intel_lrc.c 71.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "intel_mocs.h"
141

142 143 144 145 146 147 148 149 150 151 152 153 154
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
155

156
#define GEN8_CTX_STATUS_COMPLETED_MASK \
157
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188
#define CTX_REG(reg_state, pos, reg, val) do { \
189
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
190 191 192 193
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
194
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
195 196
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
197
} while (0)
198

199
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
200 201
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
202
} while (0)
203

204 205
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
206
#define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x19
207

208 209
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
210
#define WA_TAIL_DWORDS 2
211
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
C
Chris Wilson 已提交
212
#define PREEMPT_ID 0x1
213

214
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
215
					    struct intel_engine_cs *engine);
216 217 218 219
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
220

221 222
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
223
 * @dev_priv: i915 device private
224 225 226
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
227
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
228 229 230
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
231
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
232
{
233 234 235
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
236
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
237 238
		return 1;

239
	if (INTEL_GEN(dev_priv) >= 9)
240 241
		return 1;

242 243 244
	if (enable_execlists == 0)
		return 0;

245
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
246
	    USES_PPGTT(dev_priv))
247 248 249 250
		return 1;

	return 0;
}
251

252
/**
253 254 255
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
256
 * @engine: Engine the descriptor will be used with
257
 *
258 259 260 261 262
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
263 264
 * This is what a descriptor looks like, from LSB to MSB::
 *
265
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
266 267 268 269
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
270
 */
271
static void
272
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
273
				   struct intel_engine_cs *engine)
274
{
275
	struct intel_context *ce = &ctx->engine[engine->id];
276
	u64 desc;
277

278
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
279

280
	desc = ctx->desc_template;				/* bits  0-11 */
281
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
282
								/* bits 12-31 */
283
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
284

285
	ce->lrc_desc = desc;
286 287
}

288 289 290 291
static struct i915_priolist *
lookup_priolist(struct intel_engine_cs *engine,
		struct i915_priotree *pt,
		int prio)
292
{
293
	struct intel_engine_execlists * const execlists = &engine->execlists;
294 295 296 297
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

298
	if (unlikely(execlists->no_priolist))
299 300 301 302 303
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
304
	parent = &execlists->queue.rb_node;
305 306 307 308 309 310 311 312 313
	while (*parent) {
		rb = *parent;
		p = rb_entry(rb, typeof(*p), node);
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
314
			return p;
315 316 317 318
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
319
		p = &execlists->default_priolist;
320 321 322 323 324 325 326 327 328 329 330 331 332 333
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
334
			execlists->no_priolist = true;
335 336 337 338 339
			goto find_priolist;
		}
	}

	p->priority = prio;
340
	INIT_LIST_HEAD(&p->requests);
341
	rb_link_node(&p->node, rb, parent);
342
	rb_insert_color(&p->node, &execlists->queue);
343 344

	if (first)
345
		execlists->first = &p->node;
346

347
	return ptr_pack_bits(p, first, 1);
348 349
}

350 351 352 353 354 355
static void unwind_wa_tail(struct drm_i915_gem_request *rq)
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

356
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
357 358
{
	struct drm_i915_gem_request *rq, *rn;
359 360
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
361 362 363 364 365 366 367 368 369 370 371 372

	lockdep_assert_held(&engine->timeline->lock);

	list_for_each_entry_safe_reverse(rq, rn,
					 &engine->timeline->requests,
					 link) {
		if (i915_gem_request_completed(rq))
			return;

		__i915_gem_request_unsubmit(rq);
		unwind_wa_tail(rq);

373 374 375 376 377 378 379 380 381 382 383
		GEM_BUG_ON(rq->priotree.priority == I915_PRIORITY_INVALID);
		if (rq->priotree.priority != last_prio) {
			p = lookup_priolist(engine,
					    &rq->priotree,
					    rq->priotree.priority);
			p = ptr_mask_bits(p, 1);

			last_prio = rq->priotree.priority;
		}

		list_add(&rq->priotree.link, &p->requests);
384 385 386
	}
}

387
void
388 389 390 391 392 393 394 395 396 397
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

	spin_lock_irq(&engine->timeline->lock);
	__unwind_incomplete_requests(engine);
	spin_unlock_irq(&engine->timeline->lock);
}

398 399 400
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
401
{
402 403 404 405 406 407
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
408

409 410
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
411 412
}

413 414 415 416 417 418 419 420 421
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

