intel_lrc.c 65.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193 194 195 196 197
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
198

199
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201 202 203 204
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
205
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
206 207
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208
} while (0)
209

210
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211 212
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213
} while (0)
214

215 216 217 218 219 220 221
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
222
#define GEN8_CTX_ID_WIDTH 21
223 224
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
225

226 227 228
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

229 230
#define WA_TAIL_DWORDS 2

231
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
232
					    struct intel_engine_cs *engine);
233
static int intel_lr_context_pin(struct i915_gem_context *ctx,
234
				struct intel_engine_cs *engine);
235 236 237 238
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
239

240 241
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
242
 * @dev_priv: i915 device private
243 244 245
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
246
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
247 248 249
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
250
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
251
{
252 253 254
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
255
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
256 257
		return 1;

258
	if (INTEL_GEN(dev_priv) >= 9)
259 260
		return 1;

261 262 263
	if (enable_execlists == 0)
		return 0;

264 265 266
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
267 268 269 270
		return 1;

	return 0;
}
271

272
static void
273
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
274
{
275
	struct drm_i915_private *dev_priv = engine->i915;
276

277
	engine->disable_lite_restore_wa =
278
		IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
279
		(engine->id == VCS || engine->id == VCS2);
280

281
	engine->ctx_desc_template = GEN8_CTX_VALID;
282
	if (IS_GEN8(dev_priv))
283 284
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
285 286 287 288 289 290 291

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
292 293
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
294 295
}

296
/**
297 298 299
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
300
 * @engine: Engine the descriptor will be used with
301
 *
302 303 304 305 306
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
307 308 309 310 311 312 313
 * This is what a descriptor looks like, from LSB to MSB::
 *
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
314
 */
315
static void
316
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
317
				   struct intel_engine_cs *engine)
318
{
319
	struct intel_context *ce = &ctx->engine[engine->id];
320
	u64 desc;
321

322
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
323

324 325
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
326
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
327
								/* bits 12-31 */
328
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
329

330
	ce->lrc_desc = desc;
331 332
}

333
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
334
				     struct intel_engine_cs *engine)
335
{
336
	return ctx->engine[engine->id].lrc_desc;
337
}
338

339 340 341
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
342
{
343 344 345 346 347 348
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
349

350
	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
351 352
}

353 354 355 356 357 358 359 360 361
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

362
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
363
{
364
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
365
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
366
	u32 *reg_state = ce->lrc_reg_state;
367

C
Chris Wilson 已提交
368
	reg_state[CTX_RING_TAIL+1] = rq->tail;
369

370 371 372 373 374 375 376
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
377 378

	return ce->lrc_desc;
379 380
}

381
static void execlists_submit_ports(struct intel_engine_cs *engine)
382
{
383 384
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
385 386 387 388
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

389 390 391 392 393 394 395 396 397 398 399 400
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
	engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
		port[1].count = 1;
401 402 403
	} else {
		desc[1] = 0;
	}
404
	GEM_BUG_ON(desc[0] == desc[1]);
405 406 407 408 409 410 411 412 413 414

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

415
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
416
{
417 418 419
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
		ctx->execlists_force_single_submission);
}
420

421 422 423 424 425
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
426

427 428
	if (ctx_single_port_submission(prev))
		return false;
429

430
	return true;
431 432
}

433
static void execlists_dequeue(struct intel_engine_cs *engine)
434
{
435 436
	struct drm_i915_gem_request *cursor, *last;
	struct execlist_port *port = engine->execlist_port;
437
	unsigned long flags;
438 439 440 441 442 443
	bool submit = false;

	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
444
		 * as we resubmit the request. See gen8_emit_breadcrumb()
445 446 447 448
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
449

450
	GEM_BUG_ON(port[1].request);
451

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
471
	 */
472

473
	spin_lock_irqsave(&engine->timeline->lock, flags);
474 475 476 477
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) {
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
478
		 *
479 480 481 482
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
483
		 */
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
			if (ctx_single_port_submission(cursor->ctx))
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
505 506 507 508 509 510 511 512 513 514 515

		/* We keep the previous context alive until we retire the
		 * following request. This ensures that any the context object
		 * is still pinned for any residual writes the HW makes into it
		 * on the context switch into the next object following the
		 * breadcrumb. Otherwise, we may retire the context too early.
		 */
		cursor->previous_context = engine->last_context;
		engine->last_context = cursor->ctx;

