intel_lrc.c 70.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211 212 213 214 215 216
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
217
#define GEN8_CTX_ID_WIDTH 21
218 219
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
220

221 222 223
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

224
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
225
					    struct intel_engine_cs *engine);
226
static int intel_lr_context_pin(struct i915_gem_context *ctx,
227
				struct intel_engine_cs *engine);
228

229 230
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
231
 * @dev_priv: i915 device private
232 233 234
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
235
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
236 237 238
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
239
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
240
{
241 242 243
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
244
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
245 246
		return 1;

247
	if (INTEL_GEN(dev_priv) >= 9)
248 249
		return 1;

250 251 252
	if (enable_execlists == 0)
		return 0;

253 254 255
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
256 257 258 259
		return 1;

	return 0;
}
260

261
static void
262
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
263
{
264
	struct drm_i915_private *dev_priv = engine->i915;
265

266
	if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
267
		engine->idle_lite_restore_wa = ~0;
268

269 270
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
					IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
271
					(engine->id == VCS || engine->id == VCS2);
272

273
	engine->ctx_desc_template = GEN8_CTX_VALID;
274
	if (IS_GEN8(dev_priv))
275 276
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
277 278 279 280 281 282 283

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
284 285
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
286 287
}

288
/**
289 290 291
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
292
 * @engine: Engine the descriptor will be used with
293
 *
294 295 296 297 298
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
299 300 301 302 303 304 305
 * This is what a descriptor looks like, from LSB to MSB::
 *
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
306
 */
307
static void
308
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
309
				   struct intel_engine_cs *engine)
310
{
311
	struct intel_context *ce = &ctx->engine[engine->id];
312
	u64 desc;
313

314
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
315

316 317
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
318 319
	desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
								/* bits 12-31 */
320
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
321

322
	ce->lrc_desc = desc;
323 324
}

325
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
326
				     struct intel_engine_cs *engine)
327
{
328
	return ctx->engine[engine->id].lrc_desc;
329
}
330

331 332
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
333
{
334

335
	struct intel_engine_cs *engine = rq0->engine;
336
	struct drm_i915_private *dev_priv = rq0->i915;
337
	uint64_t desc[2];
338

339
	if (rq1) {
340
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
341 342 343 344
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
345

346
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
347
	rq0->elsp_submitted++;
348

349
	/* You must always write both descriptors in the order below. */
350 351
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
352

353
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
354
	/* The context is automatically loaded after the following */
355
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
356

357
	/* ELSP is a wo register, use another nearby reg for posting */
358
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
359 360
}

361 362 363 364 365 366 367 368 369 370
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
371
{
372
	struct intel_engine_cs *engine = rq->engine;
373
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
374
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
375

376
	reg_state[CTX_RING_TAIL+1] = intel_ring_offset(rq->ring, rq->tail);
377

378 379 380 381 382 383 384
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
385 386
}

387 388
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
389
{
390
	struct drm_i915_private *dev_priv = rq0->i915;
391
	unsigned int fw_domains = rq0->engine->fw_domains;
392

393
	execlists_update_context(rq0);
394

395
	if (rq1)
396
		execlists_update_context(rq1);
397

398
	spin_lock_irq(&dev_priv->uncore.lock);
399
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
400

401
	execlists_elsp_write(rq0, rq1);
402

403
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
404
	spin_unlock_irq(&dev_priv->uncore.lock);
405 406
}

407 408 409 410 411 412 413 414 415 416 417 418 419 420
static inline void execlists_context_status_change(
		struct drm_i915_gem_request *rq,
		unsigned long status)
{
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;

	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
}

421
static void execlists_context_unqueue(struct intel_engine_cs *engine)
422
{
423
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
424
	struct drm_i915_gem_request *cursor, *tmp;
425

426
	assert_spin_locked(&engine->execlist_lock);
427

428 429 430 431
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
432
	WARN_ON(!intel_irqs_enabled(engine->i915));
433

434
	/* Try to read in pairs */
435
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
436 437 438
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
439
		} else if (req0->ctx == cursor->ctx) {
440 441
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
442
			cursor->elsp_submitted = req0->elsp_submitted;
443
			list_del(&req0->execlist_link);
444
			i915_gem_request_put(req0);
445 446
			req0 = cursor;
		} else {
447 448 449 450 451 452 453 454 455 456 457 458 459 460
			if (IS_ENABLED(CONFIG_DRM_I915_GVT)) {
				/*
				 * req0 (after merged) ctx requires single
				 * submission, stop picking
				 */
				if (req0->ctx->execlists_force_single_submission)
					break;
				/*
				 * req0 ctx doesn't require single submission,
				 * but next req ctx requires, stop picking
				 */
				if (cursor->ctx->execlists_force_single_submission)
					break;
			}
461
			req1 = cursor;
462
			WARN_ON(req1->elsp_submitted);
463 464 465 466
			break;
		}
	}

