intel_lrc.c 81.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "intel_lrc_reg.h"
141
#include "intel_mocs.h"
142
#include "intel_workarounds.h"
143

144 145 146 147 148 149 150 151 152 153 154 155 156
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
157

158
#define GEN8_CTX_STATUS_COMPLETED_MASK \
159
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
160

161 162
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
163
#define WA_TAIL_DWORDS 2
164
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
165

166
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
167
					    struct intel_engine_cs *engine);
168 169 170 171
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
172

173 174 175 176 177 178 179
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
180
	return rq->sched.attr.priority;
181 182 183 184 185 186
}

static inline bool need_preempt(const struct intel_engine_cs *engine,
				const struct i915_request *last,
				int prio)
{
187
	return (intel_engine_has_preemption(engine) &&
188 189
		__execlists_need_preempt(prio, rq_prio(last)) &&
		!i915_request_completed(last));
190 191
}

192
/**
193 194 195
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
196
 * @engine: Engine the descriptor will be used with
197
 *
198 199 200 201 202
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
203 204
 * This is what a descriptor looks like, from LSB to MSB::
 *
205
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
206 207 208 209
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
210 211 212 213 214 215 216 217 218 219 220 221
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
222
 */
223
static void
224
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
225
				   struct intel_engine_cs *engine)
226
{
227
	struct intel_context *ce = to_intel_context(ctx, engine);
228
	u64 desc;
229

230 231
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
232

233
	desc = ctx->desc_template;				/* bits  0-11 */
234 235
	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));

236
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
237
								/* bits 12-31 */
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));

	if (INTEL_GEN(ctx->i915) >= 11) {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
256

257
	ce->lrc_desc = desc;
258 259
}

260 261
static struct i915_priolist *
lookup_priolist(struct intel_engine_cs *engine,
262
		struct i915_sched_node *node,
263
		int prio)
264
{
265
	struct intel_engine_execlists * const execlists = &engine->execlists;
266 267 268 269
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

270
	if (unlikely(execlists->no_priolist))
271 272 273 274 275
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
276
	parent = &execlists->queue.rb_node;
277 278
	while (*parent) {
		rb = *parent;
279
		p = to_priolist(rb);
280 281 282 283 284 285
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
286
			return p;
287 288 289 290
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
291
		p = &execlists->default_priolist;
292 293 294 295 296 297 298 299 300 301 302 303 304 305
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
306
			execlists->no_priolist = true;
307 308 309 310 311
			goto find_priolist;
		}
	}

	p->priority = prio;
312
	INIT_LIST_HEAD(&p->requests);
313
	rb_link_node(&p->node, rb, parent);
314
	rb_insert_color(&p->node, &execlists->queue);
315 316

	if (first)
317
		execlists->first = &p->node;
318

319
	return p;
320 321
}

322
static void unwind_wa_tail(struct i915_request *rq)
323 324 325 326 327
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

328
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
329
{
330
	struct i915_request *rq, *rn;
331 332
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
333

334
	lockdep_assert_held(&engine->timeline.lock);
335 336

	list_for_each_entry_safe_reverse(rq, rn,
337
					 &engine->timeline.requests,
338
					 link) {
339
		if (i915_request_completed(rq))
340 341
			return;

342
		__i915_request_unsubmit(rq);
343 344
		unwind_wa_tail(rq);

345 346 347
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
		if (rq_prio(rq) != last_prio) {
			last_prio = rq_prio(rq);
348
			p = lookup_priolist(engine, &rq->sched, last_prio);
349 350
		}

351
		list_add(&rq->sched.link, &p->requests);
352 353 354
	}
}

355
void
356 357 358 359 360
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

361
	spin_lock_irq(&engine->timeline.lock);
362
	__unwind_incomplete_requests(engine);
363
	spin_unlock_irq(&engine->timeline.lock);
364 365
}

366
static inline void
367
execlists_context_status_change(struct i915_request *rq, unsigned long status)
368
{
369 370 371 372 373 374
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
375

376 377
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
378 379
}

380 381 382 383 384 385 386 387 388 389 390 391 392
inline void
execlists_user_begin(struct intel_engine_execlists *execlists,
		     const struct execlist_port *port)
{
	execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
}

inline void
execlists_user_end(struct intel_engine_execlists *execlists)
{
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
}

393
static inline void
394
execlists_context_schedule_in(struct i915_request *rq)
395 396
{
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
397
	intel_engine_context_in(rq->engine);
398 399 400
}

static inline void
401
execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
402
{
403
	intel_engine_context_out(rq->engine);
404 405
	execlists_context_status_change(rq, status);
	trace_i915_request_out(rq);
406 407
}

408 409 410 411 412 413 414 415 416
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

417
static u64 execlists_update_context(struct i915_request *rq)
418
{
419
	struct intel_context *ce = to_intel_context(rq->ctx, rq->engine);
420 421
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
422
	u32 *reg_state = ce->lrc_reg_state;
423

424
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
425

426 427 428 429 430
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
431
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
432
		execlists_update_context_pdps(ppgtt, reg_state);
433 434

	return ce->lrc_desc;
435 436
}

437
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
438
{
439 440 441 442 443 444 445
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
446 447
}

448
static void execlists_submit_ports(struct intel_engine_cs *engine)
449
{
450 451
	struct intel_engine_execlists *execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
452
	unsigned int n;
453

454 455 456 457 458 459 460
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
461
		struct i915_request *rq;
462 463 464 465 466 467 468
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
469
				execlists_context_schedule_in(rq);
470 471 472
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
473

474
			GEM_TRACE("%s in[%d]:  ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
475
				  engine->name, n,
476
				  port[n].context_id, count,
477
				  rq->global_seqno,
478
				  rq->fence.context, rq->fence.seqno,
479
				  intel_engine_get_seqno(engine),
480
				  rq_prio(rq));
481 482 483 484
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
485

486
		write_desc(execlists, desc, n);
487
	}
488 489 490 491 492 493

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
494 495
}

496
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
497
{
498
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
499
		i915_gem_context_force_single_submission(ctx));
500
}
501