422
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
423
{
424
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
425 426
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
427
	u32 *reg_state = ce->lrc_reg_state;
428

429
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
430

431 432 433 434 435
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
436
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
437
		execlists_update_context_pdps(ppgtt, reg_state);
438 439

	return ce->lrc_desc;
440 441
}

C
Chris Wilson 已提交
442 443 444 445 446 447
static inline void elsp_write(u64 desc, u32 __iomem *elsp)
{
	writel(upper_32_bits(desc), elsp);
	writel(lower_32_bits(desc), elsp);
}

448
static void execlists_submit_ports(struct intel_engine_cs *engine)
449
{
450
	struct execlist_port *port = engine->execlists.port;
451
	u32 __iomem *elsp =
452 453
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	unsigned int n;
454

455
	for (n = execlists_num_ports(&engine->execlists); n--; ) {
456 457 458 459 460 461 462 463 464 465 466 467
		struct drm_i915_gem_request *rq;
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
468 469 470 471 472

			GEM_TRACE("%s in[%d]:  ctx=%d.%d, seqno=%x\n",
				  engine->name, n,
				  rq->ctx->hw_id, count,
				  rq->global_seqno);
473 474 475 476
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
477

C
Chris Wilson 已提交
478
		elsp_write(desc, elsp);
479
	}
480 481
}

482
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
483
{
484
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
485
		i915_gem_context_force_single_submission(ctx));
486
}
487

488 489 490 491 492
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
493

494 495
	if (ctx_single_port_submission(prev))
		return false;
496

497
	return true;
498 499
}

500 501 502 503 504 505 506 507 508 509 510
static void port_assign(struct execlist_port *port,
			struct drm_i915_gem_request *rq)
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
		i915_gem_request_put(port_request(port));

	port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
}

C
Chris Wilson 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
static void inject_preempt_context(struct intel_engine_cs *engine)
{
	struct intel_context *ce =
		&engine->i915->preempt_context->engine[engine->id];
	u32 __iomem *elsp =
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	unsigned int n;

	GEM_BUG_ON(engine->i915->preempt_context->hw_id != PREEMPT_ID);
	GEM_BUG_ON(!IS_ALIGNED(ce->ring->size, WA_TAIL_BYTES));

	memset(ce->ring->vaddr + ce->ring->tail, 0, WA_TAIL_BYTES);
	ce->ring->tail += WA_TAIL_BYTES;
	ce->ring->tail &= (ce->ring->size - 1);
	ce->lrc_reg_state[CTX_RING_TAIL+1] = ce->ring->tail;

527
	GEM_TRACE("\n");
C
Chris Wilson 已提交
528 529 530 531 532 533
	for (n = execlists_num_ports(&engine->execlists); --n; )
		elsp_write(0, elsp);

	elsp_write(ce->lrc_desc, elsp);
}

534
static void execlists_dequeue(struct intel_engine_cs *engine)
535
{
536 537
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
538 539
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
C
Chris Wilson 已提交
540
	struct drm_i915_gem_request *last = port_request(port);
541
	struct rb_node *rb;
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
	bool submit = false;

	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
563
	 */
564

565
	spin_lock_irq(&engine->timeline->lock);
566 567
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
C
Chris Wilson 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580
	if (!rb)
		goto unlock;

	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
		if (port_count(&port[0]) > 1)
			goto unlock;

581
		if (HAS_LOGICAL_RING_PREEMPTION(engine->i915) &&
C
Chris Wilson 已提交
582 583 584 585 586 587 588
		    rb_entry(rb, struct i915_priolist, node)->priority >
		    max(last->priotree.priority, 0)) {
			/*
			 * Switch to our empty preempt context so
			 * the state of the GPU is known (idle).
			 */
			inject_preempt_context(engine);
589 590
			execlists_set_active(execlists,
					     EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
			goto unlock;
		} else {
			/*
			 * In theory, we could coalesce more requests onto
			 * the second port (the first port is active, with
			 * no preemptions pending). However, that means we
			 * then have to deal with the possible lite-restore
			 * of the second port (as we submit the ELSP, there
			 * may be a context-switch) but also we may complete
			 * the resubmission before the context-switch. Ergo,
			 * coalescing onto the second port will cause a
			 * preemption event, but we cannot predict whether
			 * that will affect port[0] or port[1].
			 *
			 * If the second port is already active, we can wait
			 * until the next context-switch before contemplating
			 * new requests. The GPU will be busy and we should be
			 * able to resubmit the new ELSP before it idles,
			 * avoiding pipeline bubbles (momentary pauses where
			 * the driver is unable to keep up the supply of new
			 * work).
			 */
			if (port_count(&port[1]))
				goto unlock;

