intel_lrc.c 77.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "intel_lrc_reg.h"
141
#include "intel_mocs.h"
142

143 144 145 146 147 148 149 150 151 152 153 154 155
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
156

157
#define GEN8_CTX_STATUS_COMPLETED_MASK \
158
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
159

160 161
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
162
#define WA_TAIL_DWORDS 2
163
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
164

165
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
166
					    struct intel_engine_cs *engine);
167 168 169 170
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
	return rq->priotree.priority;
}

static inline bool need_preempt(const struct intel_engine_cs *engine,
				const struct i915_request *last,
				int prio)
{
	return engine->i915->preempt_context && prio > max(rq_prio(last), 0);
}

189
/**
190 191 192
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
193
 * @engine: Engine the descriptor will be used with
194
 *
195 196 197 198 199
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
200 201
 * This is what a descriptor looks like, from LSB to MSB::
 *
202
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
203 204 205 206
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
207 208 209 210 211 212 213 214 215 216 217 218
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
219
 */
220
static void
221
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
222
				   struct intel_engine_cs *engine)
223
{
224
	struct intel_context *ce = &ctx->engine[engine->id];
225
	u64 desc;
226

227 228
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
229

230
	desc = ctx->desc_template;				/* bits  0-11 */
231 232
	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));

233
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
234
								/* bits 12-31 */
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));

	if (INTEL_GEN(ctx->i915) >= 11) {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
253

254
	ce->lrc_desc = desc;
255 256
}

257 258 259 260
static struct i915_priolist *
lookup_priolist(struct intel_engine_cs *engine,
		struct i915_priotree *pt,
		int prio)
261
{
262
	struct intel_engine_execlists * const execlists = &engine->execlists;
263 264 265 266
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

267
	if (unlikely(execlists->no_priolist))
268 269 270 271 272
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
273
	parent = &execlists->queue.rb_node;
274 275
	while (*parent) {
		rb = *parent;
276
		p = to_priolist(rb);
277 278 279 280 281 282
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
283
			return p;
284 285 286 287
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
288
		p = &execlists->default_priolist;
289 290 291 292 293 294 295 296 297 298 299 300 301 302
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
303
			execlists->no_priolist = true;
304 305 306 307 308
			goto find_priolist;
		}
	}

	p->priority = prio;
309
	INIT_LIST_HEAD(&p->requests);
310
	rb_link_node(&p->node, rb, parent);
311
	rb_insert_color(&p->node, &execlists->queue);
312 313

	if (first)
314
		execlists->first = &p->node;
315

316
	return p;
317 318
}

319
static void unwind_wa_tail(struct i915_request *rq)
320 321 322 323 324
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

325
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
326
{
327
	struct i915_request *rq, *rn;
328 329
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
330 331 332 333 334 335

	lockdep_assert_held(&engine->timeline->lock);

	list_for_each_entry_safe_reverse(rq, rn,
					 &engine->timeline->requests,
					 link) {
336
		if (i915_request_completed(rq))
337 338
			return;

339
		__i915_request_unsubmit(rq);
340 341
		unwind_wa_tail(rq);

342 343 344 345
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
		if (rq_prio(rq) != last_prio) {
			last_prio = rq_prio(rq);
			p = lookup_priolist(engine, &rq->priotree, last_prio);
346 347 348
		}

		list_add(&rq->priotree.link, &p->requests);
349 350 351
	}
}

352
void
353 354 355 356 357 358 359 360 361 362
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

	spin_lock_irq(&engine->timeline->lock);
	__unwind_incomplete_requests(engine);
	spin_unlock_irq(&engine->timeline->lock);
}

363
static inline void
364
execlists_context_status_change(struct i915_request *rq, unsigned long status)
365
{
366 367 368 369 370 371
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
372

373 374
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
375 376
}

377
static inline void
378
execlists_context_schedule_in(struct i915_request *rq)
379 380
{
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
381
	intel_engine_context_in(rq->engine);
382 383 384
}

static inline void
385
execlists_context_schedule_out(struct i915_request *rq)
386
{
387
	intel_engine_context_out(rq->engine);
388 389 390
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
}

391 392 393 394 395 396 397 398 399
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

400
static u64 execlists_update_context(struct i915_request *rq)
401
{
402
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
403 404
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
405
	u32 *reg_state = ce->lrc_reg_state;
406

407
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
408

409 410 411 412 413
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
414
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
415
		execlists_update_context_pdps(ppgtt, reg_state);
416 417

	return ce->lrc_desc;
418 419
}

420
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
421
{
422 423 424 425 426 427 428
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
429 430
}

431
static void execlists_submit_ports(struct intel_engine_cs *engine)
432
{
433 434
	struct intel_engine_execlists *execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
435
	unsigned int n;
436

437 438 439 440 441 442 443
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
444
		struct i915_request *rq;
445 446 447 448 449 450 451
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
452
				execlists_context_schedule_in(rq);
453 454 455
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
456