502 503 504 505 506
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
507

508 509
	if (ctx_single_port_submission(prev))
		return false;
510

511
	return true;
512 513
}

514
static void port_assign(struct execlist_port *port, struct i915_request *rq)
515 516 517 518
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
519
		i915_request_put(port_request(port));
520

521
	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
522 523
}

C
Chris Wilson 已提交
524 525
static void inject_preempt_context(struct intel_engine_cs *engine)
{
526
	struct intel_engine_execlists *execlists = &engine->execlists;
C
Chris Wilson 已提交
527
	struct intel_context *ce =
528
		to_intel_context(engine->i915->preempt_context, engine);
C
Chris Wilson 已提交
529 530
	unsigned int n;

531
	GEM_BUG_ON(execlists->preempt_complete_status !=
532
		   upper_32_bits(ce->lrc_desc));
533 534 535 536 537 538
	GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
		    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
		   _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				      CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));

539 540 541 542
	/*
	 * Switch to our empty preempt context so
	 * the state of the GPU is known (idle).
	 */
543
	GEM_TRACE("%s\n", engine->name);
544 545 546 547 548 549 550 551
	for (n = execlists_num_ports(execlists); --n; )
		write_desc(execlists, 0, n);

	write_desc(execlists, ce->lrc_desc, n);

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
C
Chris Wilson 已提交
552

553
	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
554
	execlists_set_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
555 556
}

557
static void execlists_dequeue(struct intel_engine_cs *engine)
558
{
559 560
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
561 562
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
563
	struct i915_request *last = port_request(port);
564
	struct rb_node *rb;
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
	bool submit = false;

	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
586
	 */
587

588
	spin_lock_irq(&engine->timeline.lock);
589 590
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
C
Chris Wilson 已提交
591 592 593 594 595 596 597 598

	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
599 600
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
601
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
602 603 604
		if (port_count(&port[0]) > 1)
			goto unlock;

605 606 607 608 609 610 611 612 613 614
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
			goto unlock;

615
		if (need_preempt(engine, last, execlists->queue_priority)) {
C
Chris Wilson 已提交
616 617 618
			inject_preempt_context(engine);
			goto unlock;
		}
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

		/*
		 * In theory, we could coalesce more requests onto
		 * the second port (the first port is active, with
		 * no preemptions pending). However, that means we
		 * then have to deal with the possible lite-restore
		 * of the second port (as we submit the ELSP, there
		 * may be a context-switch) but also we may complete
		 * the resubmission before the context-switch. Ergo,
		 * coalescing onto the second port will cause a
		 * preemption event, but we cannot predict whether
		 * that will affect port[0] or port[1].
		 *
		 * If the second port is already active, we can wait
		 * until the next context-switch before contemplating
		 * new requests. The GPU will be busy and we should be
		 * able to resubmit the new ELSP before it idles,
		 * avoiding pipeline bubbles (momentary pauses where
		 * the driver is unable to keep up the supply of new
		 * work). However, we have to double check that the
		 * priorities of the ports haven't been switch.
		 */
		if (port_count(&port[1]))
			goto unlock;

		/*
		 * WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent
		 * ring:HEAD == rq:TAIL as we resubmit the
		 * request. See gen8_emit_breadcrumb() for
		 * where we prepare the padding after the
		 * end of the request.
		 */
		last->tail = last->wa_tail;
C
Chris Wilson 已提交
653 654
	}

655 656
	while (rb) {
		struct i915_priolist *p = to_priolist(rb);
657
		struct i915_request *rq, *rn;
658

659
		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
660 661 662 663 664 665 666 667 668 669
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
670
			 */
671 672 673 674 675 676
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
677
				if (port == last_port) {
678
					__list_del_many(&p->requests,
679
							&rq->sched.link);
680 681 682 683 684 685 686 687 688 689 690 691 692
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
693
							&rq->sched.link);
694 695 696 697 698 699 700 701
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
702 703

				GEM_BUG_ON(port_isset(port));
704
			}
705

706
			INIT_LIST_HEAD(&rq->sched.link);
707 708
			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
709 710
			last = rq;
			submit = true;
711
		}
712

713
		rb = rb_next(rb);
714
		rb_erase(&p->node, &execlists->queue);
715 716
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
717
			kmem_cache_free(engine->i915->priorities, p);
718
	}
719

720
done:
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
	/*
	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
	 *
	 * We choose queue_priority such that if we add a request of greater
	 * priority than this, we kick the submission tasklet to decide on
	 * the right order of submitting the requests to hardware. We must
	 * also be prepared to reorder requests as they are in-flight on the
	 * HW. We derive the queue_priority then as the first "hole" in
	 * the HW submission ports and if there are no available slots,
	 * the priority of the lowest executing request, i.e. last.
	 *
	 * When we do receive a higher priority request ready to run from the
	 * user, see queue_request(), the queue_priority is bumped to that
	 * request triggering preemption on the next dequeue (or subsequent
	 * interrupt for secondary ports).
	 */
	execlists->queue_priority =
		port != execlists->port ? rq_prio(last) : INT_MIN;

740
	execlists->first = rb;
741
	if (submit)
742
		port_assign(port, last);
743 744 745 746

	/* We must always keep the beast fed if we have work piled up */
	GEM_BUG_ON(execlists->first && !port_isset(execlists->port));

C
Chris Wilson 已提交
747
unlock:
748
	spin_unlock_irq(&engine->timeline.lock);
749

750
	if (submit) {
751
		execlists_user_begin(execlists, execlists->port);
752
		execlists_submit_ports(engine);
753
	}
754 755 756

	GEM_BUG_ON(port_isset(execlists->port) &&
		   !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
757 758
}

759
void
760
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
761
{
762
	struct execlist_port *port = execlists->port;
763
	unsigned int num_ports = execlists_num_ports(execlists);
764

765
	while (num_ports-- && port_isset(port)) {
766
		struct i915_request *rq = port_request(port);
767