			/* WaIdleLiteRestore:bdw,skl
			 * Apply the wa NOOPs to prevent
			 * ring:HEAD == req:TAIL as we resubmit the
			 * request. See gen8_emit_breadcrumb() for
			 * where we prepare the padding after the
			 * end of the request.
			 */
			last->tail = last->wa_tail;
		}
	}

	do {
628 629 630 631 632 633 634 635 636 637 638 639 640 641
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		struct drm_i915_gem_request *rq, *rn;

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
642
			 */
643 644 645 646 647 648
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
649
				if (port == last_port) {
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
674 675

				GEM_BUG_ON(port_isset(port));
676
			}
677

678 679
			INIT_LIST_HEAD(&rq->priotree.link);
			__i915_gem_request_submit(rq);
680
			trace_i915_gem_request_in(rq, port_index(port, execlists));
681 682
			last = rq;
			submit = true;
683
		}
684

685
		rb = rb_next(rb);
686
		rb_erase(&p->node, &execlists->queue);
687 688
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
689
			kmem_cache_free(engine->i915->priorities, p);
C
Chris Wilson 已提交
690
	} while (rb);
691
done:
692
	execlists->first = rb;
693
	if (submit)
694
		port_assign(port, last);
C
Chris Wilson 已提交
695
unlock:
696
	spin_unlock_irq(&engine->timeline->lock);
697

698 699
	if (submit) {
		execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
700
		execlists_submit_ports(engine);
701
	}
702 703
}

704
void
705
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
706
{
707
	struct execlist_port *port = execlists->port;
708
	unsigned int num_ports = execlists_num_ports(execlists);
709

710
	while (num_ports-- && port_isset(port)) {
711 712
		struct drm_i915_gem_request *rq = port_request(port);

713
		GEM_BUG_ON(!execlists->active);
714
		execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_PREEMPTED);
715 716
		i915_gem_request_put(rq);

717 718 719
		memset(port, 0, sizeof(*port));
		port++;
	}
720 721
}

722 723
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
724
	struct intel_engine_execlists * const execlists = &engine->execlists;
725 726 727 728 729 730 731
	struct drm_i915_gem_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline->lock, flags);

	/* Cancel the requests on the HW and clear the ELSP tracker. */
732
	execlists_cancel_port_requests(execlists);
733 734 735 736 737 738 739 740 741

	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline->requests, link) {
		GEM_BUG_ON(!rq->global_seqno);
		if (!i915_gem_request_completed(rq))
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
742
	rb = execlists->first;
743 744 745 746 747 748 749 750 751 752 753
	while (rb) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			INIT_LIST_HEAD(&rq->priotree.link);

			dma_fence_set_error(&rq->fence, -EIO);
			__i915_gem_request_submit(rq);
		}

		rb = rb_next(rb);
754
		rb_erase(&p->node, &execlists->queue);
755 756 757 758 759 760 761
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

762

763 764
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
765
	GEM_BUG_ON(port_isset(execlists->port));
766 767 768 769 770 771 772 773 774 775 776 777

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

778
/*
779 780 781
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
782
static void execlists_submission_tasklet(unsigned long data)
783
{
784 785
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	struct intel_engine_execlists * const execlists = &engine->execlists;
C
Chris Wilson 已提交
786
	struct execlist_port * const port = execlists->port;
787
	struct drm_i915_private *dev_priv = engine->i915;
788

789 790 791 792 793 794 795 796 797
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

798
	intel_uncore_forcewake_get(dev_priv, execlists->fw_domains);
799

800 801 802 803 804
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
805 806 807
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
808
		unsigned int head, tail;
809

810
		if (unlikely(execlists->csb_use_mmio)) {
811 812
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
813
			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
814 815
		}

816 817 818 819 820 821 822 823 824 825 826
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
827
		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
828 829 830
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
831
			execlists->csb_head = head;
832 833 834 835 836
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

837
			head = execlists->csb_head;
838 839
			tail = READ_ONCE(buf[write_idx]);
		}
840 841 842 843
		GEM_TRACE("%s cs-irq head=%d [%d], tail=%d [%d]\n",
			  engine->name,
			  head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))),
			  tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))));
844