467 468 469
	if (unlikely(!req0))
		return;

470 471 472 473 474 475
	execlists_context_status_change(req0, INTEL_CONTEXT_SCHEDULE_IN);

	if (req1)
		execlists_context_status_change(req1,
						INTEL_CONTEXT_SCHEDULE_IN);

476
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
477
		/*
478 479 480 481 482 483
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
484
		 */
485
		req0->tail += 8;
486
		req0->tail &= req0->ring->size - 1;
487 488
	}

489
	execlists_submit_requests(req0, req1);
490 491
}

492
static unsigned int
493
execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
494
{
495
	struct drm_i915_gem_request *head_req;
496

497
	assert_spin_locked(&engine->execlist_lock);
498

499
	head_req = list_first_entry_or_null(&engine->execlist_queue,
500
					    struct drm_i915_gem_request,
501 502
					    execlist_link);

503 504
	if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
               return 0;
505 506 507 508 509 510

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

511 512
	execlists_context_status_change(head_req, INTEL_CONTEXT_SCHEDULE_OUT);

513
	list_del(&head_req->execlist_link);
514
	i915_gem_request_put(head_req);
515

516
	return 1;
517 518
}

519
static u32
520
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
521
		   u32 *context_id)
B
Ben Widawsky 已提交
522
{
523
	struct drm_i915_private *dev_priv = engine->i915;
524
	u32 status;
B
Ben Widawsky 已提交
525

526 527
	read_pointer %= GEN8_CSB_ENTRIES;

528
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
529 530 531

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
532

533
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
534 535 536
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
537 538
}

539
/*
540 541 542
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
543
static void intel_lrc_irq_handler(unsigned long data)
544
{
545
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
546
	struct drm_i915_private *dev_priv = engine->i915;
547
	u32 status_pointer;
548
	unsigned int read_pointer, write_pointer;
549 550
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
551 552
	unsigned int submit_contexts = 0;

553
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
554

555
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
556

557
	read_pointer = engine->next_context_status_buffer;
558
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
559
	if (read_pointer > write_pointer)
560
		write_pointer += GEN8_CSB_ENTRIES;
561 562

	while (read_pointer < write_pointer) {
563 564 565 566 567 568
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
569

570 571 572 573 574 575 576 577
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

578
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
579 580 581 582 583 584 585

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
586 587 588 589 590
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

591
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
592 593
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
594
				execlists_check_remove_request(engine, csb[i][1]);
595 596
	}

597
	if (submit_contexts) {
598
		if (!engine->disable_lite_restore_wa ||
599 600
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
601
	}
602

603
	spin_unlock(&engine->execlist_lock);
604 605 606

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
607 608
}

609
static void execlists_context_queue(struct drm_i915_gem_request *request)
610
{
611
	struct intel_engine_cs *engine = request->engine;
612
	struct drm_i915_gem_request *cursor;
613
	int num_elements = 0;
614

615
	spin_lock_bh(&engine->execlist_lock);
616

617
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
618 619 620 621
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
622
		struct drm_i915_gem_request *tail_req;
623

624
		tail_req = list_last_entry(&engine->execlist_queue,
625
					   struct drm_i915_gem_request,
626 627
					   execlist_link);

628
		if (request->ctx == tail_req->ctx) {
629
			WARN(tail_req->elsp_submitted != 0,
630
				"More than 2 already-submitted reqs queued\n");
631
			list_del(&tail_req->execlist_link);
632
			i915_gem_request_put(tail_req);
633 634 635
		}
	}

636
	i915_gem_request_get(request);
637
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
638
	request->ctx_hw_id = request->ctx->hw_id;
639
	if (num_elements == 0)
640
		execlists_context_unqueue(engine);
641

642
	spin_unlock_bh(&engine->execlist_lock);
643 644
}

645
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
646 647
				 struct list_head *vmas)
{
648
	const unsigned other_rings = ~intel_engine_flag(req->engine);
649 650 651 652 653 654 655 656
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

657
		if (obj->active & other_rings) {
658
			ret = i915_gem_object_sync(obj, req);
659 660 661
			if (ret)
				return ret;
		}
662 663 664 665 666 667 668 669 670 671 672 673 674

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
675
	return req->engine->emit_flush(req, EMIT_INVALIDATE);
676 677
}

678
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
679
{
680
	struct intel_engine_cs *engine = request->engine;
681
	struct intel_context *ce = &request->ctx->engine[engine->id];
682
	int ret;
683

684 685 686 687
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
688
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
689