768 769 770 771 772 773 774
		GEM_TRACE("%s:port%u global=%d (fence %llx:%d), (current %d)\n",
			  rq->engine->name,
			  (unsigned int)(port - execlists->port),
			  rq->global_seqno,
			  rq->fence.context, rq->fence.seqno,
			  intel_engine_get_seqno(rq->engine));

775
		GEM_BUG_ON(!execlists->active);
776 777 778 779
		execlists_context_schedule_out(rq,
					       i915_request_completed(rq) ?
					       INTEL_CONTEXT_SCHEDULE_OUT :
					       INTEL_CONTEXT_SCHEDULE_PREEMPTED);
780

781
		i915_request_put(rq);
782

783 784 785
		memset(port, 0, sizeof(*port));
		port++;
	}
786

787
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
788
	execlists_user_end(execlists);
789 790
}

791 792 793 794 795 796 797 798 799 800 801 802
static void clear_gtiir(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int i;

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are
	 * double buffered, and so if we only reset it once there may
	 * still be an interrupt pending.
	 */
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
	if (INTEL_GEN(dev_priv) >= 11) {
		static const struct {
			u8 bank;
			u8 bit;
		} gen11_gtiir[] = {
			[RCS] = {0, GEN11_RCS0},
			[BCS] = {0, GEN11_BCS},
			[_VCS(0)] = {1, GEN11_VCS(0)},
			[_VCS(1)] = {1, GEN11_VCS(1)},
			[_VCS(2)] = {1, GEN11_VCS(2)},
			[_VCS(3)] = {1, GEN11_VCS(3)},
			[_VECS(0)] = {1, GEN11_VECS(0)},
			[_VECS(1)] = {1, GEN11_VECS(1)},
		};
		unsigned long irqflags;

		GEM_BUG_ON(engine->id >= ARRAY_SIZE(gen11_gtiir));

		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
		for (i = 0; i < 2; i++) {
			gen11_reset_one_iir(dev_priv,
					    gen11_gtiir[engine->id].bank,
					    gen11_gtiir[engine->id].bit);
		}
		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
	} else {
		static const u8 gtiir[] = {
			[RCS]  = 0,
			[BCS]  = 0,
			[VCS]  = 1,
			[VCS2] = 1,
			[VECS] = 3,
		};

		GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

		for (i = 0; i < 2; i++) {
			I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
				   engine->irq_keep_mask);
			POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
		}
		GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
			   engine->irq_keep_mask);
	}
}

static void reset_irq(struct intel_engine_cs *engine)
{
	/* Mark all CS interrupts as complete */
	smp_store_mb(engine->execlists.active, 0);
	synchronize_hardirq(engine->i915->drm.irq);

	clear_gtiir(engine);

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
}

866 867
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
868
	struct intel_engine_execlists * const execlists = &engine->execlists;
869
	struct i915_request *rq, *rn;
870 871 872
	struct rb_node *rb;
	unsigned long flags;

873 874
	GEM_TRACE("%s current %d\n",
		  engine->name, intel_engine_get_seqno(engine));
875

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
	local_irq_save(flags);
891 892

	/* Cancel the requests on the HW and clear the ELSP tracker. */
893
	execlists_cancel_port_requests(execlists);
894
	reset_irq(engine);
895

896
	spin_lock(&engine->timeline.lock);
897

898
	/* Mark all executing requests as skipped. */
899
	list_for_each_entry(rq, &engine->timeline.requests, link) {
900
		GEM_BUG_ON(!rq->global_seqno);
901
		if (!i915_request_completed(rq))
902 903 904 905
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
906
	rb = execlists->first;
907
	while (rb) {
908
		struct i915_priolist *p = to_priolist(rb);
909

910 911
		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
			INIT_LIST_HEAD(&rq->sched.link);
912 913

			dma_fence_set_error(&rq->fence, -EIO);
914
			__i915_request_submit(rq);
915 916 917
		}

		rb = rb_next(rb);
918
		rb_erase(&p->node, &execlists->queue);
919 920 921 922 923 924 925
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

926
	execlists->queue_priority = INT_MIN;
927 928
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
929
	GEM_BUG_ON(port_isset(execlists->port));
930

931
	spin_unlock(&engine->timeline.lock);
932 933

	local_irq_restore(flags);
934 935
}

936
/*
937 938 939
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
940
static void execlists_submission_tasklet(unsigned long data)
941
{
942 943
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	struct intel_engine_execlists * const execlists = &engine->execlists;
944
	struct execlist_port *port = execlists->port;
945
	struct drm_i915_private *dev_priv = engine->i915;
946
	bool fw = false;
947

948 949
	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
950 951 952 953 954 955 956 957
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

958 959
	/*
	 * Prefer doing test_and_clear_bit() as a two stage operation to avoid
960 961 962 963
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
964 965 966
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
967
		unsigned int head, tail;
968

969
		if (unlikely(execlists->csb_use_mmio)) {
970 971
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
972
			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
973 974
		}

975 976 977 978
		/* Clear before reading to catch new interrupts */
		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
		smp_mb__after_atomic();

979
		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
980 981 982 983 984 985
			if (!fw) {
				intel_uncore_forcewake_get(dev_priv,
							   execlists->fw_domains);
				fw = true;
			}

986 987 988
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
989
			execlists->csb_head = head;
990 991 992 993 994
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

995
			head = execlists->csb_head;
996 997
			tail = READ_ONCE(buf[write_idx]);
		}
998
		GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
999
			  engine->name,
1000 1001
			  head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
			  tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
1002

1003
		while (head != tail) {
1004
			struct i915_request *rq;
1005
			unsigned int status;
1006
			unsigned int count;
1007 1008 1009

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
1010

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

1028
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
1029
			GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
1030
				  engine->name, head,
1031 1032
				  status, buf[2*head + 1],
				  execlists->active);
1033 1034 1035 1036 1037 1038 1039 1040 1041

			if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
				      GEN8_CTX_STATUS_PREEMPTED))
				execlists_set_active(execlists,
						     EXECLISTS_ACTIVE_HWACK);
			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_HWACK);

1042 1043 1044
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

1045 1046 1047
			/* We should never get a COMPLETED | IDLE_ACTIVE! */
			GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