845
		while (head != tail) {
846
			struct drm_i915_gem_request *rq;
847
			unsigned int status;
848
			unsigned int count;
849 850 851

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
852

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

870
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
871 872 873
			GEM_TRACE("%s csb[%dd]: status=0x%08x:0x%08x\n",
				  engine->name, head,
				  status, buf[2*head + 1]);
874 875 876
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

877 878 879
			/* We should never get a COMPLETED | IDLE_ACTIVE! */
			GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

880
			if (status & GEN8_CTX_STATUS_COMPLETE &&
C
Chris Wilson 已提交
881
			    buf[2*head + 1] == PREEMPT_ID) {
882 883
				execlists_cancel_port_requests(execlists);
				execlists_unwind_incomplete_requests(execlists);
C
Chris Wilson 已提交
884

885 886 887 888
				GEM_BUG_ON(!execlists_is_active(execlists,
								EXECLISTS_ACTIVE_PREEMPT));
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
889 890 891 892
				continue;
			}

			if (status & GEN8_CTX_STATUS_PREEMPTED &&
893 894
			    execlists_is_active(execlists,
						EXECLISTS_ACTIVE_PREEMPT))
C
Chris Wilson 已提交
895 896
				continue;

897 898 899
			GEM_BUG_ON(!execlists_is_active(execlists,
							EXECLISTS_ACTIVE_USER));

900
			/* Check the context/desc id for this event matches */
901
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
902

903
			rq = port_unpack(port, &count);
904 905 906 907
			GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x\n",
				  engine->name,
				  rq->ctx->hw_id, count,
				  rq->global_seqno);
908 909
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
910
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
911 912
				GEM_BUG_ON(port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
913 914 915 916 917
				GEM_BUG_ON(!i915_gem_request_completed(rq));
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);

				trace_i915_gem_request_out(rq);
				i915_gem_request_put(rq);
918

919
				execlists_port_complete(execlists, port);
920 921
			} else {
				port_set(port, port_pack(rq, count));
922
			}
923

924 925
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
926
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
927 928 929
			if (port_count(port) == 0)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_USER);
930
		}
931

932 933
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
934 935 936
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
937 938
	}

939
	if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
940
		execlists_dequeue(engine);
941

942
	intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
943 944
}

945 946 947 948 949 950 951
static void insert_request(struct intel_engine_cs *engine,
			   struct i915_priotree *pt,
			   int prio)
{
	struct i915_priolist *p = lookup_priolist(engine, pt, prio);

	list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
C
Chris Wilson 已提交
952
	if (ptr_unmask_bits(p, 1))
953
		tasklet_hi_schedule(&engine->execlists.tasklet);
954 955
}

956
static void execlists_submit_request(struct drm_i915_gem_request *request)
957
{
958
	struct intel_engine_cs *engine = request->engine;
959
	unsigned long flags;
960

961 962
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
963

964
	insert_request(engine, &request->priotree, request->priotree.priority);
965

966
	GEM_BUG_ON(!engine->execlists.first);
967 968
	GEM_BUG_ON(list_empty(&request->priotree.link));

969
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
970 971
}

972 973 974 975 976
static struct drm_i915_gem_request *pt_to_request(struct i915_priotree *pt)
{
	return container_of(pt, struct drm_i915_gem_request, priotree);
}

977 978 979
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
980
	struct intel_engine_cs *engine = pt_to_request(pt)->engine;
981 982

	GEM_BUG_ON(!locked);
983 984

	if (engine != locked) {
985 986
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
987 988 989 990 991 992 993
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
994
	struct intel_engine_cs *engine;
995 996 997 998
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

999 1000
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

1001 1002 1003
	if (prio <= READ_ONCE(request->priotree.priority))
		return;

1004 1005
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

1030 1031 1032 1033 1034 1035
		/* Within an engine, there can be no cycle, but we may
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
1036 1037 1038
			if (i915_gem_request_completed(pt_to_request(p->signaler)))
				continue;

1039
			GEM_BUG_ON(p->signaler->priority < pt->priority);
1040 1041
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
1042
		}
1043

1044
		list_safe_reset_next(dep, p, dfs_link);
1045 1046
	}

1047 1048 1049 1050 1051
	/* If we didn't need to bump any existing priorities, and we haven't
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1052
	if (request->priotree.priority == I915_PRIORITY_INVALID) {
1053 1054 1055 1056 1057 1058 1059
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1060 1061 1062
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
1075 1076 1077
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
			insert_request(engine, pt, prio);
1078
		}
1079 1080
	}