457
			GEM_TRACE("%s in[%d]:  ctx=%d.%d, seqno=%x, prio=%d\n",
458
				  engine->name, n,
459
				  port[n].context_id, count,
460 461
				  rq->global_seqno,
				  rq_prio(rq));
462 463 464 465
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
466

467
		write_desc(execlists, desc, n);
468
	}
469 470 471 472 473 474

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
475 476
}

477
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
478
{
479
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
480
		i915_gem_context_force_single_submission(ctx));
481
}
482

483 484 485 486 487
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
488

489 490
	if (ctx_single_port_submission(prev))
		return false;
491

492
	return true;
493 494
}

495
static void port_assign(struct execlist_port *port, struct i915_request *rq)
496 497 498 499
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
500
		i915_request_put(port_request(port));
501

502
	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
503 504
}

C
Chris Wilson 已提交
505 506
static void inject_preempt_context(struct intel_engine_cs *engine)
{
507
	struct intel_engine_execlists *execlists = &engine->execlists;
C
Chris Wilson 已提交
508 509 510 511
	struct intel_context *ce =
		&engine->i915->preempt_context->engine[engine->id];
	unsigned int n;

512
	GEM_BUG_ON(execlists->preempt_complete_status !=
513
		   upper_32_bits(ce->lrc_desc));
514 515 516 517 518 519
	GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
		    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
		   _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				      CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));

520 521 522 523
	/*
	 * Switch to our empty preempt context so
	 * the state of the GPU is known (idle).
	 */
524
	GEM_TRACE("%s\n", engine->name);
525 526 527 528 529 530 531 532
	for (n = execlists_num_ports(execlists); --n; )
		write_desc(execlists, 0, n);

	write_desc(execlists, ce->lrc_desc, n);

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
C
Chris Wilson 已提交
533

534
	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
535
	execlists_set_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
536 537
}

538
static void execlists_dequeue(struct intel_engine_cs *engine)
539
{
540 541
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
542 543
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
544
	struct i915_request *last = port_request(port);
545
	struct rb_node *rb;
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
	bool submit = false;

	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
567
	 */
568

569
	spin_lock_irq(&engine->timeline->lock);
570 571
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
C
Chris Wilson 已提交
572 573 574 575 576 577 578 579

	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
580
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
581 582 583
		if (port_count(&port[0]) > 1)
			goto unlock;

584 585 586 587 588 589 590 591 592 593
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
			goto unlock;

594
		if (need_preempt(engine, last, execlists->queue_priority)) {
C
Chris Wilson 已提交
595 596 597
			inject_preempt_context(engine);
			goto unlock;
		}
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631

		/*
		 * In theory, we could coalesce more requests onto
		 * the second port (the first port is active, with
		 * no preemptions pending). However, that means we
		 * then have to deal with the possible lite-restore
		 * of the second port (as we submit the ELSP, there
		 * may be a context-switch) but also we may complete
		 * the resubmission before the context-switch. Ergo,
		 * coalescing onto the second port will cause a
		 * preemption event, but we cannot predict whether
		 * that will affect port[0] or port[1].
		 *
		 * If the second port is already active, we can wait
		 * until the next context-switch before contemplating
		 * new requests. The GPU will be busy and we should be
		 * able to resubmit the new ELSP before it idles,
		 * avoiding pipeline bubbles (momentary pauses where
		 * the driver is unable to keep up the supply of new
		 * work). However, we have to double check that the
		 * priorities of the ports haven't been switch.
		 */
		if (port_count(&port[1]))
			goto unlock;

		/*
		 * WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent
		 * ring:HEAD == rq:TAIL as we resubmit the
		 * request. See gen8_emit_breadcrumb() for
		 * where we prepare the padding after the
		 * end of the request.
		 */
		last->tail = last->wa_tail;
C
Chris Wilson 已提交
632 633
	}

634 635
	while (rb) {
		struct i915_priolist *p = to_priolist(rb);
636
		struct i915_request *rq, *rn;
637 638 639 640 641 642 643 644 645 646 647 648

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
649
			 */
650 651 652 653 654 655
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
656
				if (port == last_port) {
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
681 682

				GEM_BUG_ON(port_isset(port));
683
			}
684

685
			INIT_LIST_HEAD(&rq->priotree.link);
686 687
			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
688 689
			last = rq;
			submit = true;
690
		}
691

692
		rb = rb_next(rb);
693
		rb_erase(&p->node, &execlists->queue);
694 695
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
696
			kmem_cache_free(engine->i915->priorities, p);
697
	}
698
done:
699
	execlists->queue_priority = rb ? to_priolist(rb)->priority : INT_MIN;
700
	execlists->first = rb;
701
	if (submit)
702
		port_assign(port, last);
703 704 705 706

	/* We must always keep the beast fed if we have work piled up */
	GEM_BUG_ON(execlists->first && !port_isset(execlists->port));

C
Chris Wilson 已提交
707
unlock:
708
	spin_unlock_irq(&engine->timeline->lock);
709

710 711
	if (submit) {
		execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
712
		execlists_submit_ports(engine);
713
	}
714 715 716