1048
			if (status & GEN8_CTX_STATUS_COMPLETE &&
1049
			    buf[2*head + 1] == execlists->preempt_complete_status) {
1050 1051
				GEM_TRACE("%s preempt-idle\n", engine->name);

1052 1053
				execlists_cancel_port_requests(execlists);
				execlists_unwind_incomplete_requests(execlists);
C
Chris Wilson 已提交
1054

1055 1056 1057 1058
				GEM_BUG_ON(!execlists_is_active(execlists,
								EXECLISTS_ACTIVE_PREEMPT));
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
1059 1060 1061 1062
				continue;
			}

			if (status & GEN8_CTX_STATUS_PREEMPTED &&
1063 1064
			    execlists_is_active(execlists,
						EXECLISTS_ACTIVE_PREEMPT))
C
Chris Wilson 已提交
1065 1066
				continue;

1067 1068 1069
			GEM_BUG_ON(!execlists_is_active(execlists,
							EXECLISTS_ACTIVE_USER));

1070
			rq = port_unpack(port, &count);
1071
			GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
1072
				  engine->name,
1073
				  port->context_id, count,
1074
				  rq ? rq->global_seqno : 0,
1075 1076
				  rq ? rq->fence.context : 0,
				  rq ? rq->fence.seqno : 0,
1077
				  intel_engine_get_seqno(engine),
1078
				  rq ? rq_prio(rq) : 0);
1079 1080 1081 1082

			/* Check the context/desc id for this event matches */
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);

1083 1084
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
1085 1086 1087 1088 1089 1090 1091 1092
				/*
				 * On the final event corresponding to the
				 * submission of this context, we expect either
				 * an element-switch event or a completion
				 * event (and on completion, the active-idle
				 * marker). No more preemptions, lite-restore
				 * or otherwise.
				 */
1093
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1094 1095
				GEM_BUG_ON(port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1096 1097 1098 1099 1100 1101 1102 1103 1104
				GEM_BUG_ON(!port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));

				/*
				 * We rely on the hardware being strongly
				 * ordered, that the breadcrumb write is
				 * coherent (visible from the CPU) before the
				 * user interrupt and CSB is processed.
				 */
1105
				GEM_BUG_ON(!i915_request_completed(rq));
1106

1107 1108
				execlists_context_schedule_out(rq,
							       INTEL_CONTEXT_SCHEDULE_OUT);
1109
				i915_request_put(rq);
1110

1111 1112 1113
				GEM_TRACE("%s completed ctx=%d\n",
					  engine->name, port->context_id);

1114 1115 1116 1117 1118
				port = execlists_port_complete(execlists, port);
				if (port_isset(port))
					execlists_user_begin(execlists, port);
				else
					execlists_user_end(execlists);
1119 1120
			} else {
				port_set(port, port_pack(rq, count));
1121
			}
1122
		}
1123

1124 1125
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
1126 1127 1128
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
1129 1130
	}

1131
	if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
1132
		execlists_dequeue(engine);
1133

1134 1135
	if (fw)
		intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
1136 1137 1138 1139 1140

	/* If the engine is now idle, so should be the flag; and vice versa. */
	GEM_BUG_ON(execlists_is_active(&engine->execlists,
				       EXECLISTS_ACTIVE_USER) ==
		   !port_isset(engine->execlists.port));
1141 1142
}

1143
static void queue_request(struct intel_engine_cs *engine,
1144
			  struct i915_sched_node *node,
1145
			  int prio)
1146
{
1147 1148
	list_add_tail(&node->link,
		      &lookup_priolist(engine, node, prio)->requests);
1149
}
1150

1151 1152 1153 1154 1155 1156
static void __submit_queue(struct intel_engine_cs *engine, int prio)
{
	engine->execlists.queue_priority = prio;
	tasklet_hi_schedule(&engine->execlists.tasklet);
}

1157 1158
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
1159 1160
	if (prio > engine->execlists.queue_priority)
		__submit_queue(engine, prio);
1161 1162
}

1163
static void execlists_submit_request(struct i915_request *request)
1164
{
1165
	struct intel_engine_cs *engine = request->engine;
1166
	unsigned long flags;
1167

1168
	/* Will be called from irq-context when using foreign fences. */
1169
	spin_lock_irqsave(&engine->timeline.lock, flags);
1170

1171
	queue_request(engine, &request->sched, rq_prio(request));
1172
	submit_queue(engine, rq_prio(request));
1173

1174
	GEM_BUG_ON(!engine->execlists.first);
1175
	GEM_BUG_ON(list_empty(&request->sched.link));
1176

1177
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1178 1179
}

1180
static struct i915_request *sched_to_request(struct i915_sched_node *node)
1181
{
1182
	return container_of(node, struct i915_request, sched);
1183 1184
}

1185
static struct intel_engine_cs *
1186
sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
1187
{
1188
	struct intel_engine_cs *engine = sched_to_request(node)->engine;
1189 1190

	GEM_BUG_ON(!locked);
1191 1192

	if (engine != locked) {
1193 1194
		spin_unlock(&locked->timeline.lock);
		spin_lock(&engine->timeline.lock);
1195 1196 1197 1198 1199
	}

	return engine;
}

1200 1201
static void execlists_schedule(struct i915_request *request,
			       const struct i915_sched_attr *attr)
1202
{
1203
	struct intel_engine_cs *engine;
1204 1205
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
1206
	const int prio = attr->priority;
1207 1208
	LIST_HEAD(dfs);

1209 1210
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

1211
	if (i915_request_completed(request))
1212 1213
		return;

1214
	if (prio <= READ_ONCE(request->sched.attr.priority))
1215 1216
		return;

1217 1218
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
1219

1220
	stack.signaler = &request->sched;
1221 1222
	list_add(&stack.dfs_link, &dfs);

1223 1224
	/*
	 * Recursively bump all dependent priorities to match the new request.
1225 1226
	 *
	 * A naive approach would be to use recursion:
1227 1228
	 * static void update_priorities(struct i915_sched_node *node, prio) {
	 *	list_for_each_entry(dep, &node->signalers_list, signal_link)
1229
	 *		update_priorities(dep->signal, prio)
1230
	 *	queue_request(node);
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
1241
	list_for_each_entry(dep, &dfs, dfs_link) {
1242
		struct i915_sched_node *node = dep->signaler;
1243