1081
	spin_unlock_irq(&engine->timeline->lock);
1082 1083
}

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;

	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
}

1107 1108 1109
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1110
{
1111
	struct intel_context *ce = &ctx->engine[engine->id];
1112
	void *vaddr;
1113
	int ret;
1114

1115
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1116

1117 1118
	if (likely(ce->pin_count++))
		goto out;
1119
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1120

1121 1122 1123 1124 1125
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
1126
	GEM_BUG_ON(!ce->state);
1127

1128
	ret = __context_pin(ctx, ce->state);
1129
	if (ret)
1130
		goto err;
1131

1132
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1133 1134
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1135
		goto unpin_vma;
1136 1137
	}

1138
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1139
	if (ret)
1140
		goto unpin_map;
1141

1142
	intel_lr_context_descriptor_update(ctx, engine);
1143

1144 1145
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1146
		i915_ggtt_offset(ce->ring->vma);
1147

1148
	ce->state->obj->pin_global++;
1149
	i915_gem_context_get(ctx);
1150 1151
out:
	return ce->ring;
1152

1153
unpin_map:
1154 1155 1156
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1157
err:
1158
	ce->pin_count = 0;
1159
	return ERR_PTR(ret);
1160 1161
}

1162 1163
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1164
{
1165
	struct intel_context *ce = &ctx->engine[engine->id];
1166

1167
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1168
	GEM_BUG_ON(ce->pin_count == 0);
1169

1170
	if (--ce->pin_count)
1171
		return;
1172

1173
	intel_ring_unpin(ce->ring);
1174

1175
	ce->state->obj->pin_global--;
1176 1177
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1178

1179
	i915_gem_context_put(ctx);
1180 1181
}

1182
static int execlists_request_alloc(struct drm_i915_gem_request *request)
1183 1184 1185
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
1186
	int ret;
1187

1188 1189
	GEM_BUG_ON(!ce->pin_count);

1190 1191 1192 1193 1194 1195
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1196 1197 1198
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1227 1228
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1229
{
1230 1231 1232 1233 1234 1235 1236 1237 1238
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1239 1240 1241 1242
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1243 1244 1245 1246 1247 1248 1249

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1250 1251
}

1252 1253 1254 1255 1256 1257
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1258
 *
1259 1260
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1261
 *
1262 1263 1264 1265
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1266
 */
1267
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1268
{
1269
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1270
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1271

1272
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1273 1274
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1275

1276 1277
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1278 1279 1280 1281 1282 1283 1284
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1285

C
Chris Wilson 已提交
1286 1287
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1288
	/* Pad to end of cacheline */
1289 1290
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1291 1292 1293 1294 1295 1296 1297

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1298
	return batch;
1299 1300
}

1301
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1302
{
C
Chris Wilson 已提交
1303 1304
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

1305
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1306
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1307

1308
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1309 1310 1311 1312 1313
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1314

1315 1316
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1317
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1318 1319 1320 1321 1322 1323 1324
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1325
	}
1326

1327
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1342 1343 1344 1345 1346 1347
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1348 1349
	}

C
Chris Wilson 已提交
1350 1351
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1352
	/* Pad to end of cacheline */
1353 1354
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1355

1356
	return batch;
1357 1358
}

1359 1360 1361
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1362
{
1363 1364 1365
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1366

1367
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1368 1369
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1370

1371
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1372 1373 1374
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1375 1376
	}

1377 1378 1379 1380 1381
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1382
	return 0;
1383 1384 1385 1386

err:
	i915_gem_object_put(obj);
	return err;
1387 1388
}

1389
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1390
{
1391
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1392 1393
}

1394 1395
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1396
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1397
{
1398
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1399 1400 1401
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1402
	struct page *page;
1403 1404
	void *batch, *batch_ptr;
	unsigned int i;
1405
	int ret;
1406

1407 1408
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1409

1410
	switch (INTEL_GEN(engine->i915)) {
1411 1412
	case 10:
		return 0;
1413 1414
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1415
		wa_bb_fn[1] = NULL;
1416 1417 1418
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1419
		wa_bb_fn[1] = NULL;
1420 1421 1422
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1423
		return 0;
1424
	}
1425