	GEM_BUG_ON(port_isset(execlists->port) &&
		   !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
717 718
}

719
void
720
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
721
{
722
	struct execlist_port *port = execlists->port;
723
	unsigned int num_ports = execlists_num_ports(execlists);
724

725
	while (num_ports-- && port_isset(port)) {
726
		struct i915_request *rq = port_request(port);
727

728
		GEM_BUG_ON(!execlists->active);
729
		intel_engine_context_out(rq->engine);
730
		execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_PREEMPTED);
731
		i915_request_put(rq);
732

733 734 735
		memset(port, 0, sizeof(*port));
		port++;
	}
736 737
}

738 739
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
740
	struct intel_engine_execlists * const execlists = &engine->execlists;
741
	struct i915_request *rq, *rn;
742 743 744
	struct rb_node *rb;
	unsigned long flags;

745 746
	GEM_TRACE("%s\n", engine->name);

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
	local_irq_save(flags);
762 763

	/* Cancel the requests on the HW and clear the ELSP tracker. */
764
	execlists_cancel_port_requests(execlists);
765

766 767
	spin_lock(&engine->timeline->lock);

768 769 770
	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline->requests, link) {
		GEM_BUG_ON(!rq->global_seqno);
771
		if (!i915_request_completed(rq))
772 773 774 775
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
776
	rb = execlists->first;
777
	while (rb) {
778
		struct i915_priolist *p = to_priolist(rb);
779 780 781 782 783

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			INIT_LIST_HEAD(&rq->priotree.link);

			dma_fence_set_error(&rq->fence, -EIO);
784
			__i915_request_submit(rq);
785 786 787
		}

		rb = rb_next(rb);
788
		rb_erase(&p->node, &execlists->queue);
789 790 791 792 793 794 795
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

796
	execlists->queue_priority = INT_MIN;
797 798
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
799
	GEM_BUG_ON(port_isset(execlists->port));
800

801 802
	spin_unlock(&engine->timeline->lock);

803 804 805 806 807 808 809 810
	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

811 812 813
	/* Mark all CS interrupts as complete */
	execlists->active = 0;

814
	local_irq_restore(flags);
815 816
}

817
/*
818 819 820
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
821
static void execlists_submission_tasklet(unsigned long data)
822
{
823 824
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	struct intel_engine_execlists * const execlists = &engine->execlists;
C
Chris Wilson 已提交
825
	struct execlist_port * const port = execlists->port;
826
	struct drm_i915_private *dev_priv = engine->i915;
827
	bool fw = false;
828

829 830 831 832 833 834 835 836 837
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

838 839 840 841 842
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
843 844 845
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
846
		unsigned int head, tail;
847

848
		if (unlikely(execlists->csb_use_mmio)) {
849 850
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
851
			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
852 853
		}

854 855 856 857 858 859 860 861 862 863 864
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
865
		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
866 867 868 869 870 871
			if (!fw) {
				intel_uncore_forcewake_get(dev_priv,
							   execlists->fw_domains);
				fw = true;
			}

872 873 874
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
875
			execlists->csb_head = head;
876 877 878 879 880
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

881
			head = execlists->csb_head;
882 883
			tail = READ_ONCE(buf[write_idx]);
		}
884
		GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
885
			  engine->name,
886 887
			  head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
			  tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
888

889
		while (head != tail) {
890
			struct i915_request *rq;
891
			unsigned int status;
892
			unsigned int count;
893 894 895

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
896

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

914
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
915
			GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
916
				  engine->name, head,
917 918
				  status, buf[2*head + 1],
				  execlists->active);
919 920 921 922 923 924 925 926 927

			if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
				      GEN8_CTX_STATUS_PREEMPTED))
				execlists_set_active(execlists,
						     EXECLISTS_ACTIVE_HWACK);
			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_HWACK);

928 929 930
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

931 932 933
			/* We should never get a COMPLETED | IDLE_ACTIVE! */
			GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

934
			if (status & GEN8_CTX_STATUS_COMPLETE &&
935
			    buf[2*head + 1] == execlists->preempt_complete_status) {
936 937
				GEM_TRACE("%s preempt-idle\n", engine->name);

938 939
				execlists_cancel_port_requests(execlists);
				execlists_unwind_incomplete_requests(execlists);
C
Chris Wilson 已提交
940

941 942 943 944
				GEM_BUG_ON(!execlists_is_active(execlists,
								EXECLISTS_ACTIVE_PREEMPT));
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
945 946 947 948
				continue;
			}

			if (status & GEN8_CTX_STATUS_PREEMPTED &&
949 950
			    execlists_is_active(execlists,
						EXECLISTS_ACTIVE_PREEMPT))
C
Chris Wilson 已提交
951 952
				continue;

953 954 955
			GEM_BUG_ON(!execlists_is_active(execlists,
							EXECLISTS_ACTIVE_USER));

