intel_lrc.c 60.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141 142 143 144 145 146 147 148 149 150 151 152 153
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
154

155 156 157 158 159
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

189
#define CTX_REG(reg_state, pos, reg, val) do { \
190
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
191 192 193 194
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
195
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
196 197
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198
} while (0)
199

200
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
201 202
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
203
} while (0)
204

205 206
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
207

208 209 210
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

211 212
#define WA_TAIL_DWORDS 2

213
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
214
					    struct intel_engine_cs *engine);
215 216 217 218
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
219

220 221
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
222
 * @dev_priv: i915 device private
223 224 225
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
226
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
227 228 229
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
230
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
231
{
232 233 234
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
235
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
236 237
		return 1;

238
	if (INTEL_GEN(dev_priv) >= 9)
239 240
		return 1;

241 242 243
	if (enable_execlists == 0)
		return 0;

244 245 246
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
247 248 249 250
		return 1;

	return 0;
}
251

252
/**
253 254 255
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
256
 * @engine: Engine the descriptor will be used with
257
 *
258 259 260 261 262
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
263 264
 * This is what a descriptor looks like, from LSB to MSB::
 *
265
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
266 267 268 269
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
270
 */
271
static void
272
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
273
				   struct intel_engine_cs *engine)
274
{
275
	struct intel_context *ce = &ctx->engine[engine->id];
276
	u64 desc;
277

278
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
279

280
	desc = ctx->desc_template;				/* bits  0-11 */
281
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
282
								/* bits 12-31 */
283
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
284

285
	ce->lrc_desc = desc;
286 287
}

288
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
289
				     struct intel_engine_cs *engine)
290
{
291
	return ctx->engine[engine->id].lrc_desc;
292
}
293

294 295 296
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
297
{
298 299 300 301 302 303
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
304

305 306
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
307 308
}

309 310 311 312 313 314 315 316 317
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

318
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
319
{
320
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
321 322
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
323
	u32 *reg_state = ce->lrc_reg_state;
324

325
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
326

327 328 329 330 331
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
332
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
333
		execlists_update_context_pdps(ppgtt, reg_state);
334 335

	return ce->lrc_desc;
336 337
}

338
static void execlists_submit_ports(struct intel_engine_cs *engine)
339
{
340 341
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
342 343 344 345
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

346
	GEM_BUG_ON(port[0].count > 1);
347 348 349 350
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
351
	GEM_DEBUG_EXEC(port[0].context_id = upper_32_bits(desc[0]));
352
	port[0].count++;
353 354 355 356 357 358

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
359
		GEM_DEBUG_EXEC(port[1].context_id = upper_32_bits(desc[1]));
360
		port[1].count = 1;
361 362 363
	} else {
		desc[1] = 0;
	}
364
	GEM_BUG_ON(desc[0] == desc[1]);
365 366 367 368 369 370 371 372 373 374

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

375
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
376
{
377
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
378
		i915_gem_context_force_single_submission(ctx));
379
}
380

381 382 383 384 385
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
386

387 388
	if (ctx_single_port_submission(prev))
		return false;
389

390
	return true;
391 392
}

393
static void execlists_dequeue(struct intel_engine_cs *engine)
394
{
395
	struct drm_i915_gem_request *last;
396
	struct execlist_port *port = engine->execlist_port;
397
	struct rb_node *rb;
398 399 400 401 402 403
	bool submit = false;

	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
404
		 * as we resubmit the request. See gen8_emit_breadcrumb()
405 406 407 408
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
409

410
	GEM_BUG_ON(port[1].request);
411

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
431
	 */
432

433
	spin_lock_irq(&engine->timeline->lock);
434 435 436 437 438
	rb = engine->execlist_first;
	while (rb) {
		struct drm_i915_gem_request *cursor =
			rb_entry(rb, typeof(*cursor), priotree.node);

439 440 441
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
442
		 *
443 444 445 446
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
447
		 */
448 449 450 451 452 453 454 455 456 457 458 459 460
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
461 462
			if (ctx_single_port_submission(last->ctx) ||
			    ctx_single_port_submission(cursor->ctx))
463 464 465 466 467 468 469
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
470

471 472 473 474 475
		rb = rb_next(rb);
		rb_erase(&cursor->priotree.node, &engine->execlist_queue);
		RB_CLEAR_NODE(&cursor->priotree.node);
		cursor->priotree.priority = INT_MAX;

