intel_lrc.c 71.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211 212 213 214 215 216
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
217
#define GEN8_CTX_ID_WIDTH 21
218 219
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
220

221 222 223
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

224
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
225
					    struct intel_engine_cs *engine);
226
static int intel_lr_context_pin(struct i915_gem_context *ctx,
227
				struct intel_engine_cs *engine);
228

229 230
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
231
 * @dev_priv: i915 device private
232 233 234
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
235
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
236 237 238
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
239
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
240
{
241 242 243
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
244
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
245 246
		return 1;

247
	if (INTEL_GEN(dev_priv) >= 9)
248 249
		return 1;

250 251 252
	if (enable_execlists == 0)
		return 0;

253 254 255
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
256 257 258 259
		return 1;

	return 0;
}
260

261
static void
262
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
263
{
264
	struct drm_i915_private *dev_priv = engine->i915;
265

266
	if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
267
		engine->idle_lite_restore_wa = ~0;
268

269 270
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
					IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
271
					(engine->id == VCS || engine->id == VCS2);
272

273
	engine->ctx_desc_template = GEN8_CTX_VALID;
274
	if (IS_GEN8(dev_priv))
275 276
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
277 278 279 280 281 282 283

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
284 285
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
286 287
}

288
/**
289 290 291
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
292
 * @engine: Engine the descriptor will be used with
293
 *
294 295 296 297 298
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
299 300 301 302 303 304 305
 * This is what a descriptor looks like, from LSB to MSB::
 *
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
306
 */
307
static void
308
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
309
				   struct intel_engine_cs *engine)
310
{
311
	struct intel_context *ce = &ctx->engine[engine->id];
312
	u64 desc;
313

314
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
315

316 317
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
318 319
	desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
								/* bits 12-31 */
320
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
321

322
	ce->lrc_desc = desc;
323 324
}

325
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
326
				     struct intel_engine_cs *engine)
327
{
328
	return ctx->engine[engine->id].lrc_desc;
329
}
330

331 332
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
333
{
334

335
	struct intel_engine_cs *engine = rq0->engine;
336
	struct drm_i915_private *dev_priv = rq0->i915;
337
	uint64_t desc[2];
338

339
	if (rq1) {
340
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
341 342 343 344
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
345

346
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
347
	rq0->elsp_submitted++;
348

349
	/* You must always write both descriptors in the order below. */
350 351
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
352

353
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
354
	/* The context is automatically loaded after the following */
355
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
356

357
	/* ELSP is a wo register, use another nearby reg for posting */
358
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
359 360
}

361 362 363 364 365 366 367 368 369 370
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
371
{
372
	struct intel_engine_cs *engine = rq->engine;
373
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
374
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
375

376
	reg_state[CTX_RING_TAIL+1] = rq->tail;
377

378 379 380 381 382 383 384
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
385 386
}

387 388
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
389
{
390
	struct drm_i915_private *dev_priv = rq0->i915;
391
	unsigned int fw_domains = rq0->engine->fw_domains;
392

393
	execlists_update_context(rq0);
394

395
	if (rq1)
396
		execlists_update_context(rq1);
397

398
	spin_lock_irq(&dev_priv->uncore.lock);
399
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
400

401
	execlists_elsp_write(rq0, rq1);
402

403
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
404
	spin_unlock_irq(&dev_priv->uncore.lock);
405 406
}

407 408 409 410 411 412 413 414 415 416 417 418 419 420
static inline void execlists_context_status_change(
		struct drm_i915_gem_request *rq,
		unsigned long status)
{
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;

	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
}

421
static void execlists_context_unqueue(struct intel_engine_cs *engine)
422
{
423
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
424
	struct drm_i915_gem_request *cursor, *tmp;
425

426
	assert_spin_locked(&engine->execlist_lock);
427

428 429 430 431
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
432
	WARN_ON(!intel_irqs_enabled(engine->i915));
433

434
	/* Try to read in pairs */
435
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
436 437 438
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
439
		} else if (req0->ctx == cursor->ctx) {
440 441
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
442
			cursor->elsp_submitted = req0->elsp_submitted;
443
			list_del(&req0->execlist_link);
444
			i915_gem_request_put(req0);
445 446
			req0 = cursor;
		} else {
447 448 449 450 451 452 453 454 455 456 457 458 459 460
			if (IS_ENABLED(CONFIG_DRM_I915_GVT)) {
				/*
				 * req0 (after merged) ctx requires single
				 * submission, stop picking
				 */
				if (req0->ctx->execlists_force_single_submission)
					break;
				/*
				 * req0 ctx doesn't require single submission,
				 * but next req ctx requires, stop picking
				 */
				if (cursor->ctx->execlists_force_single_submission)
					break;
			}
461
			req1 = cursor;
462
			WARN_ON(req1->elsp_submitted);
463 464 465 466
			break;
		}
	}