956
			rq = port_unpack(port, &count);
957
			GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x, prio=%d\n",
958
				  engine->name,
959
				  port->context_id, count,
960 961
				  rq ? rq->global_seqno : 0,
				  rq ? rq_prio(rq) : 0);
962 963 964 965

			/* Check the context/desc id for this event matches */
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);

966 967
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
968
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
969 970
				GEM_BUG_ON(port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
971
				GEM_BUG_ON(!i915_request_completed(rq));
972
				execlists_context_schedule_out(rq);
973 974
				trace_i915_request_out(rq);
				i915_request_put(rq);
975

976 977 978
				GEM_TRACE("%s completed ctx=%d\n",
					  engine->name, port->context_id);

979
				execlists_port_complete(execlists, port);
980 981
			} else {
				port_set(port, port_pack(rq, count));
982
			}
983

984 985
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
986
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
987 988 989
			if (port_count(port) == 0)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_USER);
990
		}
991

992 993
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
994 995 996
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
997 998
	}

999
	if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
1000
		execlists_dequeue(engine);
1001

1002 1003
	if (fw)
		intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
1004 1005
}

1006 1007 1008
static void queue_request(struct intel_engine_cs *engine,
			  struct i915_priotree *pt,
			  int prio)
1009
{
1010 1011
	list_add_tail(&pt->link, &lookup_priolist(engine, pt, prio)->requests);
}
1012

1013 1014 1015 1016
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
	if (prio > engine->execlists.queue_priority) {
		engine->execlists.queue_priority = prio;
1017
		tasklet_hi_schedule(&engine->execlists.tasklet);
1018
	}
1019 1020
}

1021
static void execlists_submit_request(struct i915_request *request)
1022
{
1023
	struct intel_engine_cs *engine = request->engine;
1024
	unsigned long flags;
1025

1026 1027
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
1028

1029 1030
	queue_request(engine, &request->priotree, rq_prio(request));
	submit_queue(engine, rq_prio(request));
1031

1032
	GEM_BUG_ON(!engine->execlists.first);
1033 1034
	GEM_BUG_ON(list_empty(&request->priotree.link));

1035
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
1036 1037
}

1038
static struct i915_request *pt_to_request(struct i915_priotree *pt)
1039
{
1040
	return container_of(pt, struct i915_request, priotree);
1041 1042
}

1043 1044 1045
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
1046
	struct intel_engine_cs *engine = pt_to_request(pt)->engine;
1047 1048

	GEM_BUG_ON(!locked);
1049 1050

	if (engine != locked) {
1051 1052
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
1053 1054 1055 1056 1057
	}

	return engine;
}

1058
static void execlists_schedule(struct i915_request *request, int prio)
1059
{
1060
	struct intel_engine_cs *engine;
1061 1062 1063 1064
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

1065 1066
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

1067
	if (i915_request_completed(request))
1068 1069
		return;

1070 1071 1072
	if (prio <= READ_ONCE(request->priotree.priority))
		return;

1073 1074
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
1075 1076 1077 1078

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

1079 1080
	/*
	 * Recursively bump all dependent priorities to match the new request.
1081 1082 1083 1084 1085
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
1086
	 *	queue_request(pt);
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
1097
	list_for_each_entry(dep, &dfs, dfs_link) {
1098 1099
		struct i915_priotree *pt = dep->signaler;

1100 1101
		/*
		 * Within an engine, there can be no cycle, but we may
1102 1103 1104 1105 1106
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
1107 1108
			GEM_BUG_ON(p == dep); /* no cycles! */

1109
			if (i915_priotree_signaled(p->signaler))
1110 1111
				continue;

1112
			GEM_BUG_ON(p->signaler->priority < pt->priority);
1113 1114
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
1115
		}
1116 1117
	}

1118 1119
	/*
	 * If we didn't need to bump any existing priorities, and we haven't
1120 1121 1122 1123
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1124
	if (request->priotree.priority == I915_PRIORITY_INVALID) {
1125 1126 1127 1128 1129 1130 1131
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1132 1133 1134
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
1147 1148
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
1149
			queue_request(engine, pt, prio);
1150
		}
1151
		submit_queue(engine, prio);
1152 1153
	}

1154
	spin_unlock_irq(&engine->timeline->lock);
1155 1156
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;

	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
}

1180 1181 1182
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1183
{
1184
	struct intel_context *ce = &ctx->engine[engine->id];
1185
	void *vaddr;
1186
	int ret;
1187

1188
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1189

1190 1191
	if (likely(ce->pin_count++))
		goto out;
1192
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1193

1194 1195 1196
	ret = execlists_context_deferred_alloc(ctx, engine);
	if (ret)
		goto err;
1197
	GEM_BUG_ON(!ce->state);
1198

1199
	ret = __context_pin(ctx, ce->state);
1200
	if (ret)
1201
		goto err;
1202

1203
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1204 1205
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1206
		goto unpin_vma;
1207 1208
	}

1209
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1210
	if (ret)
1211
		goto unpin_map;
1212

1213
	intel_lr_context_descriptor_update(ctx, engine);
1214

1215 1216
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1217
		i915_ggtt_offset(ce->ring->vma);
1218