476
		__i915_gem_request_submit(cursor);
477
		trace_i915_gem_request_in(cursor, port - engine->execlist_port);
478 479 480 481 482
		last = cursor;
		submit = true;
	}
	if (submit) {
		i915_gem_request_assign(&port->request, last);
483
		engine->execlist_first = rb;
484
	}
485
	spin_unlock_irq(&engine->timeline->lock);
486

487 488
	if (submit)
		execlists_submit_ports(engine);
489 490
}

491
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
492
{
493
	return !engine->execlist_port[0].request;
494 495
}

496
static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
497
{
498
	const struct execlist_port *port = engine->execlist_port;
B
Ben Widawsky 已提交
499

500
	return port[0].count + port[1].count < 2;
B
Ben Widawsky 已提交
501 502
}

503
/*
504 505 506
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
507
static void intel_lrc_irq_handler(unsigned long data)
508
{
509
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
510
	struct execlist_port *port = engine->execlist_port;
511
	struct drm_i915_private *dev_priv = engine->i915;
512

513 514 515 516 517 518 519 520 521
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

522
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
523

524 525 526 527 528
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
529 530 531 532
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
533
		unsigned int head, tail;
534

535 536 537 538 539 540 541 542 543 544 545
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
546 547 548 549 550 551 552 553
		head = readl(csb_mmio);
		tail = GEN8_CSB_WRITE_PTR(head);
		head = GEN8_CSB_READ_PTR(head);
		while (head != tail) {
			unsigned int status;

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
554

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

572
			status = readl(buf + 2 * head);
573 574 575
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

576
			/* Check the context/desc id for this event matches */
577
			GEM_DEBUG_BUG_ON(readl(buf + 2 * head + 1) !=
578
					 port[0].context_id);
579

580 581 582
			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
583
				GEM_BUG_ON(!i915_gem_request_completed(port[0].request));
584 585 586
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

587
				trace_i915_gem_request_out(port[0].request);
588 589 590 591
				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));
			}
592

593 594
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
595
		}
596

597
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
598
		       csb_mmio);
599 600
	}

601 602
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
603

604
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
605 606
}

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
{
	struct rb_node **p, *rb;
	bool first = true;

	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
	p = &root->rb_node;
	while (*p) {
		struct i915_priotree *pos;

		rb = *p;
		pos = rb_entry(rb, typeof(*pos), node);
		if (pt->priority > pos->priority) {
			p = &rb->rb_left;
		} else {
			p = &rb->rb_right;
			first = false;
		}
	}
	rb_link_node(&pt->node, rb, p);
	rb_insert_color(&pt->node, root);

	return first;
}

633
static void execlists_submit_request(struct drm_i915_gem_request *request)
634
{
635
	struct intel_engine_cs *engine = request->engine;
636
	unsigned long flags;
637

638 639
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
640

641
	if (insert_request(&request->priotree, &engine->execlist_queue)) {
642
		engine->execlist_first = &request->priotree.node;
643
		if (execlists_elsp_ready(engine))
644 645
			tasklet_hi_schedule(&engine->irq_tasklet);
	}
646

647
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
648 649
}

650 651 652
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
653 654 655 656
	struct intel_engine_cs *engine =
		container_of(pt, struct drm_i915_gem_request, priotree)->engine;

	GEM_BUG_ON(!locked);
657 658

	if (engine != locked) {
659 660
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
661 662 663 664 665 666 667
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
668
	struct intel_engine_cs *engine;
669 670 671 672 673 674 675
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

676 677
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

702 703 704 705 706 707 708
		/* Within an engine, there can be no cycle, but we may
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
			GEM_BUG_ON(p->signaler->priority < pt->priority);
709 710
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
711
		}
712

713
		list_safe_reset_next(dep, p, dfs_link);
714 715
	}

716 717 718
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

719 720 721 722 723 724 725 726 727 728 729 730
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
731 732 733 734 735
		if (!RB_EMPTY_NODE(&pt->node)) {
			rb_erase(&pt->node, &engine->execlist_queue);
			if (insert_request(pt, &engine->execlist_queue))
				engine->execlist_first = &pt->node;
		}
736 737
	}

738
	spin_unlock_irq(&engine->timeline->lock);
739 740 741 742

	/* XXX Do we need to preempt to make room for us and our deps? */
}

743 744 745
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
746
{
747
	struct intel_context *ce = &ctx->engine[engine->id];
748
	unsigned int flags;
749
	void *vaddr;
750
	int ret;
751