		__i915_gem_request_submit(cursor);
516 517 518 519 520 521 522 523 524
		last = cursor;
		submit = true;
	}
	if (submit) {
		/* Decouple all the requests submitted from the queue */
		engine->execlist_queue.next = &cursor->execlist_link;
		cursor->execlist_link.prev = &engine->execlist_queue;

		i915_gem_request_assign(&port->request, last);
525
	}
526
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
527

528 529
	if (submit)
		execlists_submit_ports(engine);
530 531
}

532
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
533
{
534
	return !engine->execlist_port[0].request;
535 536
}

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
/**
 * intel_execlists_idle() - Determine if all engine submission ports are idle
 * @dev_priv: i915 device private
 *
 * Return true if there are no requests pending on any of the submission ports
 * of any engines.
 */
bool intel_execlists_idle(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (!i915.enable_execlists)
		return true;

	for_each_engine(engine, dev_priv, id)
		if (!execlists_elsp_idle(engine))
			return false;

	return true;
}

559
static bool execlists_elsp_ready(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
560
{
561
	int port;
B
Ben Widawsky 已提交
562

563 564 565
	port = 1; /* wait for a free slot */
	if (engine->disable_lite_restore_wa || engine->preempt_wa)
		port = 0; /* wait for GPU to be idle before continuing */
566

567
	return !engine->execlist_port[port].request;
B
Ben Widawsky 已提交
568 569
}

570
/*
571 572 573
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
574
static void intel_lrc_irq_handler(unsigned long data)
575
{
576
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
577
	struct execlist_port *port = engine->execlist_port;
578
	struct drm_i915_private *dev_priv = engine->i915;
579

580
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
581

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	if (!execlists_elsp_idle(engine)) {
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
		unsigned int csb, head, tail;

		csb = readl(csb_mmio);
		head = GEN8_CSB_READ_PTR(csb);
		tail = GEN8_CSB_WRITE_PTR(csb);
		if (tail < head)
			tail += GEN8_CSB_ENTRIES;
		while (head < tail) {
			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
			unsigned int status = readl(buf + 2 * idx);

			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));

				engine->preempt_wa = false;
			}
613

614 615
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
616 617
		}

618 619 620
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				     GEN8_CSB_WRITE_PTR(csb) << 8),
		       csb_mmio);
621 622
	}

623 624
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
625

626
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
627 628
}

629
static void execlists_submit_request(struct drm_i915_gem_request *request)
630
{
631
	struct intel_engine_cs *engine = request->engine;
632
	unsigned long flags;
633

634 635
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
636

637
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
638 639
	if (execlists_elsp_idle(engine))
		tasklet_hi_schedule(&engine->irq_tasklet);
640

641
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
642 643
}

644
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
645
{
646
	struct intel_engine_cs *engine = request->engine;
647
	struct intel_context *ce = &request->ctx->engine[engine->id];
648
	int ret;
649

650 651 652 653
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
654
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
655

656
	if (!ce->state) {
657 658 659 660 661
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

662
	request->ring = ce->ring;
663

664 665 666 667
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;

668 669 670 671 672 673
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
674
		ret = i915_guc_wq_reserve(request);
675
		if (ret)
676
			goto err_unpin;
677 678
	}

679 680
	ret = intel_ring_begin(request, 0);
	if (ret)
681
		goto err_unreserve;
682

683
	if (!ce->initialised) {
684 685
		ret = engine->init_context(request);
		if (ret)
686
			goto err_unreserve;
687

688
		ce->initialised = true;
689 690 691 692 693 694 695 696 697
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

698
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
699 700
	return 0;

701 702 703
err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
704
err_unpin:
705
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
706
	return ret;
707 708
}

709
static int intel_lr_context_pin(struct i915_gem_context *ctx,
710
				struct intel_engine_cs *engine)
711
{
712
	struct intel_context *ce = &ctx->engine[engine->id];
713
	void *vaddr;
714
	int ret;
715

716
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
717

718
	if (ce->pin_count++)
719 720
		return 0;

721 722
	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
			   PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
723
	if (ret)
724
		goto err;
725

726
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
727 728
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
729
		goto unpin_vma;
730 731
	}

732
	ret = intel_ring_pin(ce->ring);
733
	if (ret)
734
		goto unpin_map;
735

736
	intel_lr_context_descriptor_update(ctx, engine);
737

738 739
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
740
		i915_ggtt_offset(ce->ring->vma);
741