1244 1245
		/*
		 * Within an engine, there can be no cycle, but we may
1246 1247 1248 1249
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
1250
		list_for_each_entry(p, &node->signalers_list, signal_link) {
1251 1252
			GEM_BUG_ON(p == dep); /* no cycles! */

1253
			if (i915_sched_node_signaled(p->signaler))
1254 1255
				continue;

1256 1257
			GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
			if (prio > READ_ONCE(p->signaler->attr.priority))
1258
				list_move_tail(&p->dfs_link, &dfs);
1259
		}
1260 1261
	}

1262 1263
	/*
	 * If we didn't need to bump any existing priorities, and we haven't
1264 1265 1266 1267
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1268
	if (request->sched.attr.priority == I915_PRIORITY_INVALID) {
1269
		GEM_BUG_ON(!list_empty(&request->sched.link));
1270
		request->sched.attr = *attr;
1271 1272 1273 1274 1275
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1276
	engine = request->engine;
1277
	spin_lock_irq(&engine->timeline.lock);
1278

1279 1280
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1281
		struct i915_sched_node *node = dep->signaler;
1282 1283 1284

		INIT_LIST_HEAD(&dep->dfs_link);

1285
		engine = sched_lock_engine(node, engine);
1286

1287
		if (prio <= node->attr.priority)
1288 1289
			continue;

1290
		node->attr.priority = prio;
1291 1292 1293
		if (!list_empty(&node->link)) {
			__list_del_entry(&node->link);
			queue_request(engine, node, prio);
1294
		}
1295 1296

		if (prio > engine->execlists.queue_priority &&
1297
		    i915_sw_fence_done(&sched_to_request(node)->submit))
1298
			__submit_queue(engine, prio);
1299 1300
	}

1301
	spin_unlock_irq(&engine->timeline.lock);
1302 1303
}

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;

	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
}

1327 1328 1329
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1330
{
1331
	struct intel_context *ce = to_intel_context(ctx, engine);
1332
	void *vaddr;
1333
	int ret;
1334

1335
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1336

1337 1338
	if (likely(ce->pin_count++))
		goto out;
1339
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1340

1341 1342 1343
	ret = execlists_context_deferred_alloc(ctx, engine);
	if (ret)
		goto err;
1344
	GEM_BUG_ON(!ce->state);
1345

1346
	ret = __context_pin(ctx, ce->state);
1347
	if (ret)
1348
		goto err;
1349

1350
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1351 1352
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1353
		goto unpin_vma;
1354 1355
	}

1356
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1357
	if (ret)
1358
		goto unpin_map;
1359

1360
	intel_lr_context_descriptor_update(ctx, engine);
1361

1362 1363
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1364
		i915_ggtt_offset(ce->ring->vma);
1365
	ce->lrc_reg_state[CTX_RING_HEAD+1] = ce->ring->head;
1366

1367
	ce->state->obj->pin_global++;
1368
	i915_gem_context_get(ctx);
1369 1370
out:
	return ce->ring;
1371

1372
unpin_map:
1373 1374 1375
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1376
err:
1377
	ce->pin_count = 0;
1378
	return ERR_PTR(ret);
1379 1380
}

1381 1382
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1383
{
1384
	struct intel_context *ce = to_intel_context(ctx, engine);
1385

1386
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1387
	GEM_BUG_ON(ce->pin_count == 0);
1388

1389
	if (--ce->pin_count)
1390
		return;
1391

1392
	intel_ring_unpin(ce->ring);
1393

1394
	ce->state->obj->pin_global--;
1395 1396
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1397

1398
	i915_gem_context_put(ctx);
1399 1400
}

1401
static int execlists_request_alloc(struct i915_request *request)
1402
{
1403 1404
	struct intel_context *ce =
		to_intel_context(request->ctx, request->engine);
1405
	int ret;
1406

1407 1408
	GEM_BUG_ON(!ce->pin_count);

1409 1410 1411 1412 1413 1414
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1415 1416 1417
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1446 1447
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1448
{
1449 1450 1451 1452 1453 1454 1455 1456 1457
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1458 1459 1460 1461
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1462 1463 1464 1465 1466 1467 1468

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1469 1470
}

1471 1472 1473 1474 1475 1476
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1477
 *
1478 1479
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1480
 *
1481 1482 1483 1484
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1485
 */
1486
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1487
{
1488
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1489
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1490

1491
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1492 1493
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1494

1495 1496
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1497 1498 1499 1500 1501 1502 1503
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1504

C
Chris Wilson 已提交
1505 1506
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1507
	/* Pad to end of cacheline */
1508 1509
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1510 1511 1512 1513 1514 1515 1516

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1517
	return batch;
1518 1519
}

1520
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1521
{
C
Chris Wilson 已提交
1522 1523
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

1524
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1525
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1526

1527
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1528 1529 1530 1531 1532
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1533

1534 1535
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1536
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1537 1538 1539 1540 1541 1542 1543
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1544
	}
1545

1546
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1561 1562 1563 1564 1565 1566
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1567 1568
	}

C
Chris Wilson 已提交
1569 1570
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1571
	/* Pad to end of cacheline */
1572 1573
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1574

1575
	return batch;
1576 1577
}

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1612 1613 1614
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1615
{
1616 1617 1618
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1619

1620
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1621 1622
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1623

1624
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1625 1626 1627
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1628 1629
	}

1630 1631 1632 1633 1634
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1635
	return 0;
1636 1637 1638 1639

err:
	i915_gem_object_put(obj);
	return err;
1640 1641
}

1642
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1643
{
1644
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1645 1646
}

1647 1648
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1649
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1650
{
1651
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1652 1653 1654
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1655
	struct page *page;
1656 1657
	void *batch, *batch_ptr;
	unsigned int i;
1658
	int ret;
1659

