_engine_cs *engine = rq->engine;
1766
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1767 1768
	u32 *cs;
	int i;
1769

1770
	cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
1771 1772
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1773

1774
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1775
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1776 1777
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1778 1779 1780 1781
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1782 1783
	}

1784
	*cs++ = MI_NOOP;
1785
	intel_ring_advance(rq, cs);
1786 1787 1788 1789

	return 0;
}

1790
static int gen8_emit_bb_start(struct i915_request *rq,
1791
			      u64 offset, u32 len,
1792
			      const unsigned int flags)
1793
{
1794
	u32 *cs;
1795 1796
	int ret;

1797 1798 1799 1800
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1801 1802
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1803 1804 1805 1806 1807
	if (rq->ctx->ppgtt &&
	    (intel_engine_flag(rq->engine) & rq->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&rq->ctx->ppgtt->base) &&
	    !intel_vgpu_active(rq->i915)) {
		ret = intel_logical_ring_emit_pdps(rq);
1808 1809
		if (ret)
			return ret;
1810

1811
		rq->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
1812 1813
	}

1814
	cs = intel_ring_begin(rq, 4);
1815 1816
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1817

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
1835 1836
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1837
	/* FIXME(BDW): Address space and security selectors. */
1838 1839 1840
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1841 1842
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
1843
	intel_ring_advance(rq, cs);
1844 1845 1846 1847

	return 0;
}

1848
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1849
{
1850
	struct drm_i915_private *dev_priv = engine->i915;
1851 1852 1853
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1854 1855
}

1856
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1857
{
1858
	struct drm_i915_private *dev_priv = engine->i915;
1859
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1860 1861
}

1862
static int gen8_emit_flush(struct i915_request *request, u32 mode)
1863
{
1864
	u32 cmd, *cs;
1865

1866 1867 1868
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1869 1870 1871

	cmd = MI_FLUSH_DW + 1;

1872 1873 1874 1875 1876 1877 1878
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1879
	if (mode & EMIT_INVALIDATE) {
1880
		cmd |= MI_INVALIDATE_TLB;
1881
		if (request->engine->id == VCS)
1882
			cmd |= MI_INVALIDATE_BSD;
1883 1884
	}

1885 1886 1887 1888 1889
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1890 1891 1892 1893

	return 0;
}

1894
static int gen8_emit_flush_render(struct i915_request *request,
1895
				  u32 mode)
1896
{
1897
	struct intel_engine_cs *engine = request->engine;
1898 1899
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1900
	bool vf_flush_wa = false, dc_flush_wa = false;
1901
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1902
	int len;
1903 1904 1905

	flags |= PIPE_CONTROL_CS_STALL;

1906
	if (mode & EMIT_FLUSH) {
1907 1908
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1909
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1910
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1911 1912
	}

1913
	if (mode & EMIT_INVALIDATE) {
1914 1915 1916 1917 1918 1919 1920 1921 1922
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1923 1924 1925 1926
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1927
		if (IS_GEN9(request->i915))
1928
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1929 1930 1931 1932

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1933
	}
1934

M
Mika Kuoppala 已提交
1935 1936 1937 1938 1939 1940 1941 1942
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1943 1944 1945
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1946

1947 1948
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1949

1950 1951 1952
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1953

1954
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1955

1956 1957
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1958

1959
	intel_ring_advance(request, cs);
1960 1961 1962 1963

	return 0;
}

1964 1965 1966 1967 1968
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1969
static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
1970
{
C
Chris Wilson 已提交
1971 1972
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
1973 1974
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1975
}
1976

1977
static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
1978
{
1979 1980
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1981

1982 1983
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
1984 1985 1986
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1987
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1988

1989
	gen8_emit_wa_tail(request, cs);
1990
}
1991 1992
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

1993
static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
1994
{
1995 1996 1997
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1998 1999
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
2000 2001 2002
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
2003
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2004

2005
	gen8_emit_wa_tail(request, cs);
2006
}
2007
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2008

2009
static int gen8_init_rcs_context(struct i915_request *rq)
2010 2011 2012
{
	int ret;