690
	if (!ce->state) {
691 692 693 694 695
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

696
	request->ring = ce->ring;
697

698 699 700 701 702 703
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
704
		ret = i915_guc_wq_check_space(request);
705 706 707 708
		if (ret)
			return ret;
	}

709 710 711
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
712

713 714 715 716
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

717
	if (!ce->initialised) {
718 719 720 721
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

722
		ce->initialised = true;
723 724 725 726 727 728 729 730 731
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

732
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
733 734 735
	return 0;

err_unpin:
736
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
737
	return ret;
738 739 740 741
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
742
 * @request: Request to advance the logical ringbuffer of.
743 744 745 746 747 748
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
749
static int
750
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
751
{
752
	struct intel_ring *ring = request->ring;
753
	struct intel_engine_cs *engine = request->engine;
754

755 756
	intel_ring_advance(ring);
	request->tail = ring->tail;
757

758 759 760 761 762 763
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
764 765 766
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
767

768 769 770 771 772 773 774 775
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
776

777 778
	if (i915.enable_guc_submission)
		i915_guc_submit(request);
779 780
	else
		execlists_context_queue(request);
781 782

	return 0;
783 784
}

785
/**
786
 * intel_execlists_submission() - submit a batchbuffer for execution, Execlists style
787
 * @params: execbuffer call parameters.
788 789 790 791 792 793 794 795
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
796
int intel_execlists_submission(struct i915_execbuffer_params *params,
797
			       struct drm_i915_gem_execbuffer2 *args,
798
			       struct list_head *vmas)
799
{
800
	struct drm_device       *dev = params->dev;
801
	struct intel_engine_cs *engine = params->engine;
802
	struct drm_i915_private *dev_priv = to_i915(dev);
803
	struct intel_ring *ring = params->request->ring;
804
	u64 exec_start;
805 806 807 808 809 810 811 812 813 814
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
815
		if (instp_mode != 0 && engine->id != RCS) {
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

840
	ret = execlists_move_to_gpu(params->request, vmas);
841 842 843
	if (ret)
		return ret;

844
	if (engine->id == RCS &&
845
	    instp_mode != dev_priv->relative_constants_mode) {
846
		ret = intel_ring_begin(params->request, 4);
847 848 849
		if (ret)
			return ret;

850 851 852 853 854
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit_reg(ring, INSTPM);
		intel_ring_emit(ring, instp_mask << 16 | instp_mode);
		intel_ring_advance(ring);
855 856 857 858

		dev_priv->relative_constants_mode = instp_mode;
	}

859 860 861
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

862 863 864
	ret = engine->emit_bb_start(params->request,
				    exec_start, args->batch_len,
				    params->dispatch_flags);
865 866 867
	if (ret)
		return ret;

868
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
869

870
	i915_gem_execbuffer_move_to_active(vmas, params->request);
871

872 873 874
	return 0;
}

875
void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
876
{
877
	struct drm_i915_gem_request *req, *tmp;
878
	LIST_HEAD(cancel_list);
879

880
	WARN_ON(!mutex_is_locked(&engine->i915->drm.struct_mutex));
881

882
	spin_lock_bh(&engine->execlist_lock);
883
	list_replace_init(&engine->execlist_queue, &cancel_list);
884
	spin_unlock_bh(&engine->execlist_lock);
885

886
	list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
887
		list_del(&req->execlist_link);
888
		i915_gem_request_put(req);
889 890 891
	}
}

892
void intel_logical_ring_stop(struct intel_engine_cs *engine)
893
{
894
	struct drm_i915_private *dev_priv = engine->i915;
895 896
	int ret;

897
	if (!intel_engine_initialized(engine))
898 899
		return;

900
	ret = intel_engine_idle(engine);
901
	if (ret)
902
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
903
			  engine->name, ret);
904 905

	/* TODO: Is this correct with Execlists enabled? */
906
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
907 908 909 910
	if (intel_wait_for_register(dev_priv,
				    RING_MI_MODE(engine->mmio_base),
				    MODE_IDLE, MODE_IDLE,
				    1000)) {
911
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
912 913
		return;
	}
914
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
915 916
}

917
static int intel_lr_context_pin(struct i915_gem_context *ctx,
918
				struct intel_engine_cs *engine)
919
{
920
	struct drm_i915_private *dev_priv = ctx->i915;
921
	struct intel_context *ce = &ctx->engine[engine->id];
922 923
	void *vaddr;
	u32 *lrc_reg_state;
924
	int ret;
925

926
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
927

928
	if (ce->pin_count++)
929 930
		return 0;

931 932
	ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
				    PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
933
	if (ret)
934
		goto err;
935