1219
	ce->state->obj->pin_global++;
1220
	i915_gem_context_get(ctx);
1221 1222
out:
	return ce->ring;
1223

1224
unpin_map:
1225 1226 1227
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1228
err:
1229
	ce->pin_count = 0;
1230
	return ERR_PTR(ret);
1231 1232
}

1233 1234
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1235
{
1236
	struct intel_context *ce = &ctx->engine[engine->id];
1237

1238
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1239
	GEM_BUG_ON(ce->pin_count == 0);
1240

1241
	if (--ce->pin_count)
1242
		return;
1243

1244
	intel_ring_unpin(ce->ring);
1245

1246
	ce->state->obj->pin_global--;
1247 1248
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1249

1250
	i915_gem_context_put(ctx);
1251 1252
}

1253
static int execlists_request_alloc(struct i915_request *request)
1254 1255 1256
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
1257
	int ret;
1258

1259 1260
	GEM_BUG_ON(!ce->pin_count);

1261 1262 1263 1264 1265 1266
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1267 1268 1269
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1298 1299
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1300
{
1301 1302 1303 1304 1305 1306 1307 1308 1309
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1310 1311 1312 1313
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1314 1315 1316 1317 1318 1319 1320

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1321 1322
}

1323 1324 1325 1326 1327 1328
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1329
 *
1330 1331
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1332
 *
1333 1334 1335 1336
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1337
 */
1338
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1339
{
1340
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1341
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1342

1343
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1344 1345
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1346

1347 1348
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1349 1350 1351 1352 1353 1354 1355
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1356

C
Chris Wilson 已提交
1357 1358
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1359
	/* Pad to end of cacheline */
1360 1361
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1362 1363 1364 1365 1366 1367 1368

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1369
	return batch;
1370 1371
}

1372
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1373
{
C
Chris Wilson 已提交
1374 1375
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

1376
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1377
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1378

1379
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1380 1381 1382 1383 1384
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1385

1386 1387
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1388
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1389 1390 1391 1392 1393 1394 1395
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1396
	}
1397

1398
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1413 1414 1415 1416 1417 1418
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1419 1420
	}

C
Chris Wilson 已提交
1421 1422
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1423
	/* Pad to end of cacheline */
1424 1425
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1426

1427
	return batch;
1428 1429
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1464 1465 1466
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1467
{
1468 1469 1470
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1471

1472
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1473 1474
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1475

1476
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1477 1478 1479
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1480 1481
	}

1482 1483 1484 1485 1486
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1487
	return 0;
1488 1489 1490 1491

err:
	i915_gem_object_put(obj);
	return err;
1492 1493
}

1494
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1495
{
1496
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1497 1498
}

1499 1500
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1501
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1502
{
1503
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1504 1505 1506
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1507
	struct page *page;
1508 1509
	void *batch, *batch_ptr;
	unsigned int i;
1510
	int ret;
1511

1512
	if (GEM_WARN_ON(engine->id != RCS))
1513
		return -EINVAL;
1514

1515
	switch (INTEL_GEN(engine->i915)) {
1516
	case 10:
1517 1518 1519
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
1520 1521
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1522
		wa_bb_fn[1] = NULL;
1523 1524 1525
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1526
		wa_bb_fn[1] = NULL;
1527 1528 1529
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1530
		return 0;
1531
	}
1532

1533
	ret = lrc_setup_wa_ctx(engine);
1534 1535 1536 1537 1538
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1539
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1540
	batch = batch_ptr = kmap_atomic(page);
1541

1542 1543 1544 1545 1546 1547 1548
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
1549 1550
		if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
					    CACHELINE_BYTES))) {
1551 1552 1553
			ret = -EINVAL;
			break;
		}
1554 1555
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1556
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1557 1558
	}

1559 1560
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1561 1562
	kunmap_atomic(batch);
	if (ret)
1563
		lrc_destroy_wa_ctx(engine);
1564 1565 1566 1567

	return ret;
}

1568 1569 1570 1571 1572 1573 1574 1575
static u8 gtiir[] = {
	[RCS] = 0,
	[BCS] = 0,
	[VCS] = 1,
	[VCS2] = 1,
	[VECS] = 3,
};

1576
static void enable_execlists(struct intel_engine_cs *engine)
1577
{
1578
	struct drm_i915_private *dev_priv = engine->i915;
1579 1580

	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

	/*
	 * Make sure we're not enabling the new 12-deep CSB
	 * FIFO as that requires a slightly updated handling
	 * in the ctx switch irq. Since we're currently only
	 * using only 2 elements of the enhanced execlists the
	 * deeper FIFO it's not needed and it's not worth adding
	 * more statements to the irq handler to support it.
	 */
	if (INTEL_GEN(dev_priv) >= 11)
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
	else
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));

1597 1598 1599
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1600 1601 1602

	/* Following the reset, we need to reload the CSB read/write pointers */
	engine->execlists.csb_head = -1;
1603 1604 1605 1606
}

static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
1607
	struct intel_engine_execlists * const execlists = &engine->execlists;
1608 1609 1610 1611 1612
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1613