1660
	if (GEM_WARN_ON(engine->id != RCS))
1661
		return -EINVAL;
1662

1663
	switch (INTEL_GEN(engine->i915)) {
1664
	case 10:
1665 1666 1667
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
1668 1669
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1670
		wa_bb_fn[1] = NULL;
1671 1672 1673
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1674
		wa_bb_fn[1] = NULL;
1675 1676 1677
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1678
		return 0;
1679
	}
1680

1681
	ret = lrc_setup_wa_ctx(engine);
1682 1683 1684 1685 1686
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1687
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1688
	batch = batch_ptr = kmap_atomic(page);
1689

1690 1691 1692 1693 1694 1695 1696
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
1697 1698
		if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
					    CACHELINE_BYTES))) {
1699 1700 1701
			ret = -EINVAL;
			break;
		}
1702 1703
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1704
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1705 1706
	}

1707 1708
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1709 1710
	kunmap_atomic(batch);
	if (ret)
1711
		lrc_destroy_wa_ctx(engine);
1712 1713 1714 1715

	return ret;
}

1716
static void enable_execlists(struct intel_engine_cs *engine)
1717
{
1718
	struct drm_i915_private *dev_priv = engine->i915;
1719 1720

	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

	/*
	 * Make sure we're not enabling the new 12-deep CSB
	 * FIFO as that requires a slightly updated handling
	 * in the ctx switch irq. Since we're currently only
	 * using only 2 elements of the enhanced execlists the
	 * deeper FIFO it's not needed and it's not worth adding
	 * more statements to the irq handler to support it.
	 */
	if (INTEL_GEN(dev_priv) >= 11)
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
	else
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));

1737 1738 1739
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1740 1741 1742

	/* Following the reset, we need to reload the CSB read/write pointers */
	engine->execlists.csb_head = -1;
1743 1744 1745 1746
}

static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
1747
	struct intel_engine_execlists * const execlists = &engine->execlists;
1748 1749 1750 1751 1752
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1753

1754
	intel_engine_reset_breadcrumbs(engine);
1755
	intel_engine_init_hangcheck(engine);
1756

1757
	enable_execlists(engine);
1758

1759
	/* After a GPU reset, we may have requests to replay */
1760
	if (execlists->first)
1761
		tasklet_schedule(&execlists->tasklet);
1762

1763
	return 0;
1764 1765
}

1766
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1767
{
1768
	struct drm_i915_private *dev_priv = engine->i915;
1769 1770
	int ret;

1771
	ret = gen8_init_common_ring(engine);
1772 1773 1774
	if (ret)
		return ret;

1775
	intel_whitelist_workarounds_apply(engine);
1776

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1787
	return 0;
1788 1789
}

1790
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1791 1792 1793
{
	int ret;

1794
	ret = gen8_init_common_ring(engine);
1795 1796 1797
	if (ret)
		return ret;

1798
	intel_whitelist_workarounds_apply(engine);
1799 1800

	return 0;
1801 1802
}

1803
static void reset_common_ring(struct intel_engine_cs *engine,
1804
			      struct i915_request *request)
1805
{
1806
	struct intel_engine_execlists * const execlists = &engine->execlists;
1807
	unsigned long flags;
1808
	u32 *regs;
1809

1810 1811 1812
	GEM_TRACE("%s request global=%x, current=%d\n",
		  engine->name, request ? request->global_seqno : 0,
		  intel_engine_get_seqno(engine));
1813

1814 1815
	/* See execlists_cancel_requests() for the irq/spinlock split. */
	local_irq_save(flags);
1816

1817 1818 1819 1820 1821 1822 1823 1824 1825
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1826
	execlists_cancel_port_requests(execlists);
1827
	reset_irq(engine);
1828

1829
	/* Push back any incomplete requests for replay after the reset. */
1830
	spin_lock(&engine->timeline.lock);
1831
	__unwind_incomplete_requests(engine);
1832
	spin_unlock(&engine->timeline.lock);
1833

1834
	local_irq_restore(flags);
1835

1836 1837
	/*
	 * If the request was innocent, we leave the request in the ELSP
1838 1839 1840 1841 1842 1843 1844 1845 1846
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1847
	if (!request || request->fence.error != -EIO)
1848
		return;
1849

1850 1851
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
1852 1853 1854 1855 1856 1857
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1858
	regs = to_intel_context(request->ctx, engine)->lrc_reg_state;
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	if (engine->default_state) {
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (!IS_ERR(defaults)) {
			memcpy(regs, /* skip restoring the vanilla PPHWSP */
			       defaults + LRC_STATE_PN * PAGE_SIZE,
			       engine->context_size - PAGE_SIZE);
			i915_gem_object_unpin_map(engine->default_state);
		}
	}
	execlists_init_reg_state(regs, request->ctx, engine, request->ring);
1872

1873
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1874 1875
	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
	regs[CTX_RING_HEAD + 1] = request->postfix;
1876

1877 1878 1879
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1880
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1881
	unwind_wa_tail(request);
1882 1883
}

1884
static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1885
{
1886 1887
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
	struct intel_engine_cs *engine = rq->engine;
1888
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1889 1890
	u32 *cs;
	int i;
1891

1892
	cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
1893 1894
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1895

1896
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1897
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1898 1899
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1900 1901 1902 1903
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1904 1905
	}

1906
	*cs++ = MI_NOOP;
1907
	intel_ring_advance(rq, cs);
1908 1909 1910 1911

	return 0;
}

1912
static int gen8_emit_bb_start(struct i915_request *rq,
1913
			      u64 offset, u32 len,
1914
			      const unsigned int flags)
1915
{
1916
	u32 *cs;
1917 1918
	int ret;

1919 1920 1921 1922
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1923 1924
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1925 1926 1927 1928 1929
	if (rq->ctx->ppgtt &&
	    (intel_engine_flag(rq->engine) & rq->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&rq->ctx->ppgtt->base) &&
	    !intel_vgpu_active(rq->i915)) {
		ret = intel_logical_ring_emit_pdps(rq);
1930 1931
		if (ret)
			return ret;
1932