752
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
753

754 755
	if (likely(ce->pin_count++))
		goto out;
756
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
757

758 759 760 761 762
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
763
	GEM_BUG_ON(!ce->state);
764

765
	flags = PIN_GLOBAL | PIN_HIGH;
766 767
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
768 769

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
770
	if (ret)
771
		goto err;
772

773
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
774 775
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
776
		goto unpin_vma;
777 778
	}

779
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
780
	if (ret)
781
		goto unpin_map;
782

783
	intel_lr_context_descriptor_update(ctx, engine);
784

785 786
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
787
		i915_ggtt_offset(ce->ring->vma);
788

C
Chris Wilson 已提交
789
	ce->state->obj->mm.dirty = true;
790

791
	i915_gem_context_get(ctx);
792 793
out:
	return ce->ring;
794

795
unpin_map:
796 797 798
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
799
err:
800
	ce->pin_count = 0;
801
	return ERR_PTR(ret);
802 803
}

804 805
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
806
{
807
	struct intel_context *ce = &ctx->engine[engine->id];
808

809
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
810
	GEM_BUG_ON(ce->pin_count == 0);
811

812
	if (--ce->pin_count)
813
		return;
814

815
	intel_ring_unpin(ce->ring);
816

817 818
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
819

820
	i915_gem_context_put(ctx);
821 822
}

823
static int execlists_request_alloc(struct drm_i915_gem_request *request)
824 825 826
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
827
	u32 *cs;
828 829
	int ret;

830 831
	GEM_BUG_ON(!ce->pin_count);

832 833 834 835 836 837 838 839 840 841 842 843 844 845
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		ret = i915_guc_wq_reserve(request);
		if (ret)
846
			goto err;
847 848
	}

849 850 851
	cs = intel_ring_begin(request, 0);
	if (IS_ERR(cs)) {
		ret = PTR_ERR(cs);
852
		goto err_unreserve;
853
	}
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unreserve;

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;

err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
876
err:
877 878 879
	return ret;
}

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
896 897
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
898
{
899 900 901 902 903 904 905 906 907
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

908 909 910 911
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
912 913 914 915 916 917 918

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
919 920
}

921 922 923 924 925 926
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
927
 *
928 929
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
930
 *
931 932 933 934
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
935
 */
936
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
937
{
938
	/* WaDisableCtxRestoreArbitration:bdw,chv */
939
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
940

941
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
942 943
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
944

945 946
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
947 948 949 950 951 952 953
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
954

955
	/* Pad to end of cacheline */
956 957
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
958 959 960 961 962 963 964

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

965
	return batch;
966 967
}

968 969 970
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
971
 *
972
 *  The number of DWORDS written are returned using this field.
973 974 975 976
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
977
static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
978
{
979
	/* WaDisableCtxRestoreArbitration:bdw,chv */
980 981
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*batch++ = MI_BATCH_BUFFER_END;
982

983
	return batch;
984 985
}

986
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
987
{
988
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
989
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
990

991
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
992 993 994 995 996
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
997

998 999
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1000
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1001 1002 1003 1004 1005 1006 1007
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1008
	}
1009

1010
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1025 1026 1027 1028 1029 1030
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1031 1032
	}

1033
	/* Pad to end of cacheline */
1034 1035
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1036

1037
	return batch;
1038 1039
}

1040
static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1041
{
1042
	*batch++ = MI_BATCH_BUFFER_END;
1043

1044
	return batch;
1045 1046
}

1047 1048 1049
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1050
{
1051 1052 1053
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1054

1055
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1056 1057
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1058

1059
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1060 1061 1062
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1063 1064
	}

1065 1066 1067 1068 1069
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1070
	return 0;
1071 1072 1073 1074

err:
	i915_gem_object_put(obj);
	return err;
1075 1076
}

1077
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1078
{
1079
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1080 1081
}

1082 1083
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1084
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1085
{
1086
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1087 1088 1089
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1090
	struct page *page;
1091 1092
	void *batch, *batch_ptr;
	unsigned int i;
1093
	int ret;
1094

1095 1096
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1097

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	switch (INTEL_GEN(engine->i915)) {
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
		wa_bb_fn[1] = gen9_init_perctx_bb;
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
		wa_bb_fn[1] = gen8_init_perctx_bb;
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1109
		return 0;
1110
	}
1111