936
	vaddr = i915_gem_object_pin_map(ce->state);
937 938
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
939 940 941
		goto unpin_ctx_obj;
	}

942 943
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

944
	ret = intel_ring_pin(ce->ring);
945
	if (ret)
946
		goto unpin_map;
947

948
	ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
949
	intel_lr_context_descriptor_update(ctx, engine);
950

951
	lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ring->vma->node.start;
952 953
	ce->lrc_reg_state = lrc_reg_state;
	ce->state->dirty = true;
954

955 956 957
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
958

959
	i915_gem_context_get(ctx);
960
	return 0;
961

962
unpin_map:
963
	i915_gem_object_unpin_map(ce->state);
964
unpin_ctx_obj:
965
	i915_gem_object_ggtt_unpin(ce->state);
966
err:
967
	ce->pin_count = 0;
968 969 970
	return ret;
}

971
void intel_lr_context_unpin(struct i915_gem_context *ctx,
972
			    struct intel_engine_cs *engine)
973
{
974
	struct intel_context *ce = &ctx->engine[engine->id];
975

976
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
977
	GEM_BUG_ON(ce->pin_count == 0);
978

979
	if (--ce->pin_count)
980
		return;
981

982
	intel_ring_unpin(ce->ring);
983

984 985
	i915_gem_object_unpin_map(ce->state);
	i915_gem_object_ggtt_unpin(ce->state);
986

987 988 989
	ce->lrc_vma = NULL;
	ce->lrc_desc = 0;
	ce->lrc_reg_state = NULL;
990

991
	i915_gem_context_put(ctx);
992 993
}

994
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
995 996
{
	int ret, i;
997
	struct intel_ring *ring = req->ring;
998
	struct i915_workarounds *w = &req->i915->workarounds;
999

1000
	if (w->count == 0)
1001 1002
		return 0;

1003
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
1004 1005 1006
	if (ret)
		return ret;

1007
	ret = intel_ring_begin(req, w->count * 2 + 2);
1008 1009 1010
	if (ret)
		return ret;

1011
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
1012
	for (i = 0; i < w->count; i++) {
1013 1014
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
1015
	}
1016
	intel_ring_emit(ring, MI_NOOP);
1017

1018
	intel_ring_advance(ring);
1019

1020
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
1021 1022 1023 1024 1025 1026
	if (ret)
		return ret;

	return 0;
}

1027
#define wa_ctx_emit(batch, index, cmd)					\
1028
	do {								\
1029 1030
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1031 1032
			return -ENOSPC;					\
		}							\
1033
		batch[__index] = (cmd);					\
1034 1035
	} while (0)

V
Ville Syrjälä 已提交
1036
#define wa_ctx_emit_reg(batch, index, reg) \
1037
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1055
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1056
						uint32_t *batch,
1057 1058 1059 1060
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1061
	/*
1062
	 * WaDisableLSQCROPERFforOCL:skl,kbl
1063 1064 1065 1066
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1067 1068
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0) ||
	    IS_KBL_REVID(engine->i915, 0, KBL_REVID_E0))
1069 1070
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1071
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1072
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1073
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1074
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1075 1076 1077
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1078
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1089
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1090
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1091
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1092
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1093
	wa_ctx_emit(batch, index, 0);
1094 1095 1096 1097

	return index;
}

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

1117 1118 1119 1120 1121 1122
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1123
 *
1124 1125
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1126
 *
1127 1128 1129 1130
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1131
 */
1132
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1133
				    struct i915_wa_ctx_bb *wa_ctx,
1134
				    uint32_t *batch,
1135 1136
				    uint32_t *offset)
{
1137
	uint32_t scratch_addr;
1138 1139
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1140
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1141
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1142

1143
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1144
	if (IS_BROADWELL(engine->i915)) {
1145
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1146 1147 1148
		if (rc < 0)
			return rc;
		index = rc;
1149 1150
	}

1151 1152
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1153
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1154

1155 1156 1157 1158 1159 1160 1161 1162 1163
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1164

1165 1166
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1167
		wa_ctx_emit(batch, index, MI_NOOP);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1178 1179 1180
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1181
 *
1182
 *  The number of DWORDS written are returned using this field.
1183 1184 1185 1186
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1187
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1188
			       struct i915_wa_ctx_bb *wa_ctx,
1189
			       uint32_t *batch,
1190 1191 1192 1193
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1194
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1195
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1196

1197
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1198 1199 1200 1201

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1202
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1203
				    struct i915_wa_ctx_bb *wa_ctx,
1204
				    uint32_t *batch,
1205 1206
				    uint32_t *offset)
{
1207
	int ret;
1208 1209
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1210
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1211 1212
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1213
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1214