C
Chris Wilson 已提交
742
	ce->state->obj->mm.dirty = true;
743

744
	/* Invalidate GuC TLB. */
745 746
	if (i915.enable_guc_submission) {
		struct drm_i915_private *dev_priv = ctx->i915;
747
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
748
	}
749

750
	i915_gem_context_get(ctx);
751
	return 0;
752

753
unpin_map:
754 755 756
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
757
err:
758
	ce->pin_count = 0;
759 760 761
	return ret;
}

762
void intel_lr_context_unpin(struct i915_gem_context *ctx,
763
			    struct intel_engine_cs *engine)
764
{
765
	struct intel_context *ce = &ctx->engine[engine->id];
766

767
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
768
	GEM_BUG_ON(ce->pin_count == 0);
769

770
	if (--ce->pin_count)
771
		return;
772

773
	intel_ring_unpin(ce->ring);
774

775 776
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
777

778
	i915_gem_context_put(ctx);
779 780
}

781
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
782 783
{
	int ret, i;
784
	struct intel_ring *ring = req->ring;
785
	struct i915_workarounds *w = &req->i915->workarounds;
786

787
	if (w->count == 0)
788 789
		return 0;

790
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
791 792 793
	if (ret)
		return ret;

794
	ret = intel_ring_begin(req, w->count * 2 + 2);
795 796 797
	if (ret)
		return ret;

798
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
799
	for (i = 0; i < w->count; i++) {
800 801
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
802
	}
803
	intel_ring_emit(ring, MI_NOOP);
804

805
	intel_ring_advance(ring);
806

807
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
808 809 810 811 812 813
	if (ret)
		return ret;

	return 0;
}

814
#define wa_ctx_emit(batch, index, cmd)					\
815
	do {								\
816 817
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
818 819
			return -ENOSPC;					\
		}							\
820
		batch[__index] = (cmd);					\
821 822
	} while (0)

V
Ville Syrjälä 已提交
823
#define wa_ctx_emit_reg(batch, index, reg) \
824
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
842
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
843
						uint32_t *batch,
844 845
						uint32_t index)
{
D
Dave Airlie 已提交
846
	struct drm_i915_private *dev_priv = engine->i915;
847 848
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

849
	/*
850
	 * WaDisableLSQCROPERFforOCL:kbl
851 852 853 854
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
855
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
856 857
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

858
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
859
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
860
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
861
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
862 863 864
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
865
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
866 867 868 869 870 871 872 873 874 875
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

876
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
877
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
878
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
879
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
880
	wa_ctx_emit(batch, index, 0);
881 882 883 884

	return index;
}

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

904 905 906 907 908 909
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
910
 *
911 912
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
913
 *
914 915 916 917
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
918
 */
919
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
920
				    struct i915_wa_ctx_bb *wa_ctx,
921
				    uint32_t *batch,
922 923
				    uint32_t *offset)
{
924
	uint32_t scratch_addr;
925 926
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

927
	/* WaDisableCtxRestoreArbitration:bdw,chv */
928
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
929

930
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
931
	if (IS_BROADWELL(engine->i915)) {
932
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
933 934 935
		if (rc < 0)
			return rc;
		index = rc;
936 937
	}

938 939
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
940
	scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
941

942 943 944 945 946 947 948 949 950
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
951

952 953
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
954
		wa_ctx_emit(batch, index, MI_NOOP);
955 956 957 958 959 960 961 962 963 964

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

965 966 967
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
968
 *
969
 *  The number of DWORDS written are returned using this field.
970 971 972 973
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
974
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
975
			       struct i915_wa_ctx_bb *wa_ctx,
976
			       uint32_t *batch,
977 978 979 980
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

981
	/* WaDisableCtxRestoreArbitration:bdw,chv */
982
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
983

984
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
985 986 987 988

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

989
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
990
				    struct i915_wa_ctx_bb *wa_ctx,
991
				    uint32_t *batch,
992 993
				    uint32_t *offset)
{
994
	int ret;
D
Dave Airlie 已提交
995
	struct drm_i915_private *dev_priv = engine->i915;
996 997
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

998 999
	/* WaDisableCtxRestoreArbitration:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1000
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1001

1002
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1003
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1004 1005 1006 1007
	if (ret < 0)
		return ret;
	index = ret;