1933
		rq->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
1934 1935
	}

1936
	cs = intel_ring_begin(rq, 6);
1937 1938
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1939

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
1957 1958
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1959
	/* FIXME(BDW): Address space and security selectors. */
1960 1961 1962
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1963 1964
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
1965 1966 1967

	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;
1968
	intel_ring_advance(rq, cs);
1969 1970 1971 1972

	return 0;
}

1973
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1974
{
1975
	struct drm_i915_private *dev_priv = engine->i915;
1976 1977 1978
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1979 1980
}

1981
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1982
{
1983
	struct drm_i915_private *dev_priv = engine->i915;
1984
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1985 1986
}

1987
static int gen8_emit_flush(struct i915_request *request, u32 mode)
1988
{
1989
	u32 cmd, *cs;
1990

1991 1992 1993
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1994 1995 1996

	cmd = MI_FLUSH_DW + 1;

1997 1998 1999 2000 2001 2002 2003
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2004
	if (mode & EMIT_INVALIDATE) {
2005
		cmd |= MI_INVALIDATE_TLB;
2006
		if (request->engine->id == VCS)
2007
			cmd |= MI_INVALIDATE_BSD;
2008 2009
	}

2010 2011 2012 2013 2014
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
2015 2016 2017 2018

	return 0;
}

2019
static int gen8_emit_flush_render(struct i915_request *request,
2020
				  u32 mode)
2021
{
2022
	struct intel_engine_cs *engine = request->engine;
2023 2024
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
2025
	bool vf_flush_wa = false, dc_flush_wa = false;
2026
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
2027
	int len;
2028 2029 2030

	flags |= PIPE_CONTROL_CS_STALL;

2031
	if (mode & EMIT_FLUSH) {
2032 2033
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2034
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2035
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2036 2037
	}

2038
	if (mode & EMIT_INVALIDATE) {
2039 2040 2041 2042 2043 2044 2045 2046 2047
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

2048 2049 2050 2051
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
2052
		if (IS_GEN9(request->i915))
2053
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
2054 2055 2056 2057

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
2058
	}
2059

M
Mika Kuoppala 已提交
2060 2061 2062 2063 2064 2065 2066 2067
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

2068 2069 2070
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2071

2072 2073
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
2074

2075 2076 2077
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
2078

2079
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
2080

2081 2082
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
2083

2084
	intel_ring_advance(request, cs);
2085 2086 2087 2088

	return 0;
}

2089 2090 2091 2092 2093
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
2094
static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2095
{
C
Chris Wilson 已提交
2096 2097
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
2098 2099
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
2100
}
2101

2102
static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
2103
{
2104 2105
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2106

2107 2108
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
2109
	*cs++ = MI_USER_INTERRUPT;
2110
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2111
	request->tail = intel_ring_offset(request, cs);
2112
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2113

2114
	gen8_emit_wa_tail(request, cs);
2115
}
2116 2117
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

2118
static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2119
{
2120 2121 2122
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

2123 2124
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
2125
	*cs++ = MI_USER_INTERRUPT;
2126
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2127
	request->tail = intel_ring_offset(request, cs);
2128
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2129

2130
	gen8_emit_wa_tail(request, cs);
2131
}
2132
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2133

2134
static int gen8_init_rcs_context(struct i915_request *rq)
2135 2136 2137
{
	int ret;

2138
	ret = intel_ctx_workarounds_emit(rq);
2139 2140 2141
	if (ret)
		return ret;

2142
	ret = intel_rcs_context_init_mocs(rq);
2143 2144 2145 2146 2147 2148 2149
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2150
	return i915_gem_render_state_emit(rq);
2151 2152
}

2153 2154
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2155
 * @engine: Engine Command Streamer.
2156
 */
2157
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2158
{
2159
	struct drm_i915_private *dev_priv;
2160

2161 2162 2163 2164
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
2165 2166 2167
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
2168

2169
	dev_priv = engine->i915;
2170

2171 2172
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2173
	}
2174

2175 2176
	if (engine->cleanup)
		engine->cleanup(engine);
2177

2178
	intel_engine_cleanup_common(engine);
2179

2180
	lrc_destroy_wa_ctx(engine);
2181

2182
	engine->i915 = NULL;
2183 2184
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
2185 2186
}

2187
static void execlists_set_default_submission(struct intel_engine_cs *engine)
2188
{
2189
	engine->submit_request = execlists_submit_request;
2190
	engine->cancel_requests = execlists_cancel_requests;
2191
	engine->schedule = execlists_schedule;
2192
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2193 2194 2195

	engine->park = NULL;
	engine->unpark = NULL;
2196 2197

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2198 2199
	if (engine->i915->preempt_context)
		engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2200 2201 2202 2203

	engine->i915->caps.scheduler =
		I915_SCHEDULER_CAP_ENABLED |
		I915_SCHEDULER_CAP_PRIORITY;
2204
	if (intel_engine_has_preemption(engine))
2205
		engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2206 2207
}

2208
static void
2209
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2210 2211
{
	/* Default vfuncs which can be overriden by each engine. */
2212
	engine->init_hw = gen8_init_common_ring;
2213
	engine->reset_hw = reset_common_ring;
2214 2215 2216 2217

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

2218 2219
	engine->request_alloc = execlists_request_alloc;

2220
	engine->emit_flush = gen8_emit_flush;
2221
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
2222
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2223 2224

	engine->set_default_submission = execlists_set_default_submission;
2225

2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
2237
	engine->emit_bb_start = gen8_emit_bb_start;
2238 2239
}

2240
static inline void
2241
logical_ring_default_irqs(struct intel_engine_cs *engine)
2242
{
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
			[RCS]  = GEN8_RCS_IRQ_SHIFT,
			[BCS]  = GEN8_BCS_IRQ_SHIFT,
			[VCS]  = GEN8_VCS1_IRQ_SHIFT,
			[VCS2] = GEN8_VCS2_IRQ_SHIFT,
			[VECS] = GEN8_VECS_IRQ_SHIFT,
		};

		shift = irq_shifts[engine->id];
	}

2257 2258
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2259 2260
}

2261 2262 2263 2264 2265 2266
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