1614
	intel_engine_reset_breadcrumbs(engine);
1615
	intel_engine_init_hangcheck(engine);
1616

1617
	enable_execlists(engine);
1618

1619
	/* After a GPU reset, we may have requests to replay */
1620
	if (execlists->first)
1621
		tasklet_schedule(&execlists->tasklet);
1622

1623
	return 0;
1624 1625
}

1626
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1627
{
1628
	struct drm_i915_private *dev_priv = engine->i915;
1629 1630
	int ret;

1631
	ret = gen8_init_common_ring(engine);
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1645
	return init_workarounds_ring(engine);
1646 1647
}

1648
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1649 1650 1651
{
	int ret;

1652
	ret = gen8_init_common_ring(engine);
1653 1654 1655
	if (ret)
		return ret;

1656
	return init_workarounds_ring(engine);
1657 1658
}

1659 1660 1661
static void reset_irq(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
1662
	int i;
1663

1664 1665
	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

1666 1667 1668 1669 1670 1671 1672
	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are double
	 * buffered, and if we only reset it once there may still be
	 * an interrupt pending.
	 */
1673 1674 1675 1676 1677 1678 1679 1680
	for (i = 0; i < 2; i++) {
		I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
			   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
		POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
	}
	GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
		   (GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift));

1681 1682 1683
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
}

1684
static void reset_common_ring(struct intel_engine_cs *engine,
1685
			      struct i915_request *request)
1686
{
1687
	struct intel_engine_execlists * const execlists = &engine->execlists;
1688
	struct intel_context *ce;
1689
	unsigned long flags;
1690

1691 1692
	GEM_TRACE("%s seqno=%x\n",
		  engine->name, request ? request->global_seqno : 0);
1693

1694 1695
	/* See execlists_cancel_requests() for the irq/spinlock split. */
	local_irq_save(flags);
1696

1697 1698
	reset_irq(engine);

1699 1700 1701 1702 1703 1704 1705 1706 1707
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1708
	execlists_cancel_port_requests(execlists);
1709

1710
	/* Push back any incomplete requests for replay after the reset. */
1711
	spin_lock(&engine->timeline->lock);
1712
	__unwind_incomplete_requests(engine);
1713
	spin_unlock(&engine->timeline->lock);
1714

1715 1716 1717
	/* Mark all CS interrupts as complete */
	execlists->active = 0;

1718
	local_irq_restore(flags);
1719

1720 1721
	/*
	 * If the request was innocent, we leave the request in the ELSP
1722 1723 1724 1725 1726 1727 1728 1729 1730
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1731
	if (!request || request->fence.error != -EIO)
1732
		return;
1733

1734 1735
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
1736 1737 1738 1739 1740 1741
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1742
	ce = &request->ctx->engine[engine->id];
1743 1744 1745
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1746
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1747 1748
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1749
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1750

1751 1752 1753
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1754
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1755
	unwind_wa_tail(request);
1756 1757
}

1758
static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1759
{
1760 1761
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
	struct intel_engine_cs *engine = rq->engine;
1762
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1763 1764
	u32 *cs;
	int i;
1765

1766
	cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
1767 1768
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1769

1770
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1771
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1772 1773
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1774 1775 1776 1777
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1778 1779
	}

1780
	*cs++ = MI_NOOP;
1781
	intel_ring_advance(rq, cs);
1782 1783 1784 1785

	return 0;
}

1786
static int gen8_emit_bb_start(struct i915_request *rq,
1787
			      u64 offset, u32 len,
1788
			      const unsigned int flags)
1789
{
1790
	u32 *cs;
1791 1792
	int ret;

1793 1794 1795 1796
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1797 1798
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1799 1800 1801 1802 1803
	if (rq->ctx->ppgtt &&
	    (intel_engine_flag(rq->engine) & rq->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&rq->ctx->ppgtt->base) &&
	    !intel_vgpu_active(rq->i915)) {
		ret = intel_logical_ring_emit_pdps(rq);
1804 1805
		if (ret)
			return ret;
1806

1807
		rq->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
1808 1809
	}

1810
	cs = intel_ring_begin(rq, 4);
1811 1812
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1813

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
1831 1832
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1833
	/* FIXME(BDW): Address space and security selectors. */
1834 1835 1836
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1837 1838
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
1839
	intel_ring_advance(rq, cs);
1840 1841 1842 1843

	return 0;
}

1844
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1845
{
1846
	struct drm_i915_private *dev_priv = engine->i915;
1847 1848 1849
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1850 1851
}

1852
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1853
{
1854
	struct drm_i915_private *dev_priv = engine->i915;
1855
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1856 1857
}

1858
static int gen8_emit_flush(struct i915_request *request, u32 mode)
1859
{
1860
	u32 cmd, *cs;
1861

1862 1863 1864
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1865 1866 1867

	cmd = MI_FLUSH_DW + 1;