1008 1009 1010 1011 1012 1013 1014
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
	wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
	wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
			    GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
	wa_ctx_emit(batch, index, MI_NOOP);

1015 1016
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1017
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1018
		u32 scratch_addr =
1019
			i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

	/* WaMediaPoolStateCmdInWABB:bxt */
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
		u32 eu_pool_config = 0x00777000;
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
		wa_ctx_emit(batch, index, eu_pool_config);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}

1056 1057 1058 1059 1060 1061 1062
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1063
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1064
			       struct i915_wa_ctx_bb *wa_ctx,
1065
			       uint32_t *batch,
1066 1067 1068 1069
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1070 1071
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1072
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1073
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1074 1075 1076 1077 1078
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1079
	/* WaClearTdlStateAckDirtyBits:bxt */
1080
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1098 1099
	/* WaDisableCtxRestoreArbitration:bxt */
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1100 1101
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1102 1103 1104 1105 1106
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1107
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1108
{
1109 1110 1111
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1112

1113 1114 1115
	obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1116

1117 1118 1119 1120
	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1121 1122
	}

1123 1124 1125 1126 1127
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1128
	return 0;
1129 1130 1131 1132

err:
	i915_gem_object_put(obj);
	return err;
1133 1134
}

1135
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1136
{
1137
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1138 1139
}

1140
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1141
{
1142
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1143 1144 1145
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1146
	int ret;
1147

1148
	WARN_ON(engine->id != RCS);
1149

1150
	/* update this when WA for higher Gen are added */
1151
	if (INTEL_GEN(engine->i915) > 9) {
1152
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1153
			  INTEL_GEN(engine->i915));
1154
		return 0;
1155
	}
1156

1157
	/* some WA perform writes to scratch page, ensure it is valid */
1158
	if (!engine->scratch) {
1159
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1160 1161 1162
		return -EINVAL;
	}

1163
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1164 1165 1166 1167 1168
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1169
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1170 1171 1172
	batch = kmap_atomic(page);
	offset = 0;

1173
	if (IS_GEN8(engine->i915)) {
1174
		ret = gen8_init_indirectctx_bb(engine,
1175 1176 1177 1178 1179 1180
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1181
		ret = gen8_init_perctx_bb(engine,
1182 1183 1184 1185 1186
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1187
	} else if (IS_GEN9(engine->i915)) {
1188
		ret = gen9_init_indirectctx_bb(engine,
1189 1190 1191 1192 1193 1194
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1195
		ret = gen9_init_perctx_bb(engine,
1196 1197 1198 1199 1200
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1201 1202 1203 1204 1205
	}

out:
	kunmap_atomic(batch);
	if (ret)
1206
		lrc_destroy_wa_ctx_obj(engine);
1207 1208 1209 1210

	return ret;
}

1211 1212
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1213
	struct drm_i915_private *dev_priv = engine->i915;
1214 1215

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1216
		   engine->status_page.ggtt_offset);
1217 1218 1219
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1220
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1221
{
1222
	struct drm_i915_private *dev_priv = engine->i915;
1223 1224 1225 1226 1227
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1228

1229
	lrc_init_hws(engine);
1230

1231
	intel_engine_reset_breadcrumbs(engine);
1232

1233
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1234

1235
	I915_WRITE(RING_MODE_GEN7(engine),
1236 1237
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1238

1239
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1240

1241
	intel_engine_init_hangcheck(engine);
1242

1243 1244 1245 1246
	/* After a GPU reset, we may have requests to replay */
	if (!execlists_elsp_idle(engine)) {
		engine->execlist_port[0].count = 0;
		engine->execlist_port[1].count = 0;
1247
		execlists_submit_ports(engine);
1248
	}
1249 1250

	return 0;
1251 1252
}

1253
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1254
{
1255
	struct drm_i915_private *dev_priv = engine->i915;
1256 1257
	int ret;

1258
	ret = gen8_init_common_ring(engine);
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1272
	return init_workarounds_ring(engine);
1273 1274
}

1275
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1276 1277 1278
{
	int ret;

1279
	ret = gen8_init_common_ring(engine);
1280 1281 1282
	if (ret)
		return ret;

1283
	return init_workarounds_ring(engine);
1284 1285
}

1286 1287 1288 1289 1290 1291 1292
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
	struct intel_context *ce = &request->ctx->engine[engine->id];

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1303
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1304 1305
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1306
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1307