1112
	ret = lrc_setup_wa_ctx(engine);
1113 1114 1115 1116 1117
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1118
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1119
	batch = batch_ptr = kmap_atomic(page);
1120

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
		batch_ptr = wa_bb_fn[i](engine, batch_ptr);
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1134 1135
	}

1136 1137
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1138 1139
	kunmap_atomic(batch);
	if (ret)
1140
		lrc_destroy_wa_ctx(engine);
1141 1142 1143 1144

	return ret;
}

1145
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1146
{
1147
	struct drm_i915_private *dev_priv = engine->i915;
1148 1149
	struct execlist_port *port = engine->execlist_port;
	unsigned int n;
1150 1151 1152 1153 1154
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1155

1156
	intel_engine_reset_breadcrumbs(engine);
1157
	intel_engine_init_hangcheck(engine);
1158

1159 1160
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1161
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1162 1163 1164
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1165

1166
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1167

1168
	/* After a GPU reset, we may have requests to replay */
1169
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

	for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++) {
		if (!port[n].request)
			break;

		DRM_DEBUG_DRIVER("Restarting %s:%d from 0x%x\n",
				 engine->name, n,
				 port[n].request->global_seqno);

		/* Discard the current inflight count */
		port[n].count = 0;
1181
	}
1182

1183 1184 1185
	if (!i915.enable_guc_submission && !execlists_elsp_idle(engine))
		execlists_submit_ports(engine);

1186
	return 0;
1187 1188
}

1189
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1190
{
1191
	struct drm_i915_private *dev_priv = engine->i915;
1192 1193
	int ret;

1194
	ret = gen8_init_common_ring(engine);
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1208
	return init_workarounds_ring(engine);
1209 1210
}

1211
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1212 1213 1214
{
	int ret;

1215
	ret = gen8_init_common_ring(engine);
1216 1217 1218
	if (ret)
		return ret;

1219
	return init_workarounds_ring(engine);
1220 1221
}

1222 1223 1224 1225
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct execlist_port *port = engine->execlist_port;
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	struct intel_context *ce;

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
	if (!request || request->fence.error != -EIO)
		return;
1240

1241 1242 1243 1244 1245 1246 1247
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1248
	ce = &request->ctx->engine[engine->id];
1249 1250 1251
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1252
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1253 1254
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1255
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1256

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

	/* Catch up with any missed context-switch interrupts */
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1268 1269

	/* Reset WaIdleLiteRestore:bdw,skl as well */
1270 1271 1272
	request->tail =
		intel_ring_wrap(request->ring,
				request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
1273
	assert_ring_tail_valid(request->ring, request->tail);
1274 1275
}

1276 1277 1278
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1279
	struct intel_engine_cs *engine = req->engine;
1280
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1281 1282
	u32 *cs;
	int i;
1283

1284 1285 1286
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1287

1288
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1289
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1290 1291
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1292 1293 1294 1295
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1296 1297
	}

1298 1299
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1300 1301 1302 1303

	return 0;
}

1304
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1305
			      u64 offset, u32 len,
1306
			      const unsigned int flags)
1307
{
1308
	u32 *cs;
1309 1310
	int ret;

1311 1312 1313 1314
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1315 1316
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1317
	if (req->ctx->ppgtt &&
1318 1319 1320 1321 1322 1323
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1324

1325
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1326 1327
	}

1328 1329 1330
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1331 1332

	/* FIXME(BDW): Address space and security selectors. */
1333 1334 1335
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1336 1337 1338 1339
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1340 1341 1342 1343

	return 0;
}

1344
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1345
{
1346
	struct drm_i915_private *dev_priv = engine->i915;
1347 1348 1349
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1350 1351
}

1352
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1353
{
1354
	struct drm_i915_private *dev_priv = engine->i915;
1355
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1356 1357
}

1358
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1359
{
1360
	u32 cmd, *cs;
1361

1362 1363 1364
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1365 1366 1367

	cmd = MI_FLUSH_DW + 1;

1368 1369 1370 1371 1372 1373 1374
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1375
	if (mode & EMIT_INVALIDATE) {
1376
		cmd |= MI_INVALIDATE_TLB;
1377
		if (request->engine->id == VCS)
1378
			cmd |= MI_INVALIDATE_BSD;
1379 1380
	}