467 468 469
	if (unlikely(!req0))
		return;

470 471 472 473 474 475
	execlists_context_status_change(req0, INTEL_CONTEXT_SCHEDULE_IN);

	if (req1)
		execlists_context_status_change(req1,
						INTEL_CONTEXT_SCHEDULE_IN);

476
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
477
		/*
478 479 480 481 482 483
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
484
		 */
485
		req0->tail += 8;
486
		req0->tail &= req0->ring->size - 1;
487 488
	}

489
	execlists_submit_requests(req0, req1);
490 491
}

492
static unsigned int
493
execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
494
{
495
	struct drm_i915_gem_request *head_req;
496

497
	assert_spin_locked(&engine->execlist_lock);
498

499
	head_req = list_first_entry_or_null(&engine->execlist_queue,
500
					    struct drm_i915_gem_request,
501 502
					    execlist_link);

503 504
	if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
               return 0;
505 506 507 508 509 510

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

511 512
	execlists_context_status_change(head_req, INTEL_CONTEXT_SCHEDULE_OUT);

513
	list_del(&head_req->execlist_link);
514
	i915_gem_request_put(head_req);
515

516
	return 1;
517 518
}

519
static u32
520
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
521
		   u32 *context_id)
B
Ben Widawsky 已提交
522
{
523
	struct drm_i915_private *dev_priv = engine->i915;
524
	u32 status;
B
Ben Widawsky 已提交
525

526 527
	read_pointer %= GEN8_CSB_ENTRIES;

528
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
529 530 531

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
532

533
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
534 535 536
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
537 538
}

539
/*
540 541 542
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
543
static void intel_lrc_irq_handler(unsigned long data)
544
{
545
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
546
	struct drm_i915_private *dev_priv = engine->i915;
547
	u32 status_pointer;
548
	unsigned int read_pointer, write_pointer;
549 550
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
551 552
	unsigned int submit_contexts = 0;

553
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
554

555
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
556

557
	read_pointer = engine->next_context_status_buffer;
558
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
559
	if (read_pointer > write_pointer)
560
		write_pointer += GEN8_CSB_ENTRIES;
561 562

	while (read_pointer < write_pointer) {
563 564 565 566 567 568
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
569

570 571 572 573 574 575 576 577
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

578
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
579 580 581 582 583 584 585

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
586 587 588 589 590
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

591
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
592 593
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
594
				execlists_check_remove_request(engine, csb[i][1]);
595 596
	}

597
	if (submit_contexts) {
598
		if (!engine->disable_lite_restore_wa ||
599 600
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
601
	}
602

603
	spin_unlock(&engine->execlist_lock);
604 605 606

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
607 608
}

609
static void execlists_context_queue(struct drm_i915_gem_request *request)
610
{
611
	struct intel_engine_cs *engine = request->engine;
612
	struct drm_i915_gem_request *cursor;
613
	int num_elements = 0;
614

615
	spin_lock_bh(&engine->execlist_lock);
616

617
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
618 619 620 621
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
622
		struct drm_i915_gem_request *tail_req;
623

624
		tail_req = list_last_entry(&engine->execlist_queue,
625
					   struct drm_i915_gem_request,
626 627
					   execlist_link);

628
		if (request->ctx == tail_req->ctx) {
629
			WARN(tail_req->elsp_submitted != 0,
630
				"More than 2 already-submitted reqs queued\n");
631
			list_del(&tail_req->execlist_link);
632
			i915_gem_request_put(tail_req);
633 634 635
		}
	}

636
	i915_gem_request_get(request);
637
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
638
	request->ctx_hw_id = request->ctx->hw_id;
639
	if (num_elements == 0)
640
		execlists_context_unqueue(engine);
641

642
	spin_unlock_bh(&engine->execlist_lock);
643 644
}

645
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
646
{
647
	struct intel_engine_cs *engine = req->engine;
648 649 650 651
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
652
	if (engine->gpu_caches_dirty)
653 654
		flush_domains = I915_GEM_GPU_DOMAINS;

655
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
656 657 658
	if (ret)
		return ret;

659
	engine->gpu_caches_dirty = false;
660 661 662
	return 0;
}

663
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
664 665
				 struct list_head *vmas)
{
666
	const unsigned other_rings = ~intel_engine_flag(req->engine);
667 668 669 670 671 672 673 674
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

675
		if (obj->active & other_rings) {
676
			ret = i915_gem_object_sync(obj, req->engine, &req);
677 678 679
			if (ret)
				return ret;
		}
680 681 682 683 684 685 686 687 688 689 690 691 692

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
693
	return logical_ring_invalidate_all_caches(req);
694 695
}