1215
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1216
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1217 1218 1219 1220
	if (ret < 0)
		return ret;
	index = ret;

1221 1222 1223 1224 1225 1226 1227
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
	wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
	wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
			    GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
	wa_ctx_emit(batch, index, MI_NOOP);

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
		uint32_t scratch_addr
			= engine->scratch.gtt_offset + 2*CACHELINE_BYTES;

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268

	/* WaMediaPoolStateCmdInWABB:bxt */
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
		u32 eu_pool_config = 0x00777000;
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
		wa_ctx_emit(batch, index, eu_pool_config);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}

1269 1270 1271 1272 1273 1274 1275
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1276
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1277
			       struct i915_wa_ctx_bb *wa_ctx,
1278
			       uint32_t *batch,
1279 1280 1281 1282
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1283
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1284 1285
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1286
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1287
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1288 1289 1290 1291 1292
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1293
	/* WaClearTdlStateAckDirtyBits:bxt */
1294
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1312
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1313 1314
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1315 1316
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1317 1318 1319 1320 1321
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1322
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1323 1324 1325
{
	int ret;

1326 1327
	engine->wa_ctx.obj = i915_gem_object_create(&engine->i915->drm,
						    PAGE_ALIGN(size));
1328
	if (IS_ERR(engine->wa_ctx.obj)) {
1329
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1330 1331 1332
		ret = PTR_ERR(engine->wa_ctx.obj);
		engine->wa_ctx.obj = NULL;
		return ret;
1333 1334
	}

1335
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1336 1337 1338
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1339
		i915_gem_object_put(engine->wa_ctx.obj);
1340 1341 1342 1343 1344 1345
		return ret;
	}

	return 0;
}

1346
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1347
{
1348 1349
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1350
		i915_gem_object_put(engine->wa_ctx.obj);
1351
		engine->wa_ctx.obj = NULL;
1352 1353 1354
	}
}

1355
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1356 1357 1358 1359 1360
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1361
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1362

1363
	WARN_ON(engine->id != RCS);
1364

1365
	/* update this when WA for higher Gen are added */
1366
	if (INTEL_GEN(engine->i915) > 9) {
1367
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1368
			  INTEL_GEN(engine->i915));
1369
		return 0;
1370
	}
1371

1372
	/* some WA perform writes to scratch page, ensure it is valid */
1373 1374
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1375 1376 1377
		return -EINVAL;
	}

1378
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1379 1380 1381 1382 1383
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1384
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1385 1386 1387
	batch = kmap_atomic(page);
	offset = 0;

1388
	if (IS_GEN8(engine->i915)) {
1389
		ret = gen8_init_indirectctx_bb(engine,
1390 1391 1392 1393 1394 1395
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1396
		ret = gen8_init_perctx_bb(engine,
1397 1398 1399 1400 1401
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1402
	} else if (IS_GEN9(engine->i915)) {
1403
		ret = gen9_init_indirectctx_bb(engine,
1404 1405 1406 1407 1408 1409
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1410
		ret = gen9_init_perctx_bb(engine,
1411 1412 1413 1414 1415
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1416 1417 1418 1419 1420
	}

out:
	kunmap_atomic(batch);
	if (ret)
1421
		lrc_destroy_wa_ctx_obj(engine);
1422 1423 1424 1425

	return ret;
}

1426 1427
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1428
	struct drm_i915_private *dev_priv = engine->i915;
1429 1430 1431 1432 1433 1434

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   (u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1435
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1436
{
1437
	struct drm_i915_private *dev_priv = engine->i915;
1438
	unsigned int next_context_status_buffer_hw;
1439

1440
	lrc_init_hws(engine);
1441

1442 1443 1444
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1445

1446
	I915_WRITE(RING_MODE_GEN7(engine),
1447 1448
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1449
	POSTING_READ(RING_MODE_GEN7(engine));
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1460 1461
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1462
	 */
1463
	next_context_status_buffer_hw =
1464
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1465 1466 1467 1468 1469 1470 1471 1472 1473

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1474 1475
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1476

1477
	intel_engine_init_hangcheck(engine);
1478

1479
	return intel_mocs_init_engine(engine);
1480 1481
}

1482
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1483
{
1484
	struct drm_i915_private *dev_priv = engine->i915;
1485 1486
	int ret;

1487
	ret = gen8_init_common_ring(engine);
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1501
	return init_workarounds_ring(engine);
1502 1503
}

1504
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1505 1506 1507
{
	int ret;

1508
	ret = gen8_init_common_ring(engine);
1509 1510 1511
	if (ret)
		return ret;

1512
	return init_workarounds_ring(engine);
1513 1514
}

1515 1516 1517
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1518
	struct intel_ring *ring = req->ring;
1519
	struct intel_engine_cs *engine = req->engine;
1520 1521 1522
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1523
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1524 1525 1526
	if (ret)
		return ret;