2013
	ret = intel_ring_workarounds_emit(rq);
2014 2015 2016
	if (ret)
		return ret;

2017
	ret = intel_rcs_context_init_mocs(rq);
2018 2019 2020 2021 2022 2023 2024
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2025
	return i915_gem_render_state_emit(rq);
2026 2027
}

2028 2029
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2030
 * @engine: Engine Command Streamer.
2031
 */
2032
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2033
{
2034
	struct drm_i915_private *dev_priv;
2035

2036 2037 2038 2039
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
2040 2041 2042
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
2043

2044
	dev_priv = engine->i915;
2045

2046 2047
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2048
	}
2049

2050 2051
	if (engine->cleanup)
		engine->cleanup(engine);
2052

2053
	intel_engine_cleanup_common(engine);
2054

2055
	lrc_destroy_wa_ctx(engine);
2056

2057
	engine->i915 = NULL;
2058 2059
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
2060 2061
}

2062
static void execlists_set_default_submission(struct intel_engine_cs *engine)
2063
{
2064
	engine->submit_request = execlists_submit_request;
2065
	engine->cancel_requests = execlists_cancel_requests;
2066
	engine->schedule = execlists_schedule;
2067
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2068 2069 2070

	engine->park = NULL;
	engine->unpark = NULL;
2071 2072

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2073 2074 2075 2076

	engine->i915->caps.scheduler =
		I915_SCHEDULER_CAP_ENABLED |
		I915_SCHEDULER_CAP_PRIORITY;
2077
	if (engine->i915->preempt_context)
2078
		engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2079 2080
}

2081
static void
2082
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2083 2084
{
	/* Default vfuncs which can be overriden by each engine. */
2085
	engine->init_hw = gen8_init_common_ring;
2086
	engine->reset_hw = reset_common_ring;
2087 2088 2089 2090

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

2091 2092
	engine->request_alloc = execlists_request_alloc;

2093
	engine->emit_flush = gen8_emit_flush;
2094
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
2095
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2096 2097

	engine->set_default_submission = execlists_set_default_submission;
2098

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
2110
	engine->emit_bb_start = gen8_emit_bb_start;
2111 2112
}

2113
static inline void
2114
logical_ring_default_irqs(struct intel_engine_cs *engine)
2115
{
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
			[RCS]  = GEN8_RCS_IRQ_SHIFT,
			[BCS]  = GEN8_BCS_IRQ_SHIFT,
			[VCS]  = GEN8_VCS1_IRQ_SHIFT,
			[VCS2] = GEN8_VCS2_IRQ_SHIFT,
			[VECS] = GEN8_VECS_IRQ_SHIFT,
		};

		shift = irq_shifts[engine->id];
	}

2130 2131
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2132 2133
}

2134 2135 2136 2137 2138 2139
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

2140 2141
	intel_engine_setup_common(engine);

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

2157
	engine->execlists.fw_domains = fw_domains;
2158

2159 2160
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2161 2162 2163 2164 2165

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

2166
static int logical_ring_init(struct intel_engine_cs *engine)
2167 2168 2169
{
	int ret;

2170
	ret = intel_engine_init_common(engine);
2171 2172 2173
	if (ret)
		goto error;

2174 2175 2176 2177 2178 2179 2180 2181 2182
	if (HAS_LOGICAL_RING_ELSQ(engine->i915)) {
		engine->execlists.submit_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
		engine->execlists.ctrl_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
	} else {
		engine->execlists.submit_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_ELSP(engine));
	}
2183

2184 2185 2186 2187 2188
	engine->execlists.preempt_complete_status = ~0u;
	if (engine->i915->preempt_context)
		engine->execlists.preempt_complete_status =
			upper_32_bits(engine->i915->preempt_context->engine[engine->id].lrc_desc);

2189 2190 2191 2192 2193 2194 2195
	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2196
int logical_render_ring_init(struct intel_engine_cs *engine)
2197 2198 2199 2200
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2201 2202
	logical_ring_setup(engine);

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2213 2214
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2215

2216
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2231
	return logical_ring_init(engine);
2232 2233
}

2234
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2235 2236 2237 2238
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2239 2240
}