1426
	ret = lrc_setup_wa_ctx(engine);
1427 1428 1429 1430 1431
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1432
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1433
	batch = batch_ptr = kmap_atomic(page);
1434

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
1446 1447
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1448
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1449 1450
	}

1451 1452
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1453 1454
	kunmap_atomic(batch);
	if (ret)
1455
		lrc_destroy_wa_ctx(engine);
1456 1457 1458 1459

	return ret;
}

1460 1461 1462 1463 1464 1465 1466 1467
static u8 gtiir[] = {
	[RCS] = 0,
	[BCS] = 0,
	[VCS] = 1,
	[VCS2] = 1,
	[VECS] = 3,
};

1468
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1469
{
1470
	struct drm_i915_private *dev_priv = engine->i915;
1471
	struct intel_engine_execlists * const execlists = &engine->execlists;
1472 1473 1474 1475 1476
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1477

1478
	intel_engine_reset_breadcrumbs(engine);
1479
	intel_engine_init_hangcheck(engine);
1480

1481 1482
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1483
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1484 1485 1486
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1487

1488
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1489

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are double
	 * buffered, and if we only reset it once there may still be
	 * an interrupt pending.
	 */
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1503
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1504
	execlists->csb_head = -1;
1505
	execlists->active = 0;
1506

1507
	/* After a GPU reset, we may have requests to replay */
1508
	if (execlists->first)
1509
		tasklet_schedule(&execlists->tasklet);
1510

1511
	return 0;
1512 1513
}

1514
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1515
{
1516
	struct drm_i915_private *dev_priv = engine->i915;
1517 1518
	int ret;

1519
	ret = gen8_init_common_ring(engine);
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1533
	return init_workarounds_ring(engine);
1534 1535
}

1536
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1537 1538 1539
{
	int ret;

1540
	ret = gen8_init_common_ring(engine);
1541 1542 1543
	if (ret)
		return ret;

1544
	return init_workarounds_ring(engine);
1545 1546
}

1547 1548 1549
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
1550
	struct intel_engine_execlists * const execlists = &engine->execlists;
1551
	struct intel_context *ce;
1552
	unsigned long flags;
1553

1554 1555
	spin_lock_irqsave(&engine->timeline->lock, flags);

1556 1557 1558 1559 1560 1561 1562 1563 1564
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1565
	execlists_cancel_port_requests(execlists);
1566

1567
	/* Push back any incomplete requests for replay after the reset. */
1568
	__unwind_incomplete_requests(engine);
1569

1570
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1582
	if (!request || request->fence.error != -EIO)
1583
		return;
1584

1585 1586 1587 1588 1589 1590 1591
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1592
	ce = &request->ctx->engine[engine->id];
1593 1594 1595
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1596
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1597 1598
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1599
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1600

1601 1602 1603
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1604
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1605
	unwind_wa_tail(request);
1606 1607
}

1608 1609 1610
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1611
	struct intel_engine_cs *engine = req->engine;
1612
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1613 1614
	u32 *cs;
	int i;
1615

1616 1617 1618
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1619

1620
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1621
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1622 1623
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1624 1625 1626 1627
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1628 1629
	}

1630 1631
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1632 1633 1634 1635

	return 0;
}

1636
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1637
			      u64 offset, u32 len,
1638
			      const unsigned int flags)
1639
{
1640
	u32 *cs;
1641 1642
	int ret;

1643 1644 1645 1646
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1647 1648
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1649
	if (req->ctx->ppgtt &&
1650 1651 1652 1653 1654 1655
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1656

1657
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1658 1659
	}

1660 1661 1662
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1663

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
1681 1682
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1683
	/* FIXME(BDW): Address space and security selectors. */
1684 1685 1686
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1687 1688 1689
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	intel_ring_advance(req, cs);
1690 1691 1692 1693

	return 0;
}

1694
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1695
{
1696
	struct drm_i915_private *dev_priv = engine->i915;
1697 1698 1699
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1700 1701
}

1702
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1703
{
1704
	struct drm_i915_private *dev_priv = engine->i915;
1705
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1706 1707
}

1708
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1709
{
1710
	u32 cmd, *cs;
1711

1712 1713 1714
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1715 1716 1717

	cmd = MI_FLUSH_DW + 1;

1718 1719 1720 1721 1722 1723 1724
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1725
	if (mode & EMIT_INVALIDATE) {
1726
		cmd |= MI_INVALIDATE_TLB;
1727
		if (request->engine->id == VCS)
1728
			cmd |= MI_INVALIDATE_BSD;
1729 1730
	}