1527
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1528 1529 1530
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1531 1532 1533 1534
		intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
		intel_ring_emit(ring, upper_32_bits(pd_daddr));
		intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
		intel_ring_emit(ring, lower_32_bits(pd_daddr));
1535 1536
	}

1537 1538
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1539 1540 1541 1542

	return 0;
}

1543
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1544 1545
			      u64 offset, u32 len,
			      unsigned int dispatch_flags)
1546
{
1547
	struct intel_ring *ring = req->ring;
1548
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1549 1550
	int ret;

1551 1552 1553 1554
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1555 1556
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1557
	if (req->ctx->ppgtt &&
1558
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1559
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1560
		    !intel_vgpu_active(req->i915)) {
1561 1562 1563 1564
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1565

1566
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1567 1568
	}

1569
	ret = intel_ring_begin(req, 4);
1570 1571 1572 1573
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1574 1575 1576 1577 1578 1579 1580 1581
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
			(ppgtt<<8) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1582 1583 1584 1585

	return 0;
}

1586
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1587
{
1588
	struct drm_i915_private *dev_priv = engine->i915;
1589 1590 1591
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1592 1593
}

1594
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1595
{
1596
	struct drm_i915_private *dev_priv = engine->i915;
1597
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1598 1599
}

1600
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1601
{
1602 1603
	struct intel_ring *ring = request->ring;
	u32 cmd;
1604 1605
	int ret;

1606
	ret = intel_ring_begin(request, 4);
1607 1608 1609 1610 1611
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1612 1613 1614 1615 1616 1617 1618
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1619
	if (mode & EMIT_INVALIDATE) {
1620
		cmd |= MI_INVALIDATE_TLB;
1621
		if (request->engine->id == VCS)
1622
			cmd |= MI_INVALIDATE_BSD;
1623 1624
	}

1625 1626 1627 1628 1629 1630 1631
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
			I915_GEM_HWS_SCRATCH_ADDR |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0); /* upper addr */
	intel_ring_emit(ring, 0); /* value */
	intel_ring_advance(ring);
1632 1633 1634 1635

	return 0;
}

1636
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1637
				  u32 mode)
1638
{
1639
	struct intel_ring *ring = request->ring;
1640
	struct intel_engine_cs *engine = request->engine;
1641
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1642
	bool vf_flush_wa = false, dc_flush_wa = false;
1643 1644
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1645
	int len;
1646 1647 1648

	flags |= PIPE_CONTROL_CS_STALL;

1649
	if (mode & EMIT_FLUSH) {
1650 1651
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1652
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1653
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1654 1655
	}

1656
	if (mode & EMIT_INVALIDATE) {
1657 1658 1659 1660 1661 1662 1663 1664 1665
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1666 1667 1668 1669
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1670
		if (IS_GEN9(request->i915))
1671
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1672 1673 1674 1675

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1676
	}
1677

M
Mika Kuoppala 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1687 1688 1689
	if (ret)
		return ret;

1690
	if (vf_flush_wa) {
1691 1692 1693 1694 1695 1696
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
1697 1698
	}

M
Mika Kuoppala 已提交
1699
	if (dc_flush_wa) {
1700 1701 1702 1703 1704 1705
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1706 1707
	}

1708 1709 1710 1711 1712 1713
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1714 1715

	if (dc_flush_wa) {
1716 1717 1718 1719 1720 1721
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1722 1723
	}

1724
	intel_ring_advance(ring);
1725 1726 1727 1728

	return 0;
}

1729
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1741
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1742 1743
}

1744 1745 1746 1747 1748 1749 1750
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

1751
static int gen8_emit_request(struct drm_i915_gem_request *request)
1752
{
1753
	struct intel_ring *ring = request->ring;
1754 1755
	int ret;

1756
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1757 1758 1759
	if (ret)
		return ret;

1760 1761
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1762

1763 1764 1765 1766 1767 1768 1769 1770
	intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_ring_emit(ring,
			intel_hws_seqno_address(request->engine) |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, request->fence.seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1771 1772
	return intel_logical_ring_advance_and_submit(request);
}
1773

1774 1775
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
1776
	struct intel_ring *ring = request->ring;
1777
	int ret;
1778

1779
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1780 1781 1782
	if (ret)
		return ret;

1783 1784 1785
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1786 1787 1788 1789
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1790 1791 1792 1793 1794 1795 1796 1797
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring,
			(PIPE_CONTROL_GLOBAL_GTT_IVB |
			 PIPE_CONTROL_CS_STALL |
			 PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, i915_gem_request_get_seqno(request));
1798
	/* We're thrashing one dword of HWS. */
1799 1800 1801
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1802
	return intel_logical_ring_advance_and_submit(request);
1803 1804
}