696
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
697
{
698
	struct intel_engine_cs *engine = request->engine;
699
	struct intel_context *ce = &request->ctx->engine[engine->id];
700
	int ret;
701

702 703 704 705
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
706
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
707

708
	if (!ce->state) {
709 710 711 712 713
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

714
	request->ring = ce->ring;
715

716 717 718 719 720 721
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
722
		ret = i915_guc_wq_check_space(request);
723 724 725 726
		if (ret)
			return ret;
	}

727 728 729
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
730

731 732 733 734
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

735
	if (!ce->initialised) {
736 737 738 739
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

740
		ce->initialised = true;
741 742 743 744 745 746 747 748 749
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

750
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
751 752 753
	return 0;

err_unpin:
754
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
755
	return ret;
756 757 758 759
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
760
 * @request: Request to advance the logical ringbuffer of.
761 762 763 764 765 766
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
767
static int
768
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
769
{
770
	struct intel_ringbuffer *ring = request->ring;
771
	struct intel_engine_cs *engine = request->engine;
772

773 774
	intel_ring_advance(ring);
	request->tail = ring->tail;
775

776 777 778 779 780 781
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
782 783 784
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
785

786 787 788 789 790 791 792 793
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
794

795 796
	if (i915.enable_guc_submission)
		i915_guc_submit(request);
797 798
	else
		execlists_context_queue(request);
799 800

	return 0;
801 802
}

803
/**
804
 * intel_execlists_submission() - submit a batchbuffer for execution, Execlists style
805
 * @params: execbuffer call parameters.
806 807 808 809 810 811 812 813
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
814
int intel_execlists_submission(struct i915_execbuffer_params *params,
815
			       struct drm_i915_gem_execbuffer2 *args,
816
			       struct list_head *vmas)
817
{
818
	struct drm_device       *dev = params->dev;
819
	struct intel_engine_cs *engine = params->engine;
820
	struct drm_i915_private *dev_priv = to_i915(dev);
821
	struct intel_ringbuffer *ring = params->request->ring;
822
	u64 exec_start;
823 824 825 826 827 828 829 830 831 832
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
833
		if (instp_mode != 0 && engine->id != RCS) {
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

858
	ret = execlists_move_to_gpu(params->request, vmas);
859 860 861
	if (ret)
		return ret;

862
	if (engine->id == RCS &&
863
	    instp_mode != dev_priv->relative_constants_mode) {
864
		ret = intel_ring_begin(params->request, 4);
865 866 867
		if (ret)
			return ret;

868 869 870 871 872
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit_reg(ring, INSTPM);
		intel_ring_emit(ring, instp_mask << 16 | instp_mode);
		intel_ring_advance(ring);
873 874 875 876

		dev_priv->relative_constants_mode = instp_mode;
	}

877 878 879
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

880
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
881 882 883
	if (ret)
		return ret;

884
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
885

886
	i915_gem_execbuffer_move_to_active(vmas, params->request);
887

888 889 890
	return 0;
}

891
void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
892
{
893
	struct drm_i915_gem_request *req, *tmp;
894
	LIST_HEAD(cancel_list);
895

896
	WARN_ON(!mutex_is_locked(&engine->i915->drm.struct_mutex));
897

898
	spin_lock_bh(&engine->execlist_lock);
899
	list_replace_init(&engine->execlist_queue, &cancel_list);
900
	spin_unlock_bh(&engine->execlist_lock);
901

902
	list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
903
		list_del(&req->execlist_link);
904
		i915_gem_request_put(req);
905 906 907
	}
}

908
void intel_logical_ring_stop(struct intel_engine_cs *engine)
909
{
910
	struct drm_i915_private *dev_priv = engine->i915;
911 912
	int ret;

913
	if (!intel_engine_initialized(engine))
914 915
		return;

916
	ret = intel_engine_idle(engine);
917
	if (ret)
918
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
919
			  engine->name, ret);
920 921

	/* TODO: Is this correct with Execlists enabled? */
922
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
923 924 925 926
	if (intel_wait_for_register(dev_priv,
				    RING_MI_MODE(engine->mmio_base),
				    MODE_IDLE, MODE_IDLE,
				    1000)) {
927
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
928 929
		return;
	}
930
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
931 932
}

933
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
934
{
935
	struct intel_engine_cs *engine = req->engine;
936 937
	int ret;

938
	if (!engine->gpu_caches_dirty)
939 940
		return 0;

941
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
942 943 944
	if (ret)
		return ret;

945
	engine->gpu_caches_dirty = false;
946 947 948
	return 0;
}

949
static int intel_lr_context_pin(struct i915_gem_context *ctx,
950
				struct intel_engine_cs *engine)
951
{
952
	struct drm_i915_private *dev_priv = ctx->i915;
953
	struct intel_context *ce = &ctx->engine[engine->id];
954 955
	void *vaddr;
	u32 *lrc_reg_state;
956
	int ret;
957