1381 1382 1383 1384 1385
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1386 1387 1388 1389

	return 0;
}

1390
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1391
				  u32 mode)
1392
{
1393
	struct intel_engine_cs *engine = request->engine;
1394 1395
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1396
	bool vf_flush_wa = false, dc_flush_wa = false;
1397
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1398
	int len;
1399 1400 1401

	flags |= PIPE_CONTROL_CS_STALL;

1402
	if (mode & EMIT_FLUSH) {
1403 1404
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1405
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1406
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1407 1408
	}

1409
	if (mode & EMIT_INVALIDATE) {
1410 1411 1412 1413 1414 1415 1416 1417 1418
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1419 1420 1421 1422
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1423
		if (IS_GEN9(request->i915))
1424
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1425 1426 1427 1428

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1429
	}
1430

M
Mika Kuoppala 已提交
1431 1432 1433 1434 1435 1436 1437 1438
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1439 1440 1441
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1442

1443 1444
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1445

1446 1447 1448
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1449

1450
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1451

1452 1453
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1454

1455
	intel_ring_advance(request, cs);
1456 1457 1458 1459

	return 0;
}

1460 1461 1462 1463 1464
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1465
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1466
{
1467 1468 1469
	*cs++ = MI_NOOP;
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1470
}
1471

1472
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1473
{
1474 1475
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1476

1477 1478 1479 1480 1481 1482 1483
	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0;
	*cs++ = request->global_seqno;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1484
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1485

1486
	gen8_emit_wa_tail(request, cs);
1487
}
1488

1489 1490
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1491
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1492
					u32 *cs)
1493
{
1494 1495 1496
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1497 1498 1499 1500
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1501 1502 1503 1504 1505 1506
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = intel_hws_seqno_address(request->engine);
	*cs++ = 0;
	*cs++ = request->global_seqno;
1507
	/* We're thrashing one dword of HWS. */
1508 1509 1510 1511
	*cs++ = 0;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1512
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1513

1514
	gen8_emit_wa_tail(request, cs);
1515 1516
}

1517 1518
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1519
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1520 1521 1522
{
	int ret;

1523
	ret = intel_ring_workarounds_emit(req);
1524 1525 1526
	if (ret)
		return ret;

1527 1528 1529 1530 1531 1532 1533 1534
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1535
	return i915_gem_render_state_emit(req);
1536 1537
}

1538 1539
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1540
 * @engine: Engine Command Streamer.
1541
 */
1542
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1543
{
1544
	struct drm_i915_private *dev_priv;
1545

1546 1547 1548 1549 1550 1551 1552
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1553
	dev_priv = engine->i915;
1554

1555 1556
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1557
	}
1558

1559 1560
	if (engine->cleanup)
		engine->cleanup(engine);
1561

1562 1563 1564
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1565
	}
1566 1567

	intel_engine_cleanup_common(engine);
1568

1569
	lrc_destroy_wa_ctx(engine);
1570
	engine->i915 = NULL;
1571 1572
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1573 1574
}

1575
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1576
{
1577 1578
	engine->submit_request = execlists_submit_request;
	engine->schedule = execlists_schedule;
1579
	engine->irq_tasklet.func = intel_lrc_irq_handler;
1580 1581
}

1582
static void
1583
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1584 1585
{
	/* Default vfuncs which can be overriden by each engine. */
1586
	engine->init_hw = gen8_init_common_ring;
1587
	engine->reset_hw = reset_common_ring;
1588 1589 1590 1591

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1592 1593
	engine->request_alloc = execlists_request_alloc;

1594
	engine->emit_flush = gen8_emit_flush;
1595
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1596
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1597 1598

	engine->set_default_submission = execlists_set_default_submission;
1599

1600 1601
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1602
	engine->emit_bb_start = gen8_emit_bb_start;
1603 1604
}

1605
static inline void
1606
logical_ring_default_irqs(struct intel_engine_cs *engine)
1607
{
1608
	unsigned shift = engine->irq_shift;
1609 1610
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1611 1612
}

1613
static int
1614
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1615
{
1616
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1617
	void *hws;
1618 1619

	/* The HWSP is part of the default context object in LRC mode. */
1620
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1621 1622
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1623 1624

	engine->status_page.page_addr = hws + hws_offset;
1625
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1626
	engine->status_page.vma = vma;
1627 1628

	return 0;
1629 1630
}

1631 1632 1633 1634 1635 1636
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1637 1638
	intel_engine_setup_common(engine);