1805
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1806 1807 1808 1809
{
	struct render_state so;
	int ret;

1810
	ret = i915_gem_render_state_prepare(req->engine, &so);
1811 1812 1813 1814 1815 1816
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1817
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1818 1819
					 so.rodata->batch_items * 4,
					 I915_DISPATCH_SECURE);
1820 1821 1822
	if (ret)
		goto out;

1823
	ret = req->engine->emit_bb_start(req,
1824 1825 1826
					 (so.ggtt_offset + so.aux_batch_offset),
					 so.aux_batch_size,
					 I915_DISPATCH_SECURE);
1827 1828 1829
	if (ret)
		goto out;

1830
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1831 1832 1833 1834 1835 1836

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1837
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1838 1839 1840
{
	int ret;

1841
	ret = intel_logical_ring_workarounds_emit(req);
1842 1843 1844
	if (ret)
		return ret;

1845 1846 1847 1848 1849 1850 1851 1852
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1853
	return intel_lr_context_render_state_init(req);
1854 1855
}

1856 1857
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1858
 * @engine: Engine Command Streamer.
1859
 */
1860
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1861
{
1862
	struct drm_i915_private *dev_priv;
1863

1864
	if (!intel_engine_initialized(engine))
1865 1866
		return;

1867 1868 1869 1870 1871 1872 1873
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1874
	dev_priv = engine->i915;
1875

1876 1877 1878
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1879
	}
1880

1881 1882
	if (engine->cleanup)
		engine->cleanup(engine);
1883

1884
	intel_engine_cleanup_cmd_parser(engine);
1885
	i915_gem_batch_pool_fini(&engine->batch_pool);
1886

1887 1888
	intel_engine_fini_breadcrumbs(engine);

1889
	if (engine->status_page.obj) {
1890
		i915_gem_object_unpin_map(engine->status_page.obj);
1891
		engine->status_page.obj = NULL;
1892
	}
1893
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1894

1895 1896 1897
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
1898

1899
	lrc_destroy_wa_ctx_obj(engine);
1900
	engine->i915 = NULL;
1901 1902
}

1903
static void
1904
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1905 1906
{
	/* Default vfuncs which can be overriden by each engine. */
1907 1908 1909
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
1910 1911
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1912
	engine->emit_bb_start = gen8_emit_bb_start;
1913
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1914
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1915 1916
}

1917
static inline void
1918
logical_ring_default_irqs(struct intel_engine_cs *engine)
1919
{
1920
	unsigned shift = engine->irq_shift;
1921 1922
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1923 1924
}

1925
static int
1926 1927 1928
lrc_setup_hws(struct intel_engine_cs *engine,
	      struct drm_i915_gem_object *dctx_obj)
{
1929
	void *hws;
1930 1931 1932 1933

	/* The HWSP is part of the default context object in LRC mode. */
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
				       LRC_PPHWSP_PN * PAGE_SIZE;
1934 1935 1936 1937
	hws = i915_gem_object_pin_map(dctx_obj);
	if (IS_ERR(hws))
		return PTR_ERR(hws);
	engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1938
	engine->status_page.obj = dctx_obj;
1939 1940

	return 0;
1941 1942
}

1943 1944 1945 1946 1947 1948
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1949 1950
	intel_engine_setup_common(engine);

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1976 1977 1978 1979 1980 1981
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1982
	ret = intel_engine_init_common(engine);
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
	if (ret)
		goto error;

	ret = execlists_context_deferred_alloc(dctx, engine);
	if (ret)
		goto error;

	/* As this is the default context, always pin it */
	ret = intel_lr_context_pin(dctx, engine);
	if (ret) {
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
		goto error;
	}

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2012
int logical_render_ring_init(struct intel_engine_cs *engine)
2013 2014 2015 2016
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2017 2018
	logical_ring_setup(engine);

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;

2032
	ret = intel_init_pipe_control(engine, 4096);
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

	ret = logical_ring_init(engine);
	if (ret) {
		lrc_destroy_wa_ctx_obj(engine);
	}

	return ret;
}

2055
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2056 2057 2058 2059
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2060 2061
}

2062
static u32
2063
make_rpcs(struct drm_i915_private *dev_priv)
2064 2065 2066 2067 2068 2069 2070
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2071
	if (INTEL_GEN(dev_priv) < 9)
2072 2073 2074 2075 2076 2077 2078 2079
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2080
	if (INTEL_INFO(dev_priv)->has_slice_pg) {
2081
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2082
		rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2083 2084 2085 2086
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2087
	if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2088
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2089
		rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2090 2091 2092 2093
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2094 2095
	if (INTEL_INFO(dev_priv)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2096
			GEN8_RPCS_EU_MIN_SHIFT;
2097
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2098 2099 2100 2101 2102 2103 2104
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2105
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2106 2107 2108
{
	u32 indirect_ctx_offset;