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	request->ring->head = request->postfix;
	request->ring->last_retired_head = -1;
	intel_ring_update_space(request->ring);

	if (i915.enable_guc_submission)
		return;

	/* Catch up with any missed context-switch interrupts */
	I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1324 1325 1326

	/* Reset WaIdleLiteRestore:bdw,skl as well */
	request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1327 1328
}

1329 1330 1331
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1332
	struct intel_ring *ring = req->ring;
1333
	struct intel_engine_cs *engine = req->engine;
1334 1335 1336
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1337
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1338 1339 1340
	if (ret)
		return ret;

1341
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1342 1343 1344
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1345 1346 1347 1348
		intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
		intel_ring_emit(ring, upper_32_bits(pd_daddr));
		intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
		intel_ring_emit(ring, lower_32_bits(pd_daddr));
1349 1350
	}

1351 1352
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1353 1354 1355 1356

	return 0;
}

1357
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1358 1359
			      u64 offset, u32 len,
			      unsigned int dispatch_flags)
1360
{
1361
	struct intel_ring *ring = req->ring;
1362
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1363 1364
	int ret;

1365 1366 1367 1368
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1369 1370
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1371
	if (req->ctx->ppgtt &&
1372
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1373
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1374
		    !intel_vgpu_active(req->i915)) {
1375 1376 1377 1378
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1379

1380
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1381 1382
	}

1383
	ret = intel_ring_begin(req, 4);
1384 1385 1386 1387
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1388 1389 1390 1391 1392 1393 1394 1395
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
			(ppgtt<<8) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1396 1397 1398 1399

	return 0;
}

1400
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1401
{
1402
	struct drm_i915_private *dev_priv = engine->i915;
1403 1404 1405
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1406 1407
}

1408
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1409
{
1410
	struct drm_i915_private *dev_priv = engine->i915;
1411
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1412 1413
}

1414
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1415
{
1416 1417
	struct intel_ring *ring = request->ring;
	u32 cmd;
1418 1419
	int ret;

1420
	ret = intel_ring_begin(request, 4);
1421 1422 1423 1424 1425
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1426 1427 1428 1429 1430 1431 1432
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1433
	if (mode & EMIT_INVALIDATE) {
1434
		cmd |= MI_INVALIDATE_TLB;
1435
		if (request->engine->id == VCS)
1436
			cmd |= MI_INVALIDATE_BSD;
1437 1438
	}

1439 1440 1441 1442 1443 1444 1445
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
			I915_GEM_HWS_SCRATCH_ADDR |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0); /* upper addr */
	intel_ring_emit(ring, 0); /* value */
	intel_ring_advance(ring);
1446 1447 1448 1449

	return 0;
}

1450
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1451
				  u32 mode)
1452
{
1453
	struct intel_ring *ring = request->ring;
1454
	struct intel_engine_cs *engine = request->engine;
1455 1456
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1457
	bool vf_flush_wa = false, dc_flush_wa = false;
1458 1459
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1460
	int len;
1461 1462 1463

	flags |= PIPE_CONTROL_CS_STALL;

1464
	if (mode & EMIT_FLUSH) {
1465 1466
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1467
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1468
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1469 1470
	}

1471
	if (mode & EMIT_INVALIDATE) {
1472 1473 1474 1475 1476 1477 1478 1479 1480
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1481 1482 1483 1484
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1485
		if (IS_GEN9(request->i915))
1486
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1487 1488 1489 1490

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1491
	}
1492

M
Mika Kuoppala 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1502 1503 1504
	if (ret)
		return ret;

1505
	if (vf_flush_wa) {
1506 1507 1508 1509 1510 1511
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
1512 1513
	}

M
Mika Kuoppala 已提交
1514
	if (dc_flush_wa) {
1515 1516 1517 1518 1519 1520
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1521 1522
	}

1523 1524 1525 1526 1527 1528
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1529 1530

	if (dc_flush_wa) {
1531 1532 1533 1534 1535 1536
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1537 1538
	}

1539
	intel_ring_advance(ring);
1540 1541 1542 1543

	return 0;
}

1544
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1556
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1557 1558
}

1559 1560 1561 1562 1563
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
C
Chris Wilson 已提交
1564
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
1565
{
C
Chris Wilson 已提交
1566 1567 1568 1569
	*out++ = MI_NOOP;
	*out++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request->ring, out);
}
1570