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1663 1664 1665 1666 1667 1668
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1669
	ret = intel_engine_init_common(engine);
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	if (ret)
		goto error;

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1687
int logical_render_ring_init(struct intel_engine_cs *engine)
1688 1689 1690 1691
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1692 1693
	logical_ring_setup(engine);

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1704
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1705
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1706

1707
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1722
	return logical_ring_init(engine);
1723 1724
}

1725
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1726 1727 1728 1729
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1730 1731
}

1732
static u32
1733
make_rpcs(struct drm_i915_private *dev_priv)
1734 1735 1736 1737 1738 1739 1740
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1741
	if (INTEL_GEN(dev_priv) < 9)
1742 1743 1744 1745 1746 1747 1748 1749
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1750
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1751
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1752
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1753 1754 1755 1756
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1757
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1758
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1759
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1760 1761 1762 1763
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1764 1765
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1766
			GEN8_RPCS_EU_MIN_SHIFT;
1767
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1768 1769 1770 1771 1772 1773 1774
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1775
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1776 1777 1778
{
	u32 indirect_ctx_offset;

1779
	switch (INTEL_GEN(engine->i915)) {
1780
	default:
1781
		MISSING_CASE(INTEL_GEN(engine->i915));
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1796
static void execlists_init_reg_state(u32 *regs,
1797 1798 1799
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1800
{
1801 1802
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
1837

1838
		if (engine->wa_ctx.vma) {
1839
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1840
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1841

1842
			regs[CTX_RCS_INDIRECT_CTX + 1] =
1843 1844
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
1845

1846
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
1847
				intel_lr_indirect_ctx_offset(engine) << 6;
1848

1849
			regs[CTX_BB_PER_CTX_PTR + 1] =
1850
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
1851
		}
1852
	}
1853 1854 1855 1856

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
1857
	/* PDP values well be assigned later if needed */
1858 1859 1860 1861 1862 1863 1864 1865
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
1866

1867
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
1868 1869 1870 1871
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
1872
		ASSIGN_CTX_PML4(ppgtt, regs);
1873 1874
	}

1875 1876 1877 1878
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
1879
	}
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
1903
	ctx_obj->mm.dirty = true;
1904 1905 1906 1907 1908 1909

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
1910

1911
	i915_gem_object_unpin_map(ctx_obj);
1912 1913 1914 1915

	return 0;
}

1916
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
1917
					    struct intel_engine_cs *engine)
1918
{
1919
	struct drm_i915_gem_object *ctx_obj;
1920
	struct intel_context *ce = &ctx->engine[engine->id];
1921
	struct i915_vma *vma;
1922
	uint32_t context_size;
1923
	struct intel_ring *ring;
1924 1925
	int ret;

1926
	WARN_ON(ce->state);
1927

1928
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
1929

1930 1931 1932
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

1933
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
1934
	if (IS_ERR(ctx_obj)) {
1935
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
1936
		return PTR_ERR(ctx_obj);
1937 1938
	}

1939
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
1940 1941 1942 1943 1944
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

1945
	ring = intel_engine_create_ring(engine, ctx->ring_size);
1946 1947
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
1948
		goto error_deref_obj;
1949 1950
	}

1951
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
1952 1953
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1954
		goto error_ring_free;
1955 1956
	}

1957
	ce->ring = ring;
1958
	ce->state = vma;
1959
	ce->initialised |= engine->init_context == NULL;
1960 1961

	return 0;
1962

1963
error_ring_free:
1964
	intel_ring_free(ring);
1965
error_deref_obj:
1966
	i915_gem_object_put(ctx_obj);
1967
	return ret;
1968
}
1969

1970
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
1971
{
1972
	struct intel_engine_cs *engine;
1973
	struct i915_gem_context *ctx;
1974
	enum intel_engine_id id;
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
1987
		for_each_engine(engine, dev_priv, id) {
1988 1989
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
1990

1991 1992
			if (!ce->state)
				continue;
1993

1994 1995 1996 1997
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
1998

1999 2000 2001
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2002

C
Chris Wilson 已提交
2003
			ce->state->obj->mm.dirty = true;
2004
			i915_gem_object_unpin_map(ce->state->obj);
2005

2006
			intel_ring_reset(ce->ring, 0);
2007
		}
2008 2009
	}
}