2109
	switch (INTEL_GEN(engine->i915)) {
2110
	default:
2111
		MISSING_CASE(INTEL_GEN(engine->i915));
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2126
static int
2127
populate_lr_context(struct i915_gem_context *ctx,
2128
		    struct drm_i915_gem_object *ctx_obj,
2129
		    struct intel_engine_cs *engine,
2130
		    struct intel_ring *ring)
2131
{
2132
	struct drm_i915_private *dev_priv = ctx->i915;
2133
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2134 2135
	void *vaddr;
	u32 *reg_state;
2136 2137
	int ret;

2138 2139 2140
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2141 2142 2143 2144 2145 2146
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

2147 2148 2149 2150
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2151 2152
		return ret;
	}
2153
	ctx_obj->dirty = true;
2154 2155 2156

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2157
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2158 2159 2160 2161 2162 2163

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2164
	reg_state[CTX_LRI_HEADER_0] =
2165 2166 2167
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2168 2169
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2170
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2171
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2172 2173 2174 2175
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2176 2177 2178
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2179 2180 2181 2182
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2183
		       ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2184 2185 2186 2187 2188 2189
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2190
		       RING_BB_PPGTT);
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2206 2207 2208 2209 2210 2211 2212
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2213
				intel_lr_indirect_ctx_offset(engine) << 6;
2214 2215 2216 2217 2218

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2219
	}
2220
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2221 2222
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2223
	/* PDP values well be assigned later if needed */
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2240

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2253
		execlists_update_context_pdps(ppgtt, reg_state);
2254 2255
	}

2256
	if (engine->id == RCS) {
2257
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2258
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2259
			       make_rpcs(dev_priv));
2260 2261
	}

2262
	i915_gem_object_unpin_map(ctx_obj);
2263 2264 2265 2266

	return 0;
}

2267 2268
/**
 * intel_lr_context_size() - return the size of the context for an engine
2269
 * @engine: which engine to find the context size for
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2281
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2282 2283 2284
{
	int ret = 0;

2285
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2286

2287
	switch (engine->id) {
2288
	case RCS:
2289
		if (INTEL_GEN(engine->i915) >= 9)
2290 2291 2292
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2303 2304
}

2305
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2306
					    struct intel_engine_cs *engine)
2307
{
2308
	struct drm_i915_gem_object *ctx_obj;
2309
	struct intel_context *ce = &ctx->engine[engine->id];
2310
	uint32_t context_size;
2311
	struct intel_ring *ring;
2312 2313
	int ret;

2314
	WARN_ON(ce->state);
2315

2316
	context_size = round_up(intel_lr_context_size(engine), 4096);
2317

2318 2319 2320
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2321
	ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2322
	if (IS_ERR(ctx_obj)) {
2323
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2324
		return PTR_ERR(ctx_obj);
2325 2326
	}

2327
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2328 2329
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2330
		goto error_deref_obj;
2331 2332
	}

2333
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2334 2335
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2336
		goto error_ring_free;
2337 2338
	}

2339
	ce->ring = ring;
2340 2341
	ce->state = ctx_obj;
	ce->initialised = engine->init_context == NULL;
2342 2343

	return 0;
2344

2345
error_ring_free:
2346
	intel_ring_free(ring);
2347
error_deref_obj:
2348
	i915_gem_object_put(ctx_obj);
2349
	ce->ring = NULL;
2350
	ce->state = NULL;
2351
	return ret;
2352
}
2353

2354
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2355
			    struct i915_gem_context *ctx)
2356
{
2357
	struct intel_engine_cs *engine;
2358

2359
	for_each_engine(engine, dev_priv) {
2360 2361
		struct intel_context *ce = &ctx->engine[engine->id];
		struct drm_i915_gem_object *ctx_obj = ce->state;
2362
		void *vaddr;
2363 2364 2365 2366 2367
		uint32_t *reg_state;

		if (!ctx_obj)
			continue;

2368 2369
		vaddr = i915_gem_object_pin_map(ctx_obj);
		if (WARN_ON(IS_ERR(vaddr)))
2370
			continue;
2371 2372 2373

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
		ctx_obj->dirty = true;
2374 2375 2376 2377

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2378
		i915_gem_object_unpin_map(ctx_obj);
2379

2380 2381
		ce->ring->head = 0;
		ce->ring->tail = 0;
2382 2383
	}
}