1731 1732 1733 1734 1735
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1736 1737 1738 1739

	return 0;
}

1740
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1741
				  u32 mode)
1742
{
1743
	struct intel_engine_cs *engine = request->engine;
1744 1745
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1746
	bool vf_flush_wa = false, dc_flush_wa = false;
1747
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1748
	int len;
1749 1750 1751

	flags |= PIPE_CONTROL_CS_STALL;

1752
	if (mode & EMIT_FLUSH) {
1753 1754
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1755
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1756
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1757 1758
	}

1759
	if (mode & EMIT_INVALIDATE) {
1760 1761 1762 1763 1764 1765 1766 1767 1768
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1769 1770 1771 1772
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1773
		if (IS_GEN9(request->i915))
1774
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1775 1776 1777 1778

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1779
	}
1780

M
Mika Kuoppala 已提交
1781 1782 1783 1784 1785 1786 1787 1788
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1789 1790 1791
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1792

1793 1794
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1795

1796 1797 1798
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1799

1800
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1801

1802 1803
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1804

1805
	intel_ring_advance(request, cs);
1806 1807 1808 1809

	return 0;
}

1810 1811 1812 1813 1814
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1815
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1816
{
C
Chris Wilson 已提交
1817 1818
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
1819 1820
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1821
}
1822

1823
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1824
{
1825 1826
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1827

1828 1829
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
1830 1831 1832
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1833
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1834

1835
	gen8_emit_wa_tail(request, cs);
1836
}
1837 1838
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

1839
static void gen8_emit_breadcrumb_rcs(struct drm_i915_gem_request *request,
1840
					u32 *cs)
1841
{
1842 1843 1844
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1845 1846
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
1847 1848 1849
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1850
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1851

1852
	gen8_emit_wa_tail(request, cs);
1853
}
1854
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
1855

1856
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1857 1858 1859
{
	int ret;

1860
	ret = intel_ring_workarounds_emit(req);
1861 1862 1863
	if (ret)
		return ret;

1864 1865 1866 1867 1868 1869 1870 1871
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1872
	return i915_gem_render_state_emit(req);
1873 1874
}

1875 1876
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1877
 * @engine: Engine Command Streamer.
1878
 */
1879
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1880
{
1881
	struct drm_i915_private *dev_priv;
1882

1883 1884 1885 1886
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
1887 1888 1889
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
1890

1891
	dev_priv = engine->i915;
1892

1893 1894
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1895
	}
1896

1897 1898
	if (engine->cleanup)
		engine->cleanup(engine);
1899

1900
	intel_engine_cleanup_common(engine);
1901

1902
	lrc_destroy_wa_ctx(engine);
1903
	engine->i915 = NULL;
1904 1905
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1906 1907
}

1908
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1909
{
1910
	engine->submit_request = execlists_submit_request;
1911
	engine->cancel_requests = execlists_cancel_requests;
1912
	engine->schedule = execlists_schedule;
1913
	engine->execlists.tasklet.func = execlists_submission_tasklet;
1914 1915 1916

	engine->park = NULL;
	engine->unpark = NULL;
1917 1918
}

1919
static void
1920
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1921 1922
{
	/* Default vfuncs which can be overriden by each engine. */
1923
	engine->init_hw = gen8_init_common_ring;
1924
	engine->reset_hw = reset_common_ring;
1925 1926 1927 1928

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1929 1930
	engine->request_alloc = execlists_request_alloc;

1931
	engine->emit_flush = gen8_emit_flush;
1932
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1933
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1934 1935

	engine->set_default_submission = execlists_set_default_submission;
1936

1937 1938
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1939
	engine->emit_bb_start = gen8_emit_bb_start;
1940 1941
}

1942
static inline void
1943
logical_ring_default_irqs(struct intel_engine_cs *engine)
1944
{
1945
	unsigned shift = engine->irq_shift;
1946 1947
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1948 1949
}

1950 1951 1952 1953 1954 1955
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1956 1957
	intel_engine_setup_common(engine);

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

1973
	engine->execlists.fw_domains = fw_domains;
1974

1975 1976
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
1977 1978 1979 1980 1981

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1982
static int logical_ring_init(struct intel_engine_cs *engine)
1983 1984 1985
{
	int ret;