2241
static u32
2242
make_rpcs(struct drm_i915_private *dev_priv)
2243 2244 2245 2246 2247 2248 2249
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2250
	if (INTEL_GEN(dev_priv) < 9)
2251 2252 2253 2254 2255 2256 2257 2258
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2259
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2260
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2261
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2262 2263 2264 2265
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2266
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2267
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2268
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2269 2270 2271 2272
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2273 2274
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2275
			GEN8_RPCS_EU_MIN_SHIFT;
2276
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2277 2278 2279 2280 2281 2282 2283
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2284
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2285 2286 2287
{
	u32 indirect_ctx_offset;

2288
	switch (INTEL_GEN(engine->i915)) {
2289
	default:
2290
		MISSING_CASE(INTEL_GEN(engine->i915));
2291
		/* fall through */
2292 2293 2294 2295
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2296 2297 2298 2299
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2313
static void execlists_init_reg_state(u32 *regs,
2314 2315 2316
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2317
{
2318 2319
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2334 2335
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				    CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2351 2352
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2353 2354 2355
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2356
		if (wa_ctx->indirect_ctx.size) {
2357
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2358

2359
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2360 2361
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2362

2363
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2364
				intel_lr_indirect_ctx_offset(engine) << 6;
2365 2366 2367 2368 2369
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2370

2371
			regs[CTX_BB_PER_CTX_PTR + 1] =
2372
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2373
		}
2374
	}
2375 2376 2377 2378

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2379
	/* PDP values well be assigned later if needed */
2380 2381 2382 2383 2384 2385 2386 2387
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2388

2389
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2390 2391 2392 2393
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2394
		ASSIGN_CTX_PML4(ppgtt, regs);
2395 2396
	}

2397 2398 2399 2400
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2401 2402

		i915_oa_init_reg_state(engine, ctx, regs);
2403
	}
2404 2405 2406 2407 2408 2409 2410 2411 2412
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2413
	u32 *regs;
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2428
	ctx_obj->mm.dirty = true;
2429

2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (IS_ERR(defaults))
			return PTR_ERR(defaults);

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2448 2449
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2450 2451 2452 2453 2454
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2455
	if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2456 2457 2458
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2459

2460
	i915_gem_object_unpin_map(ctx_obj);
2461 2462 2463 2464

	return 0;
}

2465
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2466
					    struct intel_engine_cs *engine)
2467
{
2468
	struct drm_i915_gem_object *ctx_obj;
2469
	struct intel_context *ce = &ctx->engine[engine->id];
2470
	struct i915_vma *vma;
2471
	uint32_t context_size;
2472
	struct intel_ring *ring;
2473 2474
	int ret;

2475 2476
	if (ce->state)
		return 0;
2477

2478
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2479

2480 2481 2482 2483 2484
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2485

2486
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2487
	if (IS_ERR(ctx_obj)) {
2488
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2489
		return PTR_ERR(ctx_obj);
2490 2491
	}

2492
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2493 2494 2495 2496 2497
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2498
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2499 2500
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2501
		goto error_deref_obj;
2502 2503
	}

2504
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2505 2506
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2507
		goto error_ring_free;
2508 2509
	}

2510
	ce->ring = ring;
2511
	ce->state = vma;
2512 2513

	return 0;
2514

2515
error_ring_free:
2516
	intel_ring_free(ring);
2517
error_deref_obj:
2518
	i915_gem_object_put(ctx_obj);
2519
	return ret;
2520
}
2521

2522
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2523
{
2524
	struct intel_engine_cs *engine;
2525
	struct i915_gem_context *ctx;
2526
	enum intel_engine_id id;
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2538
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2539
		for_each_engine(engine, dev_priv, id) {
2540 2541
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2542

2543 2544
			if (!ce->state)
				continue;
2545

2546 2547 2548 2549
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2550

2551 2552 2553
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2554

C
Chris Wilson 已提交
2555
			ce->state->obj->mm.dirty = true;
2556
			i915_gem_object_unpin_map(ce->state->obj);
2557

2558
			intel_ring_reset(ce->ring, 0);
2559
		}
2560 2561
	}
}