1868 1869 1870 1871 1872 1873 1874
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1875
	if (mode & EMIT_INVALIDATE) {
1876
		cmd |= MI_INVALIDATE_TLB;
1877
		if (request->engine->id == VCS)
1878
			cmd |= MI_INVALIDATE_BSD;
1879 1880
	}

1881 1882 1883 1884 1885
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1886 1887 1888 1889

	return 0;
}

1890
static int gen8_emit_flush_render(struct i915_request *request,
1891
				  u32 mode)
1892
{
1893
	struct intel_engine_cs *engine = request->engine;
1894 1895
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1896
	bool vf_flush_wa = false, dc_flush_wa = false;
1897
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1898
	int len;
1899 1900 1901

	flags |= PIPE_CONTROL_CS_STALL;

1902
	if (mode & EMIT_FLUSH) {
1903 1904
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1905
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1906
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1907 1908
	}

1909
	if (mode & EMIT_INVALIDATE) {
1910 1911 1912 1913 1914 1915 1916 1917 1918
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1919 1920 1921 1922
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1923
		if (IS_GEN9(request->i915))
1924
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1925 1926 1927 1928

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1929
	}
1930

M
Mika Kuoppala 已提交
1931 1932 1933 1934 1935 1936 1937 1938
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1939 1940 1941
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1942

1943 1944
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1945

1946 1947 1948
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1949

1950
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1951

1952 1953
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1954

1955
	intel_ring_advance(request, cs);
1956 1957 1958 1959

	return 0;
}

1960 1961 1962 1963 1964
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1965
static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
1966
{
C
Chris Wilson 已提交
1967 1968
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
1969 1970
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1971
}
1972

1973
static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
1974
{
1975 1976
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1977

1978 1979
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
1980 1981 1982
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1983
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1984

1985
	gen8_emit_wa_tail(request, cs);
1986
}
1987 1988
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

1989
static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
1990
{
1991 1992 1993
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1994 1995
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
1996 1997 1998
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1999
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2000

2001
	gen8_emit_wa_tail(request, cs);
2002
}
2003
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2004

2005
static int gen8_init_rcs_context(struct i915_request *rq)
2006 2007 2008
{
	int ret;

2009
	ret = intel_ring_workarounds_emit(rq);
2010 2011 2012
	if (ret)
		return ret;

2013
	ret = intel_rcs_context_init_mocs(rq);
2014 2015 2016 2017 2018 2019 2020
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2021
	return i915_gem_render_state_emit(rq);
2022 2023
}

2024 2025
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2026
 * @engine: Engine Command Streamer.
2027
 */
2028
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2029
{
2030
	struct drm_i915_private *dev_priv;
2031

2032 2033 2034 2035
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
2036 2037 2038
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
2039

2040
	dev_priv = engine->i915;
2041

2042 2043
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2044
	}
2045

2046 2047
	if (engine->cleanup)
		engine->cleanup(engine);
2048

2049
	intel_engine_cleanup_common(engine);
2050

2051
	lrc_destroy_wa_ctx(engine);
2052

2053
	engine->i915 = NULL;
2054 2055
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
2056 2057
}

2058
static void execlists_set_default_submission(struct intel_engine_cs *engine)
2059
{
2060
	engine->submit_request = execlists_submit_request;
2061
	engine->cancel_requests = execlists_cancel_requests;
2062
	engine->schedule = execlists_schedule;
2063
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2064 2065 2066

	engine->park = NULL;
	engine->unpark = NULL;
2067 2068

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2069 2070 2071 2072

	engine->i915->caps.scheduler =
		I915_SCHEDULER_CAP_ENABLED |
		I915_SCHEDULER_CAP_PRIORITY;
2073
	if (engine->i915->preempt_context)
2074
		engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2075 2076
}

2077
static void
2078
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2079 2080
{
	/* Default vfuncs which can be overriden by each engine. */
2081
	engine->init_hw = gen8_init_common_ring;
2082
	engine->reset_hw = reset_common_ring;
2083 2084 2085 2086

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

2087 2088
	engine->request_alloc = execlists_request_alloc;

2089
	engine->emit_flush = gen8_emit_flush;
2090
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
2091
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2092 2093

	engine->set_default_submission = execlists_set_default_submission;
2094

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
2106
	engine->emit_bb_start = gen8_emit_bb_start;
2107 2108
}

2109
static inline void
2110
logical_ring_default_irqs(struct intel_engine_cs *engine)
2111
{
2112
	unsigned shift = engine->irq_shift;
2113 2114
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2115 2116
}

2117 2118 2119 2120 2121 2122
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

2123 2124
	intel_engine_setup_common(engine);

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

2140
	engine->execlists.fw_domains = fw_domains;
2141

2142 2143
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2144 2145 2146 2147 2148

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

2149
static int logical_ring_init(struct intel_engine_cs *engine)
2150 2151 2152
{
	int ret;

2153
	ret = intel_engine_init_common(engine);
2154 2155 2156
	if (ret)
		goto error;