1986
	ret = intel_engine_init_common(engine);
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	if (ret)
		goto error;

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1997
int logical_render_ring_init(struct intel_engine_cs *engine)
1998 1999 2000 2001
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2002 2003
	logical_ring_setup(engine);

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2014 2015
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2016

2017
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2032
	return logical_ring_init(engine);
2033 2034
}

2035
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2036 2037 2038 2039
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2040 2041
}

2042
static u32
2043
make_rpcs(struct drm_i915_private *dev_priv)
2044 2045 2046 2047 2048 2049 2050
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2051
	if (INTEL_GEN(dev_priv) < 9)
2052 2053 2054 2055 2056 2057 2058 2059
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2060
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2061
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2062
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2063 2064 2065 2066
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2067
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2068
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2069
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2070 2071 2072 2073
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2074 2075
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2076
			GEN8_RPCS_EU_MIN_SHIFT;
2077
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2078 2079 2080 2081 2082 2083 2084
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2085
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2086 2087 2088
{
	u32 indirect_ctx_offset;

2089
	switch (INTEL_GEN(engine->i915)) {
2090
	default:
2091
		MISSING_CASE(INTEL_GEN(engine->i915));
2092
		/* fall through */
2093 2094 2095 2096
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2110
static void execlists_init_reg_state(u32 *regs,
2111 2112 2113
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2114
{
2115 2116
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2146 2147
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2148 2149 2150
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2151
		if (wa_ctx->indirect_ctx.size) {
2152
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2153

2154
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2155 2156
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2157

2158
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2159
				intel_lr_indirect_ctx_offset(engine) << 6;
2160 2161 2162 2163 2164
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2165

2166
			regs[CTX_BB_PER_CTX_PTR + 1] =
2167
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2168
		}
2169
	}
2170 2171 2172 2173

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2174
	/* PDP values well be assigned later if needed */
2175 2176 2177 2178 2179 2180 2181 2182
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2183

2184
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2185 2186 2187 2188
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2189
		ASSIGN_CTX_PML4(ppgtt, regs);
2190 2191
	}

2192 2193 2194 2195
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2196 2197

		i915_oa_init_reg_state(engine, ctx, regs);
2198
	}
2199 2200 2201 2202 2203 2204 2205 2206 2207
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2208
	u32 *regs;
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2223
	ctx_obj->mm.dirty = true;
2224

2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (IS_ERR(defaults))
			return PTR_ERR(defaults);

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2243 2244
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2245 2246 2247 2248 2249
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2250

2251
	i915_gem_object_unpin_map(ctx_obj);
2252 2253 2254 2255

	return 0;
}

2256
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2257
					    struct intel_engine_cs *engine)
2258
{
2259
	struct drm_i915_gem_object *ctx_obj;
2260
	struct intel_context *ce = &ctx->engine[engine->id];
2261
	struct i915_vma *vma;
2262
	uint32_t context_size;
2263
	struct intel_ring *ring;
2264 2265
	int ret;

2266
	WARN_ON(ce->state);
2267

2268
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2269

2270 2271 2272 2273 2274
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2275

2276
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2277
	if (IS_ERR(ctx_obj)) {
2278
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2279
		return PTR_ERR(ctx_obj);
2280 2281
	}

2282
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2283 2284 2285 2286 2287
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2288
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2289 2290
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2291
		goto error_deref_obj;
2292 2293
	}

2294
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2295 2296
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2297
		goto error_ring_free;
2298 2299
	}

2300
	ce->ring = ring;
2301
	ce->state = vma;
2302 2303

	return 0;
2304

2305
error_ring_free:
2306
	intel_ring_free(ring);
2307
error_deref_obj:
2308
	i915_gem_object_put(ctx_obj);
2309
	return ret;
2310
}
2311

2312
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2313
{
2314
	struct intel_engine_cs *engine;
2315
	struct i915_gem_context *ctx;
2316
	enum intel_engine_id id;
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2328
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2329
		for_each_engine(engine, dev_priv, id) {
2330 2331
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2332

2333 2334
			if (!ce->state)
				continue;
2335

2336 2337 2338 2339
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2340

2341 2342 2343
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2344

C
Chris Wilson 已提交
2345
			ce->state->obj->mm.dirty = true;
2346
			i915_gem_object_unpin_map(ce->state->obj);
2347

2348
			intel_ring_reset(ce->ring, 0);
2349
		}
2350 2351
	}
}