C
Chris Wilson 已提交
1571 1572 1573
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
				 u32 *out)
{
1574 1575
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1576

C
Chris Wilson 已提交
1577 1578 1579 1580 1581 1582 1583 1584 1585
	*out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*out++ = 0;
	*out++ = request->global_seqno;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1586
}
1587

1588 1589
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1590 1591
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
					u32 *out)
1592
{
1593 1594 1595
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1596 1597 1598 1599
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
C
Chris Wilson 已提交
1600 1601 1602 1603 1604 1605 1606
	*out++ = GFX_OP_PIPE_CONTROL(6);
	*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
		  PIPE_CONTROL_CS_STALL |
		  PIPE_CONTROL_QW_WRITE);
	*out++ = intel_hws_seqno_address(request->engine);
	*out++ = 0;
	*out++ = request->global_seqno;
1607
	/* We're thrashing one dword of HWS. */
C
Chris Wilson 已提交
1608 1609 1610 1611 1612 1613
	*out++ = 0;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1614 1615
}

1616 1617
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1618
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1619 1620 1621
{
	int ret;

1622
	ret = intel_logical_ring_workarounds_emit(req);
1623 1624 1625
	if (ret)
		return ret;

1626 1627 1628 1629 1630 1631 1632 1633
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1634
	return i915_gem_render_state_emit(req);
1635 1636
}

1637 1638
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1639
 * @engine: Engine Command Streamer.
1640
 */
1641
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1642
{
1643
	struct drm_i915_private *dev_priv;
1644

1645 1646 1647 1648 1649 1650 1651
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1652
	dev_priv = engine->i915;
1653

1654 1655
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1656
	}
1657

1658 1659
	if (engine->cleanup)
		engine->cleanup(engine);
1660

1661
	intel_engine_cleanup_common(engine);
1662

1663 1664 1665
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1666
	}
1667
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1668

1669
	lrc_destroy_wa_ctx_obj(engine);
1670
	engine->i915 = NULL;
1671 1672
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1673 1674
}

1675 1676 1677
void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1678
	enum intel_engine_id id;
1679

1680
	for_each_engine(engine, dev_priv, id)
1681
		engine->submit_request = execlists_submit_request;
1682 1683
}

1684
static void
1685
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1686 1687
{
	/* Default vfuncs which can be overriden by each engine. */
1688
	engine->init_hw = gen8_init_common_ring;
1689
	engine->reset_hw = reset_common_ring;
1690
	engine->emit_flush = gen8_emit_flush;
1691
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1692
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1693
	engine->submit_request = execlists_submit_request;
1694

1695 1696
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1697
	engine->emit_bb_start = gen8_emit_bb_start;
1698
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1699
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1700 1701
}

1702
static inline void
1703
logical_ring_default_irqs(struct intel_engine_cs *engine)
1704
{
1705
	unsigned shift = engine->irq_shift;
1706 1707
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1708 1709
}

1710
static int
1711
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1712
{
1713
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1714
	void *hws;
1715 1716

	/* The HWSP is part of the default context object in LRC mode. */
1717
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1718 1719
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1720 1721

	engine->status_page.page_addr = hws + hws_offset;
1722
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1723
	engine->status_page.vma = vma;
1724 1725

	return 0;
1726 1727
}

1728 1729 1730 1731 1732 1733
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1734 1735
	intel_engine_setup_common(engine);

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1761 1762 1763 1764 1765 1766
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1767
	ret = intel_engine_init_common(engine);
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
	if (ret)
		goto error;

	ret = execlists_context_deferred_alloc(dctx, engine);
	if (ret)
		goto error;

	/* As this is the default context, always pin it */
	ret = intel_lr_context_pin(dctx, engine);
	if (ret) {
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
		goto error;
	}

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1797
int logical_render_ring_init(struct intel_engine_cs *engine)
1798 1799 1800 1801
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1802 1803
	logical_ring_setup(engine);

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1814
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1815
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1816

1817
	ret = intel_engine_create_scratch(engine, 4096);
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

	ret = logical_ring_init(engine);
	if (ret) {
		lrc_destroy_wa_ctx_obj(engine);
	}

	return ret;
}

1840
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1841 1842 1843 1844
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1845 1846
}