958
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
959

960
	if (ce->pin_count++)
961 962
		return 0;

963 964
	ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
				    PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
965
	if (ret)
966
		goto err;
967

968
	vaddr = i915_gem_object_pin_map(ce->state);
969 970
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
971 972 973
		goto unpin_ctx_obj;
	}

974 975
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

976
	ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ring);
977
	if (ret)
978
		goto unpin_map;
979

980
	ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
981
	intel_lr_context_descriptor_update(ctx, engine);
982

983
	lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ring->vma->node.start;
984 985
	ce->lrc_reg_state = lrc_reg_state;
	ce->state->dirty = true;
986

987 988 989
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
990

991
	i915_gem_context_get(ctx);
992
	return 0;
993

994
unpin_map:
995
	i915_gem_object_unpin_map(ce->state);
996
unpin_ctx_obj:
997
	i915_gem_object_ggtt_unpin(ce->state);
998
err:
999
	ce->pin_count = 0;
1000 1001 1002
	return ret;
}

1003
void intel_lr_context_unpin(struct i915_gem_context *ctx,
1004
			    struct intel_engine_cs *engine)
1005
{
1006
	struct intel_context *ce = &ctx->engine[engine->id];
1007

1008
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1009
	GEM_BUG_ON(ce->pin_count == 0);
1010

1011
	if (--ce->pin_count)
1012
		return;
1013

1014
	intel_unpin_ringbuffer_obj(ce->ring);
1015

1016 1017
	i915_gem_object_unpin_map(ce->state);
	i915_gem_object_ggtt_unpin(ce->state);
1018

1019 1020 1021
	ce->lrc_vma = NULL;
	ce->lrc_desc = 0;
	ce->lrc_reg_state = NULL;
1022

1023
	i915_gem_context_put(ctx);
1024 1025
}

1026
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1027 1028
{
	int ret, i;
1029
	struct intel_engine_cs *engine = req->engine;
1030
	struct intel_ringbuffer *ring = req->ring;
1031
	struct i915_workarounds *w = &req->i915->workarounds;
1032

1033
	if (w->count == 0)
1034 1035
		return 0;

1036
	engine->gpu_caches_dirty = true;
1037
	ret = logical_ring_flush_all_caches(req);
1038 1039 1040
	if (ret)
		return ret;

1041
	ret = intel_ring_begin(req, w->count * 2 + 2);
1042 1043 1044
	if (ret)
		return ret;

1045
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
1046
	for (i = 0; i < w->count; i++) {
1047 1048
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
1049
	}
1050
	intel_ring_emit(ring, MI_NOOP);
1051

1052
	intel_ring_advance(ring);
1053

1054
	engine->gpu_caches_dirty = true;
1055
	ret = logical_ring_flush_all_caches(req);
1056 1057 1058 1059 1060 1061
	if (ret)
		return ret;

	return 0;
}

1062
#define wa_ctx_emit(batch, index, cmd)					\
1063
	do {								\
1064 1065
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1066 1067
			return -ENOSPC;					\
		}							\
1068
		batch[__index] = (cmd);					\
1069 1070
	} while (0)

V
Ville Syrjälä 已提交
1071
#define wa_ctx_emit_reg(batch, index, reg) \
1072
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1090
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1091
						uint32_t *batch,
1092 1093 1094 1095
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1096
	/*
1097
	 * WaDisableLSQCROPERFforOCL:skl,kbl
1098 1099 1100 1101
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1102 1103
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0) ||
	    IS_KBL_REVID(engine->i915, 0, KBL_REVID_E0))
1104 1105
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1106
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1107
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1108
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1109
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1110 1111 1112
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1113
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1124
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1125
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1126
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1127
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1128
	wa_ctx_emit(batch, index, 0);
1129 1130 1131 1132

	return index;
}

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

1152 1153 1154 1155 1156 1157
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1158
 *
1159 1160
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1161
 *
1162 1163 1164 1165
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1166
 */
1167
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1168
				    struct i915_wa_ctx_bb *wa_ctx,
1169
				    uint32_t *batch,
1170 1171
				    uint32_t *offset)
{
1172
	uint32_t scratch_addr;
1173 1174
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1175
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1176
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1177

1178
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1179
	if (IS_BROADWELL(engine->i915)) {
1180
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1181 1182 1183
		if (rc < 0)
			return rc;
		index = rc;
1184 1185
	}

1186 1187
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1188
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1189

1190 1191 1192 1193 1194 1195 1196 1197 1198
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1199