2267 2268
	intel_engine_setup_common(engine);

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

2284
	engine->execlists.fw_domains = fw_domains;
2285

2286 2287
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2288 2289 2290 2291 2292

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

2293
static int logical_ring_init(struct intel_engine_cs *engine)
2294 2295 2296
{
	int ret;

2297
	ret = intel_engine_init_common(engine);
2298 2299 2300
	if (ret)
		goto error;

2301 2302 2303 2304 2305 2306 2307 2308 2309
	if (HAS_LOGICAL_RING_ELSQ(engine->i915)) {
		engine->execlists.submit_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
		engine->execlists.ctrl_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
	} else {
		engine->execlists.submit_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_ELSP(engine));
	}
2310

2311
	engine->execlists.preempt_complete_status = ~0u;
2312 2313 2314 2315
	if (engine->i915->preempt_context) {
		struct intel_context *ce =
			to_intel_context(engine->i915->preempt_context, engine);

2316
		engine->execlists.preempt_complete_status =
2317 2318
			upper_32_bits(ce->lrc_desc);
	}
2319

2320 2321 2322 2323 2324 2325 2326
	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2327
int logical_render_ring_init(struct intel_engine_cs *engine)
2328 2329 2330 2331
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2332 2333
	logical_ring_setup(engine);

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2344 2345
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2346

2347
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2362
	return logical_ring_init(engine);
2363 2364
}

2365
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2366 2367 2368 2369
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2370 2371
}

2372
static u32
2373
make_rpcs(struct drm_i915_private *dev_priv)
2374 2375 2376 2377 2378 2379 2380
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2381
	if (INTEL_GEN(dev_priv) < 9)
2382 2383 2384 2385 2386 2387 2388 2389
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2390
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2391
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2392
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2393 2394 2395 2396
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2397
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2398
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2399
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2400 2401 2402 2403
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2404 2405
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2406
			GEN8_RPCS_EU_MIN_SHIFT;
2407
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2408 2409 2410 2411 2412 2413 2414
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2415
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2416 2417 2418
{
	u32 indirect_ctx_offset;

2419
	switch (INTEL_GEN(engine->i915)) {
2420
	default:
2421
		MISSING_CASE(INTEL_GEN(engine->i915));
2422
		/* fall through */
2423 2424 2425 2426
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2427 2428 2429 2430
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2444
static void execlists_init_reg_state(u32 *regs,
2445 2446 2447
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2448
{
2449 2450
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2465 2466
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				    CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2482 2483
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2484 2485 2486
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2487
		if (wa_ctx->indirect_ctx.size) {
2488
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2489

2490
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2491 2492
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2493

2494
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2495
				intel_lr_indirect_ctx_offset(engine) << 6;
2496 2497 2498 2499 2500
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2501

2502
			regs[CTX_BB_PER_CTX_PTR + 1] =
2503
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2504
		}
2505
	}
2506 2507 2508 2509

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2510
	/* PDP values well be assigned later if needed */
2511 2512 2513 2514 2515 2516 2517 2518
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2519

2520
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2521 2522 2523 2524
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2525
		ASSIGN_CTX_PML4(ppgtt, regs);
2526 2527
	}

2528 2529 2530 2531
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2532 2533

		i915_oa_init_reg_state(engine, ctx, regs);
2534
	}
2535 2536 2537 2538 2539 2540 2541 2542 2543
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2544
	u32 *regs;
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2559
	ctx_obj->mm.dirty = true;
2560

2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (IS_ERR(defaults))
			return PTR_ERR(defaults);

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2579 2580
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2581 2582 2583 2584 2585
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2586
	if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2587 2588 2589
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2590

2591
	i915_gem_object_unpin_map(ctx_obj);
2592 2593 2594 2595

	return 0;
}

2596
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2597
					    struct intel_engine_cs *engine)
2598
{
2599
	struct drm_i915_gem_object *ctx_obj;
2600
	struct intel_context *ce = to_intel_context(ctx, engine);
2601
	struct i915_vma *vma;
2602
	uint32_t context_size;
2603
	struct intel_ring *ring;
2604
	struct i915_timeline *timeline;
2605 2606
	int ret;

2607 2608
	if (ce->state)
		return 0;
2609

2610
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2611

2612 2613 2614 2615 2616
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2617

2618
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2619
	if (IS_ERR(ctx_obj)) {
2620 2621
		ret = PTR_ERR(ctx_obj);
		goto error_deref_obj;
2622 2623
	}

2624
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2625 2626 2627 2628 2629
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2630 2631 2632 2633 2634 2635 2636 2637
	timeline = i915_timeline_create(ctx->i915, ctx->name);
	if (IS_ERR(timeline)) {
		ret = PTR_ERR(timeline);
		goto error_deref_obj;
	}

	ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
	i915_timeline_put(timeline);
2638 2639
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2640
		goto error_deref_obj;
2641 2642
	}

2643
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2644 2645
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2646
		goto error_ring_free;
2647 2648
	}

2649
	ce->ring = ring;
2650
	ce->state = vma;
2651 2652

	return 0;
2653

2654
error_ring_free:
2655
	intel_ring_free(ring);
2656
error_deref_obj:
2657
	i915_gem_object_put(ctx_obj);
2658
	return ret;
2659
}
2660

2661
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2662
{
2663
	struct intel_engine_cs *engine;
2664
	struct i915_gem_context *ctx;
2665
	enum intel_engine_id id;
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2677
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2678
		for_each_engine(engine, dev_priv, id) {
2679 2680
			struct intel_context *ce =
				to_intel_context(ctx, engine);
2681
			u32 *reg;
2682

2683 2684
			if (!ce->state)
				continue;
2685

2686 2687 2688 2689
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2690

2691 2692 2693
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2694

C
Chris Wilson 已提交
2695
			ce->state->obj->mm.dirty = true;
2696
			i915_gem_object_unpin_map(ce->state->obj);
2697

2698
			intel_ring_reset(ce->ring, 0);
2699
		}
2700 2701
	}
}
2702 2703 2704 2705

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_lrc.c"
#endif