2157 2158 2159 2160 2161 2162 2163 2164 2165
	if (HAS_LOGICAL_RING_ELSQ(engine->i915)) {
		engine->execlists.submit_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
		engine->execlists.ctrl_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
	} else {
		engine->execlists.submit_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_ELSP(engine));
	}
2166

2167 2168 2169 2170 2171
	engine->execlists.preempt_complete_status = ~0u;
	if (engine->i915->preempt_context)
		engine->execlists.preempt_complete_status =
			upper_32_bits(engine->i915->preempt_context->engine[engine->id].lrc_desc);

2172 2173 2174 2175 2176 2177 2178
	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2179
int logical_render_ring_init(struct intel_engine_cs *engine)
2180 2181 2182 2183
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2184 2185
	logical_ring_setup(engine);

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2196 2197
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2198

2199
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2214
	return logical_ring_init(engine);
2215 2216
}

2217
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2218 2219 2220 2221
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2222 2223
}

2224
static u32
2225
make_rpcs(struct drm_i915_private *dev_priv)
2226 2227 2228 2229 2230 2231 2232
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2233
	if (INTEL_GEN(dev_priv) < 9)
2234 2235 2236 2237 2238 2239 2240 2241
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2242
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2243
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2244
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2245 2246 2247 2248
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2249
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2250
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2251
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2252 2253 2254 2255
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2256 2257
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2258
			GEN8_RPCS_EU_MIN_SHIFT;
2259
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2260 2261 2262 2263 2264 2265 2266
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2267
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2268 2269 2270
{
	u32 indirect_ctx_offset;

2271
	switch (INTEL_GEN(engine->i915)) {
2272
	default:
2273
		MISSING_CASE(INTEL_GEN(engine->i915));
2274
		/* fall through */
2275 2276 2277 2278
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2279 2280 2281 2282
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2296
static void execlists_init_reg_state(u32 *regs,
2297 2298 2299
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2300
{
2301 2302
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2317 2318
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				    CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2334 2335
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2336 2337 2338
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2339
		if (wa_ctx->indirect_ctx.size) {
2340
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2341

2342
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2343 2344
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2345

2346
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2347
				intel_lr_indirect_ctx_offset(engine) << 6;
2348 2349 2350 2351 2352
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2353

2354
			regs[CTX_BB_PER_CTX_PTR + 1] =
2355
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2356
		}
2357
	}
2358 2359 2360 2361

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2362
	/* PDP values well be assigned later if needed */
2363 2364 2365 2366 2367 2368 2369 2370
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2371

2372
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2373 2374 2375 2376
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2377
		ASSIGN_CTX_PML4(ppgtt, regs);
2378 2379
	}

2380 2381 2382 2383
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2384 2385

		i915_oa_init_reg_state(engine, ctx, regs);
2386
	}
2387 2388 2389 2390 2391 2392 2393 2394 2395
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2396
	u32 *regs;
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2411
	ctx_obj->mm.dirty = true;
2412

2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (IS_ERR(defaults))
			return PTR_ERR(defaults);

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2431 2432
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2433 2434 2435 2436 2437
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2438
	if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2439 2440 2441
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2442

2443
	i915_gem_object_unpin_map(ctx_obj);
2444 2445 2446 2447

	return 0;
}

2448
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2449
					    struct intel_engine_cs *engine)
2450
{
2451
	struct drm_i915_gem_object *ctx_obj;
2452
	struct intel_context *ce = &ctx->engine[engine->id];
2453
	struct i915_vma *vma;
2454
	uint32_t context_size;
2455
	struct intel_ring *ring;
2456 2457
	int ret;

2458 2459
	if (ce->state)
		return 0;
2460

2461
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2462

2463 2464 2465 2466 2467
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2468

2469
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2470
	if (IS_ERR(ctx_obj)) {
2471
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2472
		return PTR_ERR(ctx_obj);
2473 2474
	}

2475
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2476 2477 2478 2479 2480
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2481
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2482 2483
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2484
		goto error_deref_obj;
2485 2486
	}

2487
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2488 2489
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2490
		goto error_ring_free;
2491 2492
	}

2493
	ce->ring = ring;
2494
	ce->state = vma;
2495 2496

	return 0;
2497

2498
error_ring_free:
2499
	intel_ring_free(ring);
2500
error_deref_obj:
2501
	i915_gem_object_put(ctx_obj);
2502
	return ret;
2503
}
2504

2505
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2506
{
2507
	struct intel_engine_cs *engine;
2508
	struct i915_gem_context *ctx;
2509
	enum intel_engine_id id;
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2521
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2522
		for_each_engine(engine, dev_priv, id) {
2523 2524
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2525

2526 2527
			if (!ce->state)
				continue;
2528

2529 2530 2531 2532
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2533

2534 2535 2536
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2537

C
Chris Wilson 已提交
2538
			ce->state->obj->mm.dirty = true;
2539
			i915_gem_object_unpin_map(ce->state->obj);
2540

2541
			intel_ring_reset(ce->ring, 0);
2542
		}
2543 2544
	}
}