1200 1201
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1202
		wa_ctx_emit(batch, index, MI_NOOP);
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1213 1214 1215
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1216
 *
1217
 *  The number of DWORDS written are returned using this field.
1218 1219 1220 1221
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1222
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1223
			       struct i915_wa_ctx_bb *wa_ctx,
1224
			       uint32_t *batch,
1225 1226 1227 1228
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1229
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1230
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1231

1232
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1233 1234 1235 1236

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1237
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1238
				    struct i915_wa_ctx_bb *wa_ctx,
1239
				    uint32_t *batch,
1240 1241
				    uint32_t *offset)
{
1242
	int ret;
1243 1244
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1245
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1246 1247
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1248
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1249

1250
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1251
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1252 1253 1254 1255
	if (ret < 0)
		return ret;
	index = ret;

1256 1257 1258 1259 1260 1261 1262
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
	wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
	wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
			    GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
	wa_ctx_emit(batch, index, MI_NOOP);

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
		uint32_t scratch_addr
			= engine->scratch.gtt_offset + 2*CACHELINE_BYTES;

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

	/* WaMediaPoolStateCmdInWABB:bxt */
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
		u32 eu_pool_config = 0x00777000;
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
		wa_ctx_emit(batch, index, eu_pool_config);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}

1304 1305 1306 1307 1308 1309 1310
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1311
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1312
			       struct i915_wa_ctx_bb *wa_ctx,
1313
			       uint32_t *batch,
1314 1315 1316 1317
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1318
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1319 1320
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1321
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1322
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1323 1324 1325 1326 1327
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1328
	/* WaClearTdlStateAckDirtyBits:bxt */
1329
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1347
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1348 1349
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1350 1351
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1352 1353 1354 1355 1356
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1357
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1358 1359 1360
{
	int ret;

1361 1362
	engine->wa_ctx.obj = i915_gem_object_create(&engine->i915->drm,
						    PAGE_ALIGN(size));
1363
	if (IS_ERR(engine->wa_ctx.obj)) {
1364
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1365 1366 1367
		ret = PTR_ERR(engine->wa_ctx.obj);
		engine->wa_ctx.obj = NULL;
		return ret;
1368 1369
	}

1370
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1371 1372 1373
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1374
		i915_gem_object_put(engine->wa_ctx.obj);
1375 1376 1377 1378 1379 1380
		return ret;
	}

	return 0;
}

1381
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1382
{
1383 1384
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1385
		i915_gem_object_put(engine->wa_ctx.obj);
1386
		engine->wa_ctx.obj = NULL;
1387 1388 1389
	}
}

1390
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1391 1392 1393 1394 1395
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1396
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1397

1398
	WARN_ON(engine->id != RCS);
1399

1400
	/* update this when WA for higher Gen are added */
1401
	if (INTEL_GEN(engine->i915) > 9) {
1402
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1403
			  INTEL_GEN(engine->i915));
1404
		return 0;
1405
	}
1406

1407
	/* some WA perform writes to scratch page, ensure it is valid */
1408 1409
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1410 1411 1412
		return -EINVAL;
	}

1413
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1414 1415 1416 1417 1418
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1419
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1420 1421 1422
	batch = kmap_atomic(page);
	offset = 0;

1423
	if (IS_GEN8(engine->i915)) {
1424
		ret = gen8_init_indirectctx_bb(engine,
1425 1426 1427 1428 1429 1430
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1431
		ret = gen8_init_perctx_bb(engine,
1432 1433 1434 1435 1436
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1437
	} else if (IS_GEN9(engine->i915)) {
1438
		ret = gen9_init_indirectctx_bb(engine,
1439 1440 1441 1442 1443 1444
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1445
		ret = gen9_init_perctx_bb(engine,
1446 1447 1448 1449 1450
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1451 1452 1453 1454 1455
	}

out:
	kunmap_atomic(batch);
	if (ret)
1456
		lrc_destroy_wa_ctx_obj(engine);
1457 1458 1459 1460

	return ret;
}

1461 1462
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1463
	struct drm_i915_private *dev_priv = engine->i915;
1464 1465 1466 1467 1468 1469

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   (u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1470
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1471
{
1472
	struct drm_i915_private *dev_priv = engine->i915;
1473
	unsigned int next_context_status_buffer_hw;
1474

1475
	lrc_init_hws(engine);
1476

1477 1478 1479
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1480

1481
	I915_WRITE(RING_MODE_GEN7(engine),
1482 1483
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1484
	POSTING_READ(RING_MODE_GEN7(engine));
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1495 1496
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1497
	 */
1498
	next_context_status_buffer_hw =
1499
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1500 1501 1502 1503 1504 1505 1506 1507 1508

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1509 1510
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1511