1847
static u32
1848
make_rpcs(struct drm_i915_private *dev_priv)
1849 1850 1851 1852 1853 1854 1855
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1856
	if (INTEL_GEN(dev_priv) < 9)
1857 1858 1859 1860 1861 1862 1863 1864
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1865
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1866
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1867
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1868 1869 1870 1871
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1872
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1873
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1874
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1875 1876 1877 1878
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1879 1880
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1881
			GEN8_RPCS_EU_MIN_SHIFT;
1882
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1883 1884 1885 1886 1887 1888 1889
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1890
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1891 1892 1893
{
	u32 indirect_ctx_offset;

1894
	switch (INTEL_GEN(engine->i915)) {
1895
	default:
1896
		MISSING_CASE(INTEL_GEN(engine->i915));
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1911 1912 1913 1914
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1915
{
1916 1917
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1918 1919 1920 1921 1922 1923

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1924
	reg_state[CTX_LRI_HEADER_0] =
1925 1926 1927
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
1928 1929
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1930
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
1931
					   CTX_CTRL_RS_CTX_ENABLE : 0)));
1932 1933 1934 1935 1936 1937 1938 1939
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
1940
		       RING_CTL_SIZE(ring->size) | RING_VALID);
1941 1942 1943 1944 1945 1946
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
1947
		       RING_BB_PPGTT);
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
1961
		if (engine->wa_ctx.vma) {
1962
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1963
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1964 1965 1966 1967 1968 1969

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
1970
				intel_lr_indirect_ctx_offset(engine) << 6;
1971 1972 1973 1974 1975

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
1976
	}
1977
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1978 1979
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
1980
	/* PDP values well be assigned later if needed */
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
1997

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2010
		execlists_update_context_pdps(ppgtt, reg_state);
2011 2012
	}

2013
	if (engine->id == RCS) {
2014
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2015
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2016
			       make_rpcs(dev_priv));
2017
	}
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2041
	ctx_obj->mm.dirty = true;
2042 2043 2044 2045 2046 2047

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2048

2049
	i915_gem_object_unpin_map(ctx_obj);
2050 2051 2052 2053

	return 0;
}

2054 2055
/**
 * intel_lr_context_size() - return the size of the context for an engine
2056
 * @engine: which engine to find the context size for
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2068
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2069 2070 2071
{
	int ret = 0;

2072
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2073

2074
	switch (engine->id) {
2075
	case RCS:
2076
		if (INTEL_GEN(engine->i915) >= 9)
2077 2078 2079
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2090 2091
}

2092
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2093
					    struct intel_engine_cs *engine)
2094
{
2095
	struct drm_i915_gem_object *ctx_obj;
2096
	struct intel_context *ce = &ctx->engine[engine->id];
2097
	struct i915_vma *vma;
2098
	uint32_t context_size;
2099
	struct intel_ring *ring;
2100 2101
	int ret;

2102
	WARN_ON(ce->state);
2103

2104
	context_size = round_up(intel_lr_context_size(engine), 4096);
2105

2106 2107 2108
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2109
	ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2110
	if (IS_ERR(ctx_obj)) {
2111
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2112
		return PTR_ERR(ctx_obj);
2113 2114
	}

2115 2116 2117 2118 2119 2120
	vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2121
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2122 2123
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2124
		goto error_deref_obj;
2125 2126
	}

2127
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2128 2129
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2130
		goto error_ring_free;
2131 2132
	}

2133
	ce->ring = ring;
2134
	ce->state = vma;
2135
	ce->initialised = engine->init_context == NULL;
2136 2137

	return 0;
2138

2139
error_ring_free:
2140
	intel_ring_free(ring);
2141
error_deref_obj:
2142
	i915_gem_object_put(ctx_obj);
2143
	return ret;
2144
}
2145

2146
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2147
{
2148
	struct intel_engine_cs *engine;
2149
	struct i915_gem_context *ctx;
2150
	enum intel_engine_id id;
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2163
		for_each_engine(engine, dev_priv, id) {
2164 2165
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2166

2167 2168
			if (!ce->state)
				continue;
2169

2170 2171 2172 2173
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2174

2175 2176 2177
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2178

C
Chris Wilson 已提交
2179
			ce->state->obj->mm.dirty = true;
2180
			i915_gem_object_unpin_map(ce->state->obj);
2181

2182 2183 2184 2185
			ce->ring->head = ce->ring->tail = 0;
			ce->ring->last_retired_head = -1;
			intel_ring_update_space(ce->ring);
		}
2186 2187
	}
}