1512
	intel_engine_init_hangcheck(engine);
1513

1514
	return intel_mocs_init_engine(engine);
1515 1516
}

1517
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1518
{
1519
	struct drm_i915_private *dev_priv = engine->i915;
1520 1521
	int ret;

1522
	ret = gen8_init_common_ring(engine);
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1536
	return init_workarounds_ring(engine);
1537 1538
}

1539
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1540 1541 1542
{
	int ret;

1543
	ret = gen8_init_common_ring(engine);
1544 1545 1546
	if (ret)
		return ret;

1547
	return init_workarounds_ring(engine);
1548 1549
}

1550 1551 1552
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1553
	struct intel_ringbuffer *ring = req->ring;
1554
	struct intel_engine_cs *engine = req->engine;
1555 1556 1557
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1558
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1559 1560 1561
	if (ret)
		return ret;

1562
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1563 1564 1565
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1566 1567 1568 1569
		intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
		intel_ring_emit(ring, upper_32_bits(pd_daddr));
		intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
		intel_ring_emit(ring, lower_32_bits(pd_daddr));
1570 1571
	}

1572 1573
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1574 1575 1576 1577

	return 0;
}

1578
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1579
			      u64 offset, unsigned dispatch_flags)
1580
{
1581
	struct intel_ringbuffer *ring = req->ring;
1582
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1583 1584
	int ret;

1585 1586 1587 1588
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1589 1590
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1591
	if (req->ctx->ppgtt &&
1592
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1593
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1594
		    !intel_vgpu_active(req->i915)) {
1595 1596 1597 1598
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1599

1600
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1601 1602
	}

1603
	ret = intel_ring_begin(req, 4);
1604 1605 1606 1607
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1608 1609 1610 1611 1612 1613 1614 1615
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
			(ppgtt<<8) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1616 1617 1618 1619

	return 0;
}

1620
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1621
{
1622
	struct drm_i915_private *dev_priv = engine->i915;
1623 1624 1625
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1626 1627
}

1628
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1629
{
1630
	struct drm_i915_private *dev_priv = engine->i915;
1631
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1632 1633
}

1634
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1635 1636 1637
			   u32 invalidate_domains,
			   u32 unused)
{
1638
	struct intel_ringbuffer *ring = request->ring;
1639 1640 1641
	uint32_t cmd;
	int ret;

1642
	ret = intel_ring_begin(request, 4);
1643 1644 1645 1646 1647
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1648 1649 1650 1651 1652 1653 1654 1655 1656
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1657
		if (request->engine->id == VCS)
1658
			cmd |= MI_INVALIDATE_BSD;
1659 1660
	}

1661 1662 1663 1664 1665 1666 1667
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
			I915_GEM_HWS_SCRATCH_ADDR |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0); /* upper addr */
	intel_ring_emit(ring, 0); /* value */
	intel_ring_advance(ring);
1668 1669 1670 1671

	return 0;
}

1672
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1673 1674 1675
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1676
	struct intel_ringbuffer *ring = request->ring;
1677
	struct intel_engine_cs *engine = request->engine;
1678
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1679
	bool vf_flush_wa = false, dc_flush_wa = false;
1680 1681
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1682
	int len;
1683 1684 1685 1686 1687 1688

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1689
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1690
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1703 1704 1705 1706
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1707
		if (IS_GEN9(request->i915))
1708
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1709 1710 1711 1712

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1713
	}
1714

M
Mika Kuoppala 已提交
1715 1716 1717 1718 1719 1720 1721 1722 1723
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1724 1725 1726
	if (ret)
		return ret;

1727
	if (vf_flush_wa) {
1728 1729 1730 1731 1732 1733
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
1734 1735
	}

M
Mika Kuoppala 已提交
1736
	if (dc_flush_wa) {
1737 1738 1739 1740 1741 1742
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1743 1744
	}

1745 1746 1747 1748 1749 1750
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1751 1752

	if (dc_flush_wa) {
1753 1754 1755 1756 1757 1758
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1759 1760
	}

1761
	intel_ring_advance(ring);
1762 1763 1764 1765

	return 0;
}

1766
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1778
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1779 1780
}

1781 1782 1783 1784 1785 1786 1787
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

1788
static int gen8_emit_request(struct drm_i915_gem_request *request)
1789
{
1790
	struct intel_ringbuffer *ring = request->ring;
1791 1792
	int ret;

1793
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1794 1795 1796
	if (ret)
		return ret;

1797 1798
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1799

1800 1801 1802 1803 1804 1805 1806 1807
	intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_ring_emit(ring,
			intel_hws_seqno_address(request->engine) |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, request->fence.seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1808 1809
	return intel_logical_ring_advance_and_submit(request);
}
1810

1811 1812
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
1813
	struct intel_ringbuffer *ring = request->ring;
1814
	int ret;
1815

1816
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1817 1818 1819
	if (ret)
		return ret;

1820 1821 1822
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1823 1824 1825 1826
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1827 1828 1829 1830 1831 1832 1833 1834
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring,
			(PIPE_CONTROL_GLOBAL_GTT_IVB |
			 PIPE_CONTROL_CS_STALL |
			 PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, i915_gem_request_get_seqno(request));
1835
	/* We're thrashing one dword of HWS. */
1836 1837 1838
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1839
	return intel_logical_ring_advance_and_submit(request);
1840 1841
}

1842
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1843 1844 1845 1846
{
	struct render_state so;
	int ret;

1847
	ret = i915_gem_render_state_prepare(req->engine, &so);
1848 1849 1850 1851 1852 1853
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1854
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1855
				       I915_DISPATCH_SECURE);
1856 1857 1858
	if (ret)
		goto out;

1859
	ret = req->engine->emit_bb_start(req,
1860 1861 1862 1863 1864
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1865
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1866 1867 1868 1869 1870 1871

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1872
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1873 1874 1875
{
	int ret;

1876
	ret = intel_logical_ring_workarounds_emit(req);
1877 1878 1879
	if (ret)
		return ret;

1880 1881 1882 1883 1884 1885 1886 1887
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1888
	return intel_lr_context_render_state_init(req);
1889 1890
}

1891 1892
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1893
 * @engine: Engine Command Streamer.
1894
 */
1895
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1896
{
1897
	struct drm_i915_private *dev_priv;
1898

1899
	if (!intel_engine_initialized(engine))
1900 1901
		return;

1902 1903 1904 1905 1906 1907 1908
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1909
	dev_priv = engine->i915;
1910

1911 1912 1913
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1914
	}
1915

1916 1917
	if (engine->cleanup)
		engine->cleanup(engine);
1918

1919
	intel_engine_cleanup_cmd_parser(engine);
1920
	i915_gem_batch_pool_fini(&engine->batch_pool);
1921

1922 1923
	intel_engine_fini_breadcrumbs(engine);

1924
	if (engine->status_page.obj) {
1925
		i915_gem_object_unpin_map(engine->status_page.obj);
1926
		engine->status_page.obj = NULL;
1927
	}
1928
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1929

1930 1931 1932
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
1933

1934
	lrc_destroy_wa_ctx_obj(engine);
1935
	engine->i915 = NULL;
1936 1937
}

1938
static void
1939
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1940 1941
{
	/* Default vfuncs which can be overriden by each engine. */
1942 1943 1944
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
1945 1946
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1947
	engine->emit_bb_start = gen8_emit_bb_start;
1948
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1949
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1950 1951
}

1952
static inline void
1953
logical_ring_default_irqs(struct intel_engine_cs *engine)
1954
{
1955
	unsigned shift = engine->irq_shift;
1956 1957
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1958 1959
}

1960
static int
1961 1962 1963
lrc_setup_hws(struct intel_engine_cs *engine,
	      struct drm_i915_gem_object *dctx_obj)
{
1964
	void *hws;
1965 1966 1967 1968

	/* The HWSP is part of the default context object in LRC mode. */
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
				       LRC_PPHWSP_PN * PAGE_SIZE;
1969 1970 1971 1972
	hws = i915_gem_object_pin_map(dctx_obj);
	if (IS_ERR(hws))
		return PTR_ERR(hws);
	engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1973
	engine->status_page.obj = dctx_obj;
1974 1975

	return 0;
1976 1977
}

1978 1979 1980 1981 1982 1983
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1984 1985
	intel_engine_setup_common(engine);

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

2011 2012 2013 2014 2015 2016
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

2017
	ret = intel_engine_init_common(engine);
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
	if (ret)
		goto error;

	ret = execlists_context_deferred_alloc(dctx, engine);
	if (ret)
		goto error;

	/* As this is the default context, always pin it */
	ret = intel_lr_context_pin(dctx, engine);
	if (ret) {
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
		goto error;
	}

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2047
int logical_render_ring_init(struct intel_engine_cs *engine)
2048 2049 2050 2051
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2052 2053
	logical_ring_setup(engine);

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;

2067
	ret = intel_init_pipe_control(engine, 4096);
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

	ret = logical_ring_init(engine);
	if (ret) {
		lrc_destroy_wa_ctx_obj(engine);
	}

	return ret;
}

2090
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2091 2092 2093 2094
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2095 2096
}

2097
static u32
2098
make_rpcs(struct drm_i915_private *dev_priv)
2099 2100 2101 2102 2103 2104 2105
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2106
	if (INTEL_GEN(dev_priv) < 9)
2107 2108 2109 2110 2111 2112 2113 2114
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2115
	if (INTEL_INFO(dev_priv)->has_slice_pg) {
2116
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2117
		rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2118 2119 2120 2121
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2122
	if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2123
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2124
		rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2125 2126 2127 2128
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2129 2130
	if (INTEL_INFO(dev_priv)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2131
			GEN8_RPCS_EU_MIN_SHIFT;
2132
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2133 2134 2135 2136 2137 2138 2139
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2140
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2141 2142 2143
{
	u32 indirect_ctx_offset;

2144
	switch (INTEL_GEN(engine->i915)) {
2145
	default:
2146
		MISSING_CASE(INTEL_GEN(engine->i915));
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2161
static int
2162
populate_lr_context(struct i915_gem_context *ctx,
2163
		    struct drm_i915_gem_object *ctx_obj,
2164 2165
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2166
{
2167
	struct drm_i915_private *dev_priv = ctx->i915;
2168
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2169 2170
	void *vaddr;
	u32 *reg_state;
2171 2172
	int ret;

2173 2174 2175
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2176 2177 2178 2179 2180 2181
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

2182 2183 2184 2185
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2186 2187
		return ret;
	}
2188
	ctx_obj->dirty = true;
2189 2190 2191

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2192
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2193 2194 2195 2196 2197 2198

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2199
	reg_state[CTX_LRI_HEADER_0] =
2200 2201 2202
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2203 2204
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2205
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2206
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2207 2208 2209 2210
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2211 2212 2213
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2214 2215 2216 2217
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2218
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2219 2220 2221 2222 2223 2224
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2225
		       RING_BB_PPGTT);
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2241 2242 2243 2244 2245 2246 2247
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2248
				intel_lr_indirect_ctx_offset(engine) << 6;
2249 2250 2251 2252 2253

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2254
	}
2255
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2256 2257
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2258
	/* PDP values well be assigned later if needed */
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2275

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2288
		execlists_update_context_pdps(ppgtt, reg_state);
2289 2290
	}

2291
	if (engine->id == RCS) {
2292
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2293
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2294
			       make_rpcs(dev_priv));
2295 2296
	}

2297
	i915_gem_object_unpin_map(ctx_obj);
2298 2299 2300 2301

	return 0;
}

2302 2303
/**
 * intel_lr_context_size() - return the size of the context for an engine
2304
 * @engine: which engine to find the context size for
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2316
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2317 2318 2319
{
	int ret = 0;

2320
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2321

2322
	switch (engine->id) {
2323
	case RCS:
2324
		if (INTEL_GEN(engine->i915) >= 9)
2325 2326 2327
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2338 2339
}

2340
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2341
					    struct intel_engine_cs *engine)
2342
{
2343
	struct drm_i915_gem_object *ctx_obj;
2344
	struct intel_context *ce = &ctx->engine[engine->id];
2345
	uint32_t context_size;
2346
	struct intel_ringbuffer *ring;
2347 2348
	int ret;

2349
	WARN_ON(ce->state);
2350

2351
	context_size = round_up(intel_lr_context_size(engine), 4096);
2352

2353 2354 2355
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2356
	ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2357
	if (IS_ERR(ctx_obj)) {
2358
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2359
		return PTR_ERR(ctx_obj);
2360 2361
	}

2362 2363 2364
	ring = intel_engine_create_ringbuffer(engine, ctx->ring_size);
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2365
		goto error_deref_obj;
2366 2367
	}

2368
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2369 2370
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2371
		goto error_ring_free;
2372 2373
	}

2374
	ce->ring = ring;
2375 2376
	ce->state = ctx_obj;
	ce->initialised = engine->init_context == NULL;
2377 2378

	return 0;
2379

2380 2381
error_ring_free:
	intel_ringbuffer_free(ring);
2382
error_deref_obj:
2383
	i915_gem_object_put(ctx_obj);
2384
	ce->ring = NULL;
2385
	ce->state = NULL;
2386
	return ret;
2387
}
2388

2389
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2390
			    struct i915_gem_context *ctx)
2391
{
2392
	struct intel_engine_cs *engine;
2393

2394
	for_each_engine(engine, dev_priv) {
2395 2396
		struct intel_context *ce = &ctx->engine[engine->id];
		struct drm_i915_gem_object *ctx_obj = ce->state;
2397
		void *vaddr;
2398 2399 2400 2401 2402
		uint32_t *reg_state;

		if (!ctx_obj)
			continue;

2403 2404
		vaddr = i915_gem_object_pin_map(ctx_obj);
		if (WARN_ON(IS_ERR(vaddr)))
2405
			continue;
2406 2407 2408

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
		ctx_obj->dirty = true;
2409 2410 2411 2412

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2413
		i915_gem_object_unpin_map(ctx_obj);
2414

2415 2416
		ce->ring->head = 0;
		ce->ring->tail = 0;
2417 